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Abstract

Out-of-distribution (OOD) detection is a desired ability
to ensure the reliability and safety of intelligent systems. A
scoring function is often designed to measure the degree of
any new data being an OOD sample. While most designed
scoring functions are based on a single source of informa-
tion (e.g., the classifier’s output, logits, or feature vector),
recent studies demonstrate that fusion of multiple sources
may help better detect OOD data. In this study, after de-
tailed analysis of the issue in OOD detection by the con-
ventional principal component analysis (PCA), we propose
fusing a simple regularized PCA-based reconstruction er-
ror with other source of scoring function to further improve
OOD detection performance. In particular, when combined
with a strong energy score-based OOD method, the reg-
ularized reconstruction error helps achieve new state-of-
the-art OOD detection results on multiple standard bench-
marks. The code is available at https://github.com/SYSU-
MIA-GROUP/pca-based-out-of-distribution-detection.

1. Introduction
Out-of-distribution (OOD) detection refers to the ability

of a model to correctly detect samples that are from a differ-
ent distribution compared to that of the in-distribution (ID)
training data [13, 35]. It is a crucial ability to ensure the
reliability and safety of machine learning systems. For in-
stance, in autonomous driving, the system should be able to
detect previously unseen scenarios or objects and alert the
human operator when it cannot make a safe decision. How-
ever, current intelligent systems are often limited in OOD
detection.

Multiple approaches have been proposed to improve
model’s OOD detection ability [4, 9, 21, 26, 34]. The main
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Figure 1. The OOD detection performance (AUROC) on two
benchmarks from our method and representative strong baselines.
The ImageNet-1K Benchmark includes the ID set ImageNet-1K
and four OOD sets iNaturalist, SUN, Places, and Textures. The
CIFAR-100 Benchmark includes the ID set CIFAR-100 and seven
OOD sets SVHN, Tiny-ImageNet, iSUN, LSUN-Crop, LSUN-
Resize, Textures and Places365.

objective is to design or derive a scoring function whose
output is different between OOD input and ID input. For
deep learning classifier models, the scoring function is of-
ten designed based on three sources of information, i.e.,
the output probability of the classifier [7, 8, 15, 38], the
logit (i.e., input to the softmax function) at the last classifier
layer [6, 10, 16, 31], and the feature vector output from the
feature extractor part of the classifier [14, 18, 22, 29]. How-
ever, one source of information is often inherently limited.
For example, softmax output and logit often discard some of
the information in the feature vector even the discarded in-
formation might be helpful for OOD detection, while scor-
ing function solely based the feature vector cannot utilize
the class-associated weight parameters at the last classifier
layer. Based on this observation, one recent study starts
to explore combination of multiple sources for further im-
proving OOD detection performance [29, 40]. Specifically,
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certain discarded information from the feature vector is re-
used to generate an extra logit, which is then input to the
softmax together with the original logits to obtain the final
OOD score. Such multi-source fusion has achieved state-
of-the-art performance on some benchmarks [29].

In this study, following the multi-source fusion idea, we
propose a simple yet effective OOD score based on in-depth
analysis of the effect of the conventional principal compo-
nent analysis (PCA) on OOD detection. Starting from the
observation that the PCA-based reconstruction error for fea-
ture vectors is often inseparable between ID and OOD data,
we provide a detailed theoretical analysis and find that sta-
tistically the larger variance in components of feature vec-
tors on the ID data is probably the main source of such
inseparability. Based on this analysis, a regularized PCA-
based reconstruction error is applied to improve the separa-
bility between ID and OOD data. Such regularized recon-
struction error is post-hoc (i.e., working on any well-trained
classifier) and can be flexibly combined with existing OOD
detection methods such that multiple sources of informa-
tion can be utilized together to better detect OOD data.
When fusing this regularized error with the energy score-
based OOD method, new state-of-the-art performance was
obtained on multiple standard benchmarks.

