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Abstract

When handling complicated text images (e.g., irregular
structures, low resolution, heavy occlusion, and uneven illu-
mination), existing supervised text recognition methods are
data-hungry. Although these methods employ large-scale
synthetic text images to reduce the dependence on anno-
tated real images, the domain gap still limits the recog-
nition performance. Therefore, exploring the robust text
feature representations on unlabeled real images by self-
supervised learning is a good solution. However, existing
self-supervised text recognition methods conduct sequence-
to-sequence representation learning by roughly splitting
the visual features along the horizontal axis, which lim-
its the flexibility of the augmentations, as large geometric-
based augmentations may lead to sequence-to-sequence
feature inconsistency. Motivated by this, we propose a
novel self-supervised Character-to-Character Distillation
method, CCD, which enables versatile augmentations to fa-
cilitate general text representation learning. Specifically,
we delineate the character structures of unlabeled real im-
ages by designing a self-supervised character segmentation
module. Following this, CCD easily enriches the diver-
sity of local characters while keeping their pairwise align-
ment under flexible augmentations, using the transforma-
tion matrix between two augmented views from images. Ex-
periments demonstrate that CCD achieves state-of-the-art
results, with average performance gains of 1.38% in text
recognition, 1.7% in text segmentation, 0.24 dB (PSNR) and
0.0321 (SSIM) in text super-resolution. Code is available at
https://github.com/TongkunGuan/CCD.

1. Introduction

Recognizing text from images is a fundamental task
in computer vision with applications in various scenarios,
such as recognizing latex formulas [4 1], work-piece serial
numbers [18], text logos [38], etc., and contributes sig-
nificantly to the multi-modal analysis [55] and text under-
standing [62, 46]. However, existing text recognition meth-
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Figure 1. Conceptual illustration of two different self-supervised
paradigms. (a) is a sequence-level method that takes feature blocks
horizontally-split from a sequence as the basic items for represen-
tation learning. (b) is our character-level method that incorporates
a self-supervised segmentation head to generate individual charac-
ter structures (Sycq and S;,), and utilizes the resulting character-
level features as the basic items for representation learning.

ods [48, 16, 51, 66, 50, 30, 24] are data-hungry, i.e., they
require sufficient data with at least text transcriptions for
producing accurate character predictions through implicit
attention learning [19]. Even more, some supervised at-
tention methods [24, 48, 32] require extra character-level
bounding boxes. These annotations on text images are ex-
pensive and laborious. Although they employ text synthe-
sis techniques [20, 26] to substitute for labour-intensive text
annotation tasks, the domain gap between real and synthetic
images still limits the performance of text recognition [61].
Therefore, exploring the potential of unlabeled real text im-
ages is of great importance as they are readily available.
Recently, self-supervised learning methods [1, 61, 34]
have attracted considerable attention, which attempt to
leverage the intrinsic qualities of unlabeled real text images
to learn proper visual representations, followed by fine-
tuning on text-related downstream tasks with less annotated
data. Specifically, SeqCLR [1] adopts the SimCLR [11]
framework to ensure sequence-to-sequence consistency be-
tween the two augmented views, in which the sequence is
composed of several non-overlapping feature blocks hori-
zontally splitting from the visual features of the text im-
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age. DiG [61] employs both a sequence-level contrastive
learning task [1] and a masked image modeling task [22]
to learn feature representations. These methods formulate
the learning via sequence-level pretext tasks illustrated in
Fig.1 (a). We argue that roughly splitting visual features
of text images into a feature sequence along the horizontal
axis has two weaknesses: 1) Inflexible data augmentation
strategy, as large geometric transformations may cause in-
consistency among the corresponding items in the feature
sequence generated from different views. However, versa-
tile data augmentations are demanded for self-supervised
learning in many previous works [11, 2, 25]; 2) Neglect-
ing character structures, which confuses networks to cause
inter-character mixture, further downgrades the perception
of semantic clue information in character-centric text im-
ages. Thus a suitable self-supervised learning paradigm that
is tailored for text images with a diversity of word length is
in demand.