2. Preliminaries
2.1. Out-of-distribution detection

For a supervised classification task, denote by Din the
training set of C classes which are randomly sampled from
the in-distribution Din of the C classes. The goal of OOD
detection is to train a classifier G (e.g., a convolutional neu-
ral network) which can not only correctly classify any test
data sampled from the in-distribution Din, but also detect
whether a test data is from the in-distribution Din or from a
different and unknown distribution Dout. A decision func-
tion F built on the classifier G needs to be designed to help
the classifier detect any potential data x from the out-of-
distribution Dout, and ideally

F (x;G) =

{
1 if x ∼ Din

0 if x ∼ Dout
. (1)

2.2. OOD detection with energy score

Suppose the classifier G is a convolutional neural net-
work which consists of multiple convolutional layers and a
fully connected layer, with softmax output as the final clas-
sification prediction. Given a test sample x, denote by fc(x)
the c-th output of the final linear layer, i.e., the c-th logit
corresponding to class c. One type of decision function F
is based on the energy score E,

E(x;G) = − log

C∑
c=1

exp(fc(x)) , (2)

In particular, Liu et al. [16] proposed the negative energy
score −E(x;G) as the score measurement to detect OOD
examples, with a higher score −E(x;G) suggesting that x
is more likely from the in-distribution Din and lower score
suggesting that x is more likely from the out-of-distribution
Dout.

3. Method

In this section, we first analyze the reason why the re-
construction error based on conventional PCA is not help-
ful for OOD detection (Section 3.1), and then use a simple
normalized PCA-based feature reconstruction error which
can be combined with existing OOD scores (mainly energy
score) to further improve the separability between ID and
OOD data.

3.1. Issues in PCA-based OOD detection

Suppose a neural network classifier has been well trained
with ID data. Intuitively, when applying PCA to the feature
vector output from the well-trained feature extractor, one
would expect that the reconstruction error is smaller for ID
data while larger for OOD data, and thus the PCA-based re-
construction error would help separate ID from OOD data.
However, it is observed that such expectation is not true sta-
tistically. In the following, we will reformulate the PCA-
based reconstruction error and analyze why it is not work-
ing in separating ID from OOD data.

Denote by h(x) ∈ RK the feature vector from the penul-
timate layer of the well-trained neural network classifier for
any input data x. The covariance matrix Σ of feature vec-
tors h(x)’s over all the ID training data can be obtained and
then decomposed to Σ = UΛU⊺, where U ∈ RK×K is
a unitary matrix and constituted by the principal compo-
nent directions, with each principal component correspond-
ing to one eigenvector of the covariance matrix Σ, and
Λ ∈ RK×K is the diagonal matrix with the diagonal en-
tries corresponding to the eigenvalues of Σ in descending
order. Since ID data often lie in a subspace of the original
feature vector space, the projection of ID data into the sub-
space and then reconstruction to the original feature space
would lose little information compared to the original fea-
ture vector for any ID data. Suppose the subspace is k-
dimensional and its base is from the first k principal com-
ponents which constitutes the first k columns of U, denoted
by Uk ∈ RK×k. k can be automatically determined as for
traditional dimensionality reduction by PCA, e.g., choosing
the k such that the first k eigenvalues can account for 95%
of the variance in distribution of feature vectors for all the
ID training data. Denote by µ the mean feature vector over
all ID training data in the original feature vector space, and
M = UkU

⊺
k ∈ RK×K . Then any original feature vector

h(x) can be projected to the subspace and then projected
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Figure 2. Distributions of the reconstruction error on the ID dataset
(blue) and each of the four OOD datasets (orange). The dimension
of the original feature space and the subspace is respectively 2048
and 256.

Figure 3. The geometry relationship between the centralized fea-
ture vector h(x)−µ and the reconstructed centralized feature vec-
tor M(h(x)−µ). The reconstructed error is the magnitude of the
difference between the two vectors.

back to the original feature space as below,

ĥ(x) = M(h(x)− µ) + µ , (3)

and the reconstruction error e(x) can be directly obtained
as

e(x) = ∥h(x)− ĥ(x)∥ (4)
= ∥(I−M)(h(x)− µ)∥. (5)

Although it is expected that e(x) would be smaller for ID
data and larger for OOD data, surprisingly we observed that
the distribution of the reconstruction error on the ID dataset
is often not separable from the distribution of the recon-
struction error on the OOD dataset (Figure 2). To explore
the underlying cause to such inseparability between ID and
OOD data, we reformulate the reconstruction error formula
(Eq. 5) based on the geometry relationship between the cen-
tralized feature vector h(x)− µ and the reconstructed cen-
tralized feature vector M(h(x)−µ). As Figure 3 illustrates,
the reconstructed centralized feature vector M(h(x) − µ)
coincide with the projection of the centralized feature vector
h(x) − µ to the subspace (Uk-space) spanned by the first
k principal components (see proof in Supplementary Sec-
tion B), and the reconstruction error e(x) is actually the L2

norm of the difference between h(x)−µ and M(h(x)−µ).
Denote by θ(x) the angle between the two vectors h(x)−µ
and M(h(x) − µ), then the reconstruction error can be re-
formulated as

e(x) = ∥h(x)− µ∥ · ∥(I−M)(h(x)− µ)∥
∥h(x)− µ∥

(6)

= ∥h(x)− µ∥ · sin θ . (7)

Since relatively large variations in ID signals are already in
the subspace, the variations in ID signals along any direc-
tion orthogonal to the subspace would be relatively small.

Figure 4. Distributions of the angle θ between the centralized fea-
ture vector h(x)− µ and its reconstruction M(h(x)− µ) on the
ID dataset ImageNet-1K (blue) and on the OOD dataset iNatural-
ist (first subfigure, orange), SUN (second, orange), Places (third,
orange), and Textures (fourth, orange), respectively. Model with
backbone ResNet50 is trained on the ID dataset ImageNet-1K here
and below by default.

Figure 5. Distributions of the magnitude ∥h(x) − µ∥ of the cen-
tralized feature vector on the ID dataset (blue) and each of the four
OOD datasets (orange).

Figure 6. Positively skewed distribution of each zi on both ID
dataset ImageNet-1K (first row) and an OOD dataset iNaturalist
(second row). Four zi’s are uniformly sampled for demonstra-
tion. Model with backbone ResNet50 is trained on the ID dataset
ImageNet-1K.

In other words, the angle θ is expected to be relatively small
for ID data. In contrast, OOD signals are not utilized to de-
termine the first k principal components and therefore some
of large variations in OOD signals may not be in the sub-
space, and the angle θ may be relatively large at least for
some OOD data. This has been confirmed on all the four
OOD datasets as shown in Figure 4.

From Eq. (7) and the observations in Figures 2 and 4,
it can be inferred that the magnitude ∥h(x) − µ∥ of the
centralized feature vector h(x) − µ should be statistically
larger for ID data while smaller for OOD data. Again, this
is confirmed by the empirical observation on the four OOD
datasets as demonstrated in Figure 5. In the following, fur-
ther exploration is performed to search for the source of
such difference in magnitude ∥h(x) − µ∥ between ID and
OOD data.

3.1.1 Variance analysis

For ease of analysis, let zi(x) denote the i-th component
of h(x), µin,i denote the i-th component of µ, and define
v(x) = ∥h(x)− µ∥2. Then the expectation of v(x) on the
ID dataset Din and an OOD dataset Dout can be respectively
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calculated by

E
x∈Din

[v(x)] =

K∑
i=1

E
x∈Din

[(zi(x)− µin,i)
2] (8)

E
x∈Dout

[v(x)] =

K∑
i=1

E
x∈Dout

[(zi(x)− µin,i)
2] (9)

=

K∑
i=1

{
E

x∈Dout

[(zi(x)− µout,i)
2] + ∆µi

}
,

where µout,i is the average of the i-th component of feature
vector output over all the OOD data in Dout, and ∆µi =
(µout,i − µin,i)

2.
If the distribution of each zi (i.e., zi(x), omitting x for

simplicity below) is normal, the variance of zi and conse-
quently the expectation of v(x) on either ID or OOD dataset
can be unbiasedly estimated based on the collection of ID or
OOD data. However, largely due to the ReLU activation op-
erator (only keeping non-negative signals) which is adopted
in most CNN models, the distribution of each zi is often
positively skewed on both ID and OOD dataset, as demon-
strated in Figure 6. In this case, the initially estimated vari-
ance of each zi needs to be modified by considering the non-
symmetrical property of each zi’s distribution. Following
the previous studies [17, 22], the epsilon-skew-norm (ESN)
distribution is used to approximate the positively skewed
distribution of each zi. Formally, suppose σout,i is the ini-
tially estimated standard deviation of zi on the collection of
OOD data, and mout,i is the estimated mode of zi over all
the OOD data, then the positively skewed distribution of the
zi on the OOD dataset can be modelled by a ESN distribu-
tion as below,

q(zi) =

{
1

σout, i
ϕ(

zi−mout,i
σout,i(1+ϵout,i)

) if zi < mout,i
1

σout, i
ϕ(

zi−mout,i
σout,i(1−ϵout,i)

) if zi ≥ mout,i
, (10)

where ϕ(·) represents the p.d.f of standard normal distribu-
tion, and the hyper-parameter ϵout,i ∈ (−1, 1) controls the
skewness. q(zi) will become the well-known half-normal
distributions when ϵout,i → ±1, and reduce to the normal
distribution when ϵout,i = 0. In particular, ϵout,i < 0 for
positively-skewed ESN distribution. In this case, the re-
lationship between initial estimated variance of zi and the
variance can be formulated as [17]