To address this issue, we propose a new self-supervised
learning paradigm in character-level, named Character-to-
Character Distillation (CCD), as shown in Fig.2, which en-
ables feature representation consistency across various aug-
mentations by organizing text images into entities, i.e., each
character and background regions. Specifically, two views
are first generated from each input image: a regular view
with color jitter and an irregular view with additional geo-
metric transformations. Each view is fed into the encoder of
the student-teacher branches for extracting features that rep-
resent the whole view. Then, character regions from regular
view are delineated by a joint self-supervised text segmen-
tation and density-based spatial clustering task, and those
from irregular view are generated using the known trans-
formation matrix between two views. In this way, CCD
naturally ensures the consistency of corresponding charac-
ters across views and branches. Consequently, by enjoying
the pairwise diversity of local characters under flexible aug-
mentations, CCD effectively enhances the robustness and
generalization of the learned features, making it more suit-
able for text-related downstream tasks. In summary, the
main contributions are as follows:

* We propose a novel self-supervised method cus-
tomized for character-centric text images with a di-
versity of word length, termed CCD. Different from
prior works with sequence-to-sequence pretext tasks,
CCD delineates the character structures to establish
character-to-character feature representation consis-
tency, enjoying significant augmentation flexibility for
extracting general text feature representations.

* CCD shows its prominent superiority in self-
supervised representation learning, and consistently
and significantly outperforms the state-of-the-art
DiG [61] by an average of 1.38% in text recogni-
tion, 1.7% in text segmentation, 0.24 dB (PSNR) and

0.0321 (SSIM) in text image super-resolution task,
with the same parameters and latency.

2. Related Work
2.1. Text Recognition

Given a text image and supervised by its text annotations,
text recognition methods aim to predict these characters.
Specifically, these methods can be roughly summarized into
language-free and language-aware methods. For language-
free methods [45, 43, 31, 30, 68, 48, 32, 37, 5, 6, 56], they
view text recognition as a character classification task and
focus on how to extract robust visual features of characters.
For example, some works [45, 43, 31, 30, 33, 68, 60] de-
velop implicit attention mechanisms by computing the sim-
ilarity of feature patches to extract the important items of
visual features, w.r.. the current decoding character. Some
works [48, 32, 37] employ extra character-level bounding
box annotations as the spatial locations of characters to su-
pervise the corresponding attention at the decoding stage,
which alleviates the alignment-drifted problem [64] and
improves attention correctness. For language-aware meth-
ods [16, 8, 53, 63], they execute semantic reasoning on texts
with linguistic context to explore the semantic relationships
among character, sub-word and word. For example, Fang et
al. [16] propose a language model by predicting the masked
character in a text with linguistic context. Li et al. [53] mask
the visual features of some characters based on character at-
tention to predict the corresponding character categories.

2.2. Self-supervised Learning for Text Recognition

Recently, self-supervised learning [9, | 1, 69, 22, 23, 57]
objectives have gained considerable traction due to their
powerful feature representations for transferring down-
stream tasks. These methods leverage the intrinsic qualities
of unlabeled real images to learn general feature represen-
tations, by ensuring the feature consistency of various aug-
mented views. For example, two popular self-supervised
pretext tasks in computer vision are designed to establish
representation learning: discriminative task [1, 23] and gen-
erative task [22, 57].

Inspired by these methods, some self-supervised text
recognition methods [1, 61, 34, 65] are designed for text
images with indefinite-length characters, which differs from
well-curated images with an atomic input element. Specif-
ically, SeqCLR [1] is the first to apply a self-supervised
method to text recognition, which proposes a sequence-to-
sequence contrastive learning framework on text images. It
horizontally splits the visual features into a sequence with
fixed-length feature blocks, and each item of the feature
sequence from two augmented views is aligned. Follow-
ing SeqCLR with sequence-level representative learning,
DiG [61] updates one of the augmented views as a masked
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Figure 2. Overview of self-supervised Character-to-Character Distillation (CCD). Both two augmented views (X4 and X;,) are fed into
the student branch and the teacher branch to obtain character features, which are represented by R and I, in the student branch, and R
and I; in the teacher branch. We then build character-to-character representation consistency across different views and different branches.

view and adds a masked image modeling task. PerSec [34]
performs hierarchical contrastive learning across each ele-
ment of features for text recognition. Our work differs from
prior works in that we delineate character structures and
propose a character-to-character distillation task to learn
more universal text features in the representative space.

3. Methodology
3.1. Architecture

Data Augmentation: The input image X undergoes color-
based augmentations (e.g., color jitter, color dropout, and
grayscale conversion) to create a regular view X,..,, and a
combination of both color- and geometry-based augmenta-
tions (e.g., affine transformation and perspective warping)
to generate an irregular view X;,...

Encoder F(-): ViT [14] is employed as the encoder of our
method CCD due to its prominent superiority in extracting
visual features. Specifically, two augmented views (X4
and Xj,.) are split into non-overlapping patches with size
4 x 4, and then fed into multi-layer transformer blocks to
extract text features.

Self-supervised Character Segmentation Head &(-): We
employ an Unet-like network structure to implement pixel-
level text segmentation, which assigns each pixel a fore-
ground or background label. Then, we delineate the charac-
ter structures from the resulting text segmentation map by a
density-based spatial clustering task.

Patch Head 7(-) takes the character structure regions and
text features as inputs and generates character-level feature
representations by a mean-pooling operation.

Projection Head P(-) consists of a three-layer MLP and a
weight-normalized fully connected layer [9], producing the
final character features.

Student & Teacher Branch contain all of the above
units, except for self-supervised character segmentation
head &(-), which is exclusively designed in the student
branch to generate the character segmentation results (S,.cq

Algorithm 1: Pytorch pseudo-code of CCD.

# Gs,G:: student and teacher branches

# Fs,Ps: encoder and self-supervised character
segmentation head in the student branch

G, .params = G, .params

for X in loader: # load a minibatch X
# augmentation: regular view and irregular view
Xypeg, Xirr = augment_reg(X), augment_irr (X)
# character regions in the student branch
Sreg = Do(Fa(Xreg)), Sirr = Tirr(Speq)
# character regions in the teacher branch
Ticg = Sregs Tirr = Sirr
# character features in the student branch
Rs, I = Go(Xyeg, Sreg)r Gs (Xipr, Sirr)
# character features in the teacher branch
Ri, It = Ge(Xregr Tseg)r Gt (XKirr, Tirr)
loss = (I, Rs) + E(Re, L)
loss.backward() # back-propagate
# student and teacher updates
update (G;) # AdamW optimizer
Gt .params = A\xG;.params + (1 - )\)*G,.params

in regular view and S;,, in irregular view). For simplic-
ity, the segmentation head of the teacher branch is canceled
by utilizing the segmentation results (S;.., and S;;.,) as the
corresponding character regions (T4 in regular view and
T, in irregular view). Subsequently, character features
(R; and I,) are generated in the student branch to match
the character features (R; and I;) distribution from the
teacher branch. The whole pipeline is illustrated in Fig.2
and the detailed network is described in Sec. 3.2. Addi-
tionally, we also provide a pseudo-code implementation of
our character-to-character self-supervised learning method
to further illustrate our pipeline as shown in Algo. 1.

3.2. Character-level Representation Learning

In this section, we will illustrate how to obtain charac-
ter structures and ensure character-to-character consistency
for representation learning, which is different from existing
sequence-to-sequence self-supervised methods.

1) Self-supervised Character Segmentation. Given an
unlabeled text image, our objective is to perform instance-
level character segmentation, which identifies all character
regions and produces a mask for each of them. Specifically,
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to make the task more feasible and reasonable, we divide it
into two sub-tasks: a self-supervised text segmentation task
and a clustering-based character segmentation task.