Var(zout,i) =
σ2

out,i

π
[(3π − 8)ϵ2out,i + π]. (11)

The upper bound of the variance for each zi can be obtained
by setting ϵout,i = −1. Similarly on the ID dataset, the vari-
ance of zi can be estimated as well, with the parameters
in Eqs. (10) and (11) estimated based on the ID dataset,
and the lower bound of the variance for each zi can be ob-
tained by setting ϵin,i = 0. After replacing Ex∈Dout [(zi −

Figure 7. Histograms of the initial variance estimates of feature
vector components respectively on the ID dataset ImageNet-1k
(blue) and on each of the four OOD dataset iNaturalist, SUN,
Places, and Textures (orange).

µout,i)
2] (Eq. 9) by the upper bound of Var(zi) on the OOD

dataset, and replacing Ex∈Din [(zi(x) − µin,i)
2] (Eq. 8) by

the lower bound of Var(zi) on the ID dataset, the upper
bound of Ex∈Dout [v(x)] (Eq. 9) and the the lower bound of
Ex∈Din [v(x)] (Eq. 8) can be directly obtained. Table 1 (last
row) shows that even the lower bound of Ex∈Din [v(x)] on
the ID dataset (first column) is clearly larger than the upper
bound of Ex∈Dout [v(x)] on each of the four OOD datasets
(last four columns).

This supports the above finding that the magnitude
∥h(x) − µ∥ of the centralized feature vector h(x) − µ is
statistically larger for ID data than for OOD data. Together
with Eq. (11), it also indicates that the initial estimates
{σ2

in,i}Ki=1 on the ID dataset should be statistically larger
than the initial estimates {σ2

out,i}Ki=1 on the OOD dataset.
This is confirmed by the histogram of the initial variance
estimates respectively on the ID dataset and on each OOD
dataset (Figure 7).

In summary, we find that statistically the larger variance
in components (zi’s) of the feature vector h(x) on the ID
data, together with the smaller angle between the original
feature vector of ID data and its projection in the subspace,
is probably the source of the inseparability in PCA-based
reconstruction error between ID and OOD data. One may
further wonder why feature vector components have rela-
tively smaller variances on OOD data, which is beyond the
scope of this study and can be investigated as a future work.

Table 1. The lower bound of Eq. 8 on ID data (1st column) and the
upper bound of Eq. 9 on OOD data (last 4 columns).

Dataset ImageNet1K iNaturalist SUN Places Textures
ϵ 0 -1 -1 -1 -1

E[v(x)] 393.22 370.03 335.06 333.76 388.19

3.2. Regularized reconstruction error

While it is still unclear why feature vector components
have relatively larger variance on the ID data, it is well-
known that a variable whose values are at a larger scale
would more likely have a relatively larger variance. If that
is the case, we may use the relatively larger norm of fea-
ture vector to alleviate the negative effect of the larger vari-
ance from ID data. Fortunately, previous studies [28] have
shown that statistically the norm of feature vector from ID
data is larger than that from OOD data (also see the re-
implemented result in Figure 8). With all the above con-
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Figure 8. Distributions of the norm of feature vector on the ID
dataset ImageNet-1K (blue) and each of the four OOD datasets
iNaturalist, Plcaces, SUN, and Textures (orange).

Figure 9. Distributions of the regularized reconstruction error on
the ID dataset (blue) and each of the four OOD datasets (orange).

sideration, we choose to use a simple regularized version of
the original reconstruction error e(x) (Eq. 5) as below

r(x) = ∥h(x)− ĥ(x)∥/∥h(x)∥. (12)

With the regularized reconstruction error r(x), statistically
smaller reconstruction error is observed on the ID dataset
compared to that on each OOD dataset (Figure 9). Although
the separability in the regularized reconstruction error be-
tween ID and OOD data is still weak, the regularized recon-
struction error r(x) can be combined with existing OOD
scores to potentially further improve the OOD detection
performance. For example, the fusion of r(x) with the en-
ergy score results in a new OOD score as below

D(x) = (1− r(x)) log

C∑
c=1

exp(fc(x)) . (13)

The multiplication rather than the addition operator is used
for the fusion of two OOD scores to improve the influence
of the regularized reconstruction error r(x) and meanwhile
avoid using the extra trade-off coefficient between the two
scores. It is expected that ID data would result in a higher
score D(x) and OOD data lower score. Also, it is worth
noting that the proposed r(x) is compatible with multiple
existing OOD methods, i.e., it can be fused with not only
energy-based OOD scores but also others like MSP [7] for
OOD detection (see Table 3 below).

4. Experiments
4.1. Experimental settings

Our method was extensively evaluated on four OOD
detection benchmarks. Each benchmark contains a train-
ing ID set, a test ID set, and multiple test OOD sets.
The ImageNet-1K and ImageNet-100 [25] Benchmarks re-
spectively use the ImageNet-1K and ImageNet-100 as ID
sets, and both use four OOD sets, including iNatural-
ist [27], SUN [32], Places [39], and Textures [2]. The

CIFAR-10 and CIFAR-100 Benchmarks respectively use
the CIFAR-10 and CIFAR-100 as ID sets, and both use
seven OOD sets, including SVHN [19], Tiny-ImageNet [1],
iSUN [33], LSUN-Crop [36], LSUN-Resize [36], Textures,
and Places365 [39]. There are no overlapped classes be-
tween ID set and each OOD set. Please refer to Supplemen-
tary Section A for more details of datasets.

On the ImageNet-1K Benchmark, a publicly re-
leased pre-trained CNN classifier with certain backbone
(ResNet50 [5] or MobileNet-v2 [20]) was directly used for
evaluation of our method and each baseline method. On the
other three benchmarks, a CNN classifier with certain back-
bone was trained from scratch with the associated training
ID set. The stochastic gradient descent optimizer with mo-
mentum (0.9) and weight decay (0.0005) was used to train
each classifier up to 100 epochs on the ImageNet-100 train-
ing set or up to 200 epochs on the CIFAR [12] training
datasets. The batch size was set to 128. The initial learning
was set to 0.1, and decayed by a factor of 10 at the 50-th,
75-th, and 90-th epoch on ImageNet-100, or at the 100-th
and 150-th epoch on CIFAR. On the ImageNet-100 training
set, each image was resized to 256 × 256 pixels and then
randomly cropped to 224 × 224 pixels. On the CIFAR-10
or CIFAR-100 training set, each training image was padded
from 32 × 32 pixels to 36 × 36 pixels and then randomly
cropped to 32× 32 pixels. Random horizontal flipping was
adopted together with random cropping on each training im-
age. During test, only center cropping together resizing was
used on the ImageNet [3] dataset.

Following previous studies [22], ResNet50 and the
light-weight MobileNet-v2 were used as the classifier
backbone on the ImageNet Benchmarks, ResNet34 and
WideResNet28-10 [31, 40] were used on CIFAR Bench-
marks. The feature dimension of the penultimate layer
is respectively 2048, 1280, 512, and 640 for ResNet50,
MobileNet-v2, ResNet34, and WideResNet28-10. In all ex-
periments, the reduced feature dimension was empirically
set to 256, 128, 9 (on CIFAR10) or 49 (on CIFAR100), and
16 (on CIFAR10) or 64 (on CIFAR100) respectively for the
four backbones, with the constraint that around 90% of the
original feature signal was preserved after dimension reduc-
tion on the ID training sets.

Multiple types of competitive OOD detection methods
were adoped as baselines for comprehensive evaluation,
including the Maximum Softmax Probability (MSP) [7],
ODIN [15], Energy [16], Mahalanobis [14], ViM [29],
DICE [23], ReAct [22] and BATS [40]. All the baselines
are post-hoc and can obtain the OOD score based on a pre-
trained CNN classifier. In addition, LogitNorm [31] was
used on Benchmark III because it achieves the state-of-the-
art performance on the benchmark. For all experiments,
FPR95 (i.e., the false positive rate of OOD examples when
the true positive rate of ID examples is 95%) and AUROC
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Table 2. Comparison between different methods in OOD detection on the ImageNet-1K Benchmark with two different model backbones.
↑ indicates that larger values are better and ↓ indicates that smaller values are better. All values are percentages.

ID Dataset
Model Method

OOD Datasets
iNaturalist SUN Places Textures Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

ImageNet-1K
ResNet50

MSP 54.99 87.74 70.83 80.86 73.99 79.76 68.00 79.61 66.95 81.99
ODIN 47.66 89.66 60.15 84.59 67.89 81.78 50.23 85.62 56.48 85.41

Mahalanobis 97.00 52.65 98.50 42.41 98.40 41.79 55.80 85.01 87.43 55.47
Energy 55.72 89.95 59.26 85.89 64.92 82.86 53.72 85.99 58.41 86.17