For the self-supervised text segmentation task, we first
compute the pseudo-labels M,; of the input images and
then use it to train our text segmentation network, which
assigns a foreground or background category to each pixel.
To achieve this, we select a simple and effective K-means
algorithm [21] (setting K = 2) to cluster the pixels of each
image into a text region (center) and a background region
(surrounding) according to the gray values of pixels. Sub-
sequently, the segmentation network employs the outputs
of the 2-nd, 4-th, and 6-th layer of the encoder ViT as
Py, Py, Py, and the implementation detail is as follows:

O = T([0y, 01, 03)),

where (-) denotes two convolutional layers with Batch-
Norm and ReLU activation functions. 7 (-) refers to two 2x
upsampling operations to restore the resolution of the input
image. [] represents the concatenation operation along the
channel axis. Finally, the network predictions for text seg-
mentation map M., are generated by applying a convolu-
tional layer on O for binary classification. A cross-entropy
loss Lgeg between M, and M., is employed to optimize
our self-supervised text segmentation network.

For now, let us assume that the text segmentation map
M, is obtained, the clustering-based character segmen-
tation task aims to get a mask for each of its characters.
One can observe that individual characters retain internal
pixel-level connectivity, while the spaces between charac-
ters exhibit discontinuities in most natural scene text im-
ages. Taking advantage of the observation, we employ a
density-based spatial clustering method [15] to segment the
M., into several clusters. Specifically, a cluster is formed
by aggregating all nearby points connected by density and
grouping them together. Then, the points within each clus-
ter can be viewed as a character structure. A discussion
about hyper-parameters is deferred to ablations and analy-
sis in Sec. 5.

As shown in Fig. 3, the self-supervised character seg-
mentation head exclusively tasks regular views in the stu-
dent branch as inputs to generate final character segmen-
tation results S,y = [S;1, 872, ..., sp] for simplicity in the
experiment. [ refers to the number of cluster centers, as well
as the word length of the image ideally.

2) Corresponding Regions Alignment. An effective data
augmentation strategy is crucial to implementing represen-

Character segmentation result S,.,

tation learning [11, 2, 25]. However, in the sequence-level
self-supervised text recognition methods, strong geometric
transformations will result in the corresponding item incon-
sistency of feature sequences between different views.

Motivated by this, we propose an alignment strategy for
character regions under flexible augmentations. Specifi-
cally, for the regular view in the student branch, we have ob-
tained character segmentation results S, as above. To ex-
ecute character region alignment, other character segmenta-
tion results (S;, Treq, and T;,.,.) are generated as follows.

To calculate S;,.. from the irregular view in the stu-
dent branch, defined the transformation matrix of aug-
mentation as 7, the problem can be formulated as: given
Xreg = Treg(X), Xirr = irr(X), and S,eq, compute
Sirr = Wreg%irr(sreg)- COHSunenﬂy, Sirr = Wirr(sreg)
due to Treg—sirr = mr,«(wr_@g) = Tipr, Where 7,4 is an
identity matrix as the regular view undergoes color-based
augmentation pipeline.

For obtaining T,.., from regular views and T, from
irregular views in the teacher branch respectively, the char-
acter segmentation results in the student branch are directly
employed, i.e., Tycqg = Syeg, Tirr = Sirr, due to the same
augmentations used in both student and teacher branches.

In this way, our method naturally ensures the alignment
of corresponding character regions across different views
and branches, which enriches their pairwise diversity. Thus
by addressing the challenge of learning feature consistency
across diverse augmentations, our method effectively en-
hances the robustness and generalizability of the learned
features, making them more suitable for downstream tasks.
3) Character-to-character Distillation. With the afore-
mentioned foundation, we can proceed to implement the
character-to-character distillation across different views
(Xeg and X;,.) and branches (student and teacher).