ViM 68.86 87.13 79.62 81.67 83.81 77.80 14.95 96.74 61.81 85.83
BATS 42.26 92.75 44.70 90.22 55.85 86.48 33.24 93.33 44.01 90.69
DICE 26.66 94.49 36.08 90.98 47.63 87.73 32.46 90.46 35.71 90.92
ReAct 20.38 96.22 24.20 94.20 33.85 91.58 47.30 89.80 31.43 92.95

DICE+ReAct 20.08 96.11 26.50 93.83 38.34 90.61 29.36 92.65 28.57 93.30
Ours 10.17 97.97 18.50 95.80 27.31 93.39 18.67 95.95 18.66 95.78

ImageNet-1K
MobileNet

MSP 64.29 85.32 77.02 77.10 79.23 76.27 73.51 77.30 73.51 79.00
ODIN 58.54 87.51 57.00 85.83 59.87 84.77 52.07 85.04 56.87 85.79

Mahalanobis 62.11 81.00 47.82 83.66 52.09 83.63 92.38 33.06 63.60 71.01
Energy 59.50 88.91 62.65 84.50 69.37 81.19 58.05 85.03 62.39 84.91

ViM 91.83 77.47 94.34 70.24 93.97 68.26 37.62 92.65 79.44 77.15
BATS 49.57 91.50 57.81 85.96 64.48 82.83 39.77 91.17 52.91 87.87
DICE 43.28 90.79 38.86 90.41 53.48 85.67 33.14 91.26 42.19 89.53
ReAct 43.07 92.72 52.47 87.26 59.91 84.07 40.20 90.96 48.91 88.75

DICE+ReAct 41.75 89.84 39.07 90.39 54.41 84.03 19.98 95.86 38.80 90.03
Ours 35.84 93.66 40.35 90.77 52.38 86.76 18.44 95.39 36.75 91.65

(the area under the receiver operating characteristic curve)
in OOD detection were used as metric, with lower FPR95
values and higher AUROC values indicating better OOD de-
tection performance.

4.2. Quantitative evaluations

On the ImageNet-1K Benchmark, Table 2 summarizes
the OOD detection performance of each method on each
OOD set (together with the ID test set) and the average per-
formance over the four OOD sets. By default, our method is
built on the state-of-the-art baseline ReAct which uses the
energy score for OOD detection. With the ResNet-50 back-
bone, our method achieves state-of-the-art performance on
three of the four OOD sets, and in average outperforms the
best baseline DICE+ReAct by a large margin (95.78% vs.
93.30% on AUROC, and 18.66% vs. 28.57% on FPR95).
Similar finding can be obtained with the MobileNet-v2
backbone (Table 2, lower half), achieving the best AUROC
performance on three OOD sets and the state-of-the-art av-
erage performance over the four OOD sets.

Our method can be flexibly combined with existing base-
lines to further improve their OOD detection performance.
As Table 3 shows, when fusing the proposed regularized
reconstruction error term (1− r) into the OOD scores in ex-
isting methods MSP, Energy, BATS, and ReAct, the OOD
detection performance is boosted on each OOD set. With
the ResNet50 backbone, the average AUROC is improved
by 1.87% − 2.83%, and the average FPR95 is successfully
reduced by 4.24%−12.77%. Similar result can be observed
with the MobileNet-v2 backbone (Table 3, lower half).

Consistently on the ImageNet-100 Benchmark, our

method achieves the best performance in average (Table 4,
last two columns). On individual OOD sets, our method
performs either best or similar to the the best baseline.
Note that for each method, the OOD performance on the
ImageNet-100 Benchmark is slightly worse than that on
ImageNet-1K Benchmark probably because the classifier
trained on ImageNet-100 is more confident about its pre-
dictions, which causes more confident false positive predic-
tions (i.e., OOD samples considered as ID classes) and cor-
respondingly lower AUROC values.

On the CIFAR Benchmarks, the regularized reconstruc-
tion error also helps achieve state-of-the-art performance in
average on the seven OOD sets with both CNN backbones,
as shown in Table 5. Note that on the CIFAR-10 Bench-
mark, the regularized reconstruction error is combined with
the state-of-the-art method LogitNorm by default. In addi-
tion, Table 6 consistently confirms that the regularized re-
construction error can be flexibly combined with multiple
OOD methods to further improve their original detection
performance.

4.3. Sensitivity study

Here we evaluate the sensitivity of our method to the di-
mension k of the subspace which is crucial to compute the
regularized reconstruction error. Smaller k statistically cor-
responds to less percent of the original feature signal pre-
served after dimension reduction on the ID training set. As
shown in Figure 10, our method works quite stable when
varying the value of k in a large range on both benchmarks.
Although the OOD detection performance slowly decreases
when k gradually becomes smaller, our method still works
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Table 3. Fusion of the regularized reconstruction error with various OOD methods on the ImageNet-1K Benchmark. For each paired values
by ‘/’: the left one is from the original baseline and the right one is from the fusion one.

ID Dataset
Model Method

OOD Datasets
iNaturalist SUN Places Textures Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

ImageNet-1K
ResNet50

MSP 54.99/51.47 87.74/88.95 70.83/67.64 80.86/82.71 73.99/71.20 79.76/ 80.87 68.00/60.53 79.61/85.86 66.95/62.71 81.99/84.60
Energy 55.72/50.36 89.95/91.09 59.26/54.19 85.89/87.55 64.92/64.13 82.86/84.00 53.72/29.33 85.99/92.59 58.41/49.50 86.17/88.81
BATS 42.26/29.66 92.75/94.49 44.70/38.11 91.40/90.03 55.85/51.70 86.48/87.25 33.24/13.46 93.33/97.09 44.01/33.23 90.69/92.56
ReAct 20.38/10.17 96.22/97.97 24.20/18.50 94.20/95.80 33.85/27.31 91.58/93.39 47.30/18.67 89.80/95.95 31.43/18.66 92.95/95.78

ImageNet-1K
MobileNet

MSP 64.29/59.49 85.32/86.87 77.02/73.75 77.10/79.41 79.23/76.79 76.27/ 77.94 73.51/65.71 77.30/83.46 73.51/68.93 79.00/81.92
Energy 59.50/56.92 88.91/89.62 62.65/60.07 84.50/85.80 69.37/69.23 81.19/81.72 58.05/34.22 85.03/91.66 62.39/55.11 84.91/87.20
BATS 49.57/50.51 91.50/90.86 57.81/55.41 85.96/87.00 64.48/66.43 82.83/82.60 39.77/23.26 91.17/94.70 52.91/48.90 87.87/88.79
ReAct 43.07/35.84 92.72/93.66 52.47/40.35 87.26/90.77 59.91/52.38 84.07/86.76 40.20/18.44 90.96/95.39 48.91/36.75 88.75/91.65

Table 4. Comparison between different methods in OOD detection on the ImageNet-100 Benchmark.

ID Dataset
Model Method

OOD Datasets
iNaturalist SUN Places Textures Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

ImageNet-100
ResNet50

MSP 69.28 85.84 70.14 84.20 69.43 84.29 64.27 84.09 68.28 84.60
ODIN 44.22 92.42 54.71 88.94 57.52 88.01 42.87 89.76 49.83 89.78

Mahalanobis 98.09 35.06 98.75 34.70 98.66 34.95 44.08 83.07 84.98 44.08
Energy 64.60 89.08 62.70 88.03 60.70 87.78 51.38 87.89 59.85 88.20

ViM 84.92 81.92 83.18 81.47 81.45 81.55 20.00 96.07 67.39 85.25
BATS 43.05 92.65 58.75 87.83 57.72 87.43 38.88 91.97 49.60 89.97
DICE 35.08 93.29 36.89 92.53 43.71 90.66 31.84 92.08 36.46 92.11
ReAct 30.60 94.40 47.55 89.99 47.21 89.53 50.89 87.57 44.06 90.45

DICE+ReAct 29.20 93.83 47.01 89.28 38.40 92.01 31.84 92.08 36.61 91.80
Ours 26.60 94.83 41.55 90.96 44.50 90.22 22.18 95.07 33.71 92.77

well even just 70% of the original signals is preserved in the
feature subspace.

5. Related work

OOD score design. One line of studies perform OOD de-
tection by designing scoring functions. Based on the in-
formation sources used in designing scoring functions, ex-
isting methods can be divided into three main categories,
i.e., (1) probability space based, such as maximum soft-
max probability (MSP) [7] and ODIN [15]; (2) logit space
based, such as MaxLogit [6], energy-scores [16, 30]; and
(3) feature space based, such as Mahalanobis distance [14].
Very recently, ReAct [22] was proposed to improve the ef-
fect of the energy score by feature pruning, and similarly
BATS [40] boosts the energy score by limiting features to
a so-called typical space. Both of them utilize the fea-
ture space information to enhance the performance of logit
space-based scoring function for OOD detection, yet nei-
ther of them adopt multiple sources information. ViM [29]
is the most relevant work to our study. It maps features
to the orthogonal complement space of the principal space
and computes a virtual logit based on the projection of this
space. ViM uses fusion of information from both features
and logits and achieves state-of-the-art OOD detection per-
formance on some benchmark datasets. In constrast, our
method fuses a regularized PCA-based reconstruction error
with other source of scoring functions to improve OOD de-
tection performance. Our method leverages the differences
in the distribution of information in the feature space be-