Specifically, we first calculate character feature repre-
sentations (R, Is, Ry, and I;). Taking the regular view
X,¢g in the student branch as an example, we obtain the
encoded features h,., = F(X,.q4) and character segmen-
tation results S,cq = P(hycy) = [Sy1,...,5], the patch
head 7{(-) further yields the character-level features V.., =
[Vr1, ..., V] Dy @ mean- pooling operation as follows:

(@¥)1, (,
Vpi = z,9) Zs Y h7egy ) (2)
Z z,y m

where ¢ represents the channel 1ndex, and (x,y) indicates
the coordinate point in the map. V,.4 is then fed into
our projection head P(-) to get the final character features

s = P(V,ey) where Ry € RIX™. Specifically, P(-) in-
cludes four linear layers, with GELU layer applied to the
first two linear layers having a hidden dimension of 2048,
and a normalization operation [9] applied to the third linear
layer having an output dimension of 256. The last linear
layer projects the features into a high-dimension space with
n dimensions (n = 65536).
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Table 2. The encoder and decoder configurations. ViT-series refers
to three variants of ViT (Tiny, Small, and Base).

Pre-training Stage Encoder Encoéer Configuration

Embed_dim Depth Heads

ViT-Tiny 192 12 3

CCD ViT-Small 384 12 6

ViT-Base 512 12 8
Fine-tuning Stage Encoder Eml[))e ZC;?]: C(geﬁpgtl;lrdtlgza N

Text Recognition ViT-series 512 6 8

Text Segmentation ViT-Small 384 3 2

Text Image Super-Resolution | ViT-Small 384 3 2

Following the same principle, we can obtain the remain-
ing character features, i.e., I, € R>"™ from the irregular
view in the student branch, R;, I, € R*™ from the regular
and irregular view in the teacher branch, respectively.

Inspired by DINO [9], the student is then distilled
from the teacher, by optimizing the character-level features
(R, I,) of the student branch to match those (R, I;) of the
teacher branch Assuming a, b € RZX”, let us define:

exp(a exp(b; /7)

k= Z Z St exp( ’“/T) 8 S exp(tE/7)
The distillation loss is formulated as: Lgis = (R, Is) +
¢(I;,Rs), where T, a temperature parameter, represents 7
and 7; in the student and teacher branches respectively. Fi-
nally, the teacher weights 6, are updated by applying an ex-
ponential moving average (EMA) on the student weights 6,
which is summarized as 6; = A0, + (1 — A\)6s.
3.3. Down-stream Tasks

Inherited from the encoder of CCD, the same decoder
structures with self-supervised methods [61] for different
downstream tasks are employed for fair comparisons. The
detailed network configurations are shown in Table 2.
Text Recognition adds a transformer-based decoder [30],
which consists of 6 transformer blocks and a linear predic-
tion layer with 96 channels to predict characters.
Text Segmentation introduces a decoder with 3 trans-
former blocks and a linear prediction layer. The final di-
mension is 2 (foreground and background categories).
Text Image Super-Resolution The same decoder structure
with the text segmentation network is employed, except that
the final prediction dimension is replaced by 3 to recover the
input image with RGB channels.

)

4. Experiment
4.1. Dataset

Unlabeled Real Data (URD) contains 15.77M real-world
text images, which are cropped from the large-scale Con-
ceptual Captions Dataset' by applying the text bounding
box results provided by Microsoft Azure OCR system.
Synthetic Text Data (STD) consists of two large-scale
SynthText [20] (8M) and Synth90k [26] (IM).

Uhttps://github.com/google-research-datasets/conceptual-captions

Annotated Real Data (ARD) is collected from natural
scenes and contains 2.78M text images (0.71M in Tex-
tOCR [47] and 2.07M in Open Image Dataset v5°).

Scene Text Recognition Benchmarks include three regular
text datasets (i.e., IIITSK-Words (IIIT) [39], ICDAR2013
(IC13) [28], and Street View Text (SVT) [49]) and three
irregular text datasets (i.e., ICDAR2015 (IC15) [27], SVT
Perspective (SVTP) [42], and CUTES80 (CT) [44]). IIIT,
SVT, IC13, IC15, SVTP, and CT benchmarks contain 3000,
647, 1015, 1811, 645, and 288 images, respectively.

Text Segmentation Benchmark TextSeg [58] provides
4024 fine-annotated text images. We crop these images and
segmentation maps to construct a text instance segmenta-
tion dataset according to its word-level bounding box anno-
tations (training set: 10226, testing set: 3445).