Figure 10. Effect of the dimension k of the subspace on OOD de-
tection performance. Left: on the CIFAR-100 Benchmark with the
ResNet34 backbone. Right: on the ImageNet-1K Benchamrk with
the ResNet50 backbone. For each subfigure, the bottom horizontal
axis represents the percent of the original feature signal preserved
after dimension reduction, while the top horizontal axis represents
the corresponding dimension k of the subspace. The horizontal
dotted line in each subfigure represents the AUROC performance
of best baseline on each Benchmark.

tween ID and OOD data, as well as differences in feature
norms, and achieves stable improvement on OOD detection
performance when combined with different scoring func-
tions across multiple sources of information.
Training regularization. Another line of studies perform
OOD detection by adding certain regularization term into
the loss function for model training [24, 11, 37]. For exam-
ple, G-ODIN [35] uses a dividend/divisor structure to mea-
sure ID-ness of inputs. VOS [4] produces better predictions
by utilizing synthetic virtual outliers. LogitNorm [31] nor-
malizes logit’s before the logits are sent to the CE loss func-
tion, which results an angular dispersed feature representa-
tion and achieve state-of-the-art performance on CIFAR-10
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Table 5. Comparison between different methods in OOD detection on the CIFAR benchmarks. Values are average percentages over seven
OOD datasets. See more detailed results on each OOD dataset in the Supplementary Section C.

ID Dataset
Model Metrics Methods

MSP Mahalanobis ODIN DICE VIM Energy BATS ReAct DICE+ReAct LogitNorm Ours
CIFAR-10
ResNet34

FPR95↓ 39.69 60.09 30.37 33.51 40.62 24.71 28.62 25.90 33.74 15.03 13.06
AUROC↑ 92.54 91.38 90.79 91.65 93.56 93.85 93.98 93.90 91.65 97.25 97.59

CIFAR-10
WideResNet

FPR95↓ 37.45 88.37 28.98 32.56 21.51 25.75 28.66 26.26 32.82 15.36 13.32
AUROC↑ 92.64 62.93 90.23 89.16 95.16 93.17 94.30 93.56 90.01 96.63 97.14

CIFAR-100
ResNet34

FPR95↓ 77.26 94.43 63.91 67.32 63.03 68.13 56.88 51.11 64.81 63.41 43.64
AUROC↑ 79.93 54.43 83.74 83.99 85.12 83.34 87.52 88.14 84.62 81.90 90.04

CIFAR-100
WideResNet

FPR95↓ 74.42 66.99 64.29 60.48 58.43 68.55 67.28 65.02 67.89 51.23 51.79
AUROC↑ 80.50 68.31 83.80 83.90 87.37 82.88 85.27 86.05 74.13 87.22 88.94

Table 6. Fusion of the regularized reconstruction error with various OOD methods on the CIFAR Benchmark

Method
ResNet34 WideResNet

CIFAR10 CIFAR100 CIFAR10 CIFAR100
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 39.69/36.08 92.54/92.95 77.26/74.48 79.93/79.71 37.45/32.08 92.64/94.12 74.42/72.89 80.50/81.62
Energy 24.71/25.19 93.85/94.88 68.13/57.21 83.34/86.30 25.75/24.82 93.17/94.40 68.55/63.00 82.88/85.00
BATS 28.62/29.45 93.98/94.23 56.88/45.56 87.52/89.48 28.66/28.42 94.30/94.69 67.28/52.11 85.27/88.78
ReAct 25.90/27.49 93.90/94.60 54.11/43.64 88.14/90.04 26.26/25.29 93.56/94.49 65.02/51.79 86.05/88.94

benchmarks. As a post-hoc strategy, our method does not
require model retraining, and the derived regularized recon-
struction error can serve as a plugin and be conveniently
combined with existing OOD methods with different model
architectures.

6. Conclusion

In this study, we analyze in detail why the conventional
PCA-based reconstruction error is not working well for
OOD detection in deep learning models, and propose fus-
ing a regularized PCA-based reconstruction error with ex-
isting scoring functions to further improve OOD detection
performance. A simple combination of the regularized re-
construction error with the energy-based scoring function
achieves state-of-the-art performance on multiple bench-
mark datasets. This study can be considered as one more
evidence for the fusion of multiple information sources in
the scoring function to better detect OOD data.
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