Text Image Super-Resolution Benchmark TextZoom [52]
consists of image pairs with high-resolution and low-
resolution text images. Specifically, 17367 image pairs are
used for training, while 1619, 1411, and 1343 image pairs
are used for evaluation according to difficulty, respectively.

4.2. Implementation Details

Self-supervised Pre-Training The pre-training experi-
ments are conducted on URD and STD without labels, at
a resolution of 32 x 128, for fair comparisons. Specifi-
cally, we employ ViT-series (i.e., ViT-Tiny, ViT-Small, and
ViT-Base) as the baseline structure of CCD. We train our
CCD with the AdamW optimizer [35], a cosine learning
rate scheduler [17] with a base learning rate of 5e-4, a co-
sine weight delay scheduler [ 7] from 0.04 to 0.4, batch size
with 288, and warm-up for 0.3 epoch in a total of 3 epochs.
The temperature 75 and 7 are set to 0.1 and 0.04, respec-
tively. The coefficient A follows a cosine scheduler [17]
from 0.996 to 1.

Text Recognition Fine-Tuning Our text recognition net-
work is fine-tuned at 32 x 128 resolution with STD or ARD,
and the total training epochs are 10 or 35. The batch size is
384 and the warm-up time is 1 epoch. The same optimizer
and learning scheduler are employed.

Text Segmentation Fine-Tuning The text segmentation
task is fine-tuned at 32 x 128 resolution with the TextSeg
dataset. The batch size is 384, the total number of fine-
tuning epochs is 800, and the warm-up time is 50 epochs.
The same optimizer and learning scheduler are employed.
Text Image Super-Resolution Fine-Tuning The batch size
is 384, the total number of fine-tuning epochs is 300,
and the warm-up time is 100 epochs. The general Peak
Signal-to-Noise Ratio (PSNR) and Similarity Index Mea-
sure (SSIM) [54] are employed to evaluate the quality of
super-resolution images. All experiments are implemented
on a server with 3 NVIDIA 3090 GPUs in PyTorch.

Zhttps://storage.openvinotoolkit.org/repositories/openvino_training._
extensions/datasets/open_images_v5_text
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Table 3. Text recognition results compared to other self-supervised text recognizers. * means using an extra 100M images for pre-training.

Method Venue Data | IIT SVT IC13 IC15 SVTP CT Avg. Params.
SeqCLR [1] CVPR’21 | STD | 829 - 87.9 - - - - -
SimAN [36] CVPR’22 | STD | 875 - 89.9 - - - - -
PerSec-ViT* [34] AAAT22 | STD | 88.1 86.8 94.2 73.6 71.7 72.7 83.77 -
DiG-ViT-Tiny [61] MM’22 STD | 95.8 92.9 96.4 84.8 87.4 86.1 91.83 20M
CCD-ViT-Tiny - STD | 96.5 93.4 96.3(-0.1)  85.2: 89.8 89.2 92.57 20M
DiG-ViT-Small [61] MM’22 STD | 96.7 93.4 97.1 87.1 90.1 88.5 93.23 36M
CCD-ViT-Small - STD | 96.8 94.4 96.6(-0.5)  87.3 91.3 92.4 93.59 36M
DiG-ViT-Base [61] MM’22 STD | 96.7 94.6 96.9 87.1 91.0 91.3 93.49 52M
CCD-ViT-Base - STD | 97.2 94.4(-0.2)  97.0 87.6 91.8 93.3 93.96 52M
DiG-ViT-Tiny [61] MM’22 ARD | 96.4 94.4 96.2 87.4 90.2 94.1 93.37 20M
CCD-ViT-Tiny - ARD | 97.1 96.0 97.5 87.5 91.6 95.8 94.18 20M
DiG-ViT-Small [61] MM’22 ARD | 97.7 96.1 97.3 88.6 91.6 96.2 94.69 36M
CCD-ViT-Small - ARD | 98.0 96.4 98.3 90.3 92.7 98.3 95.57 36M
DiG-ViT-Base [61] MM’22 ARD | 97.6 96.5 97.6 88.9 92.9 96.5 94.92 52M
CCD-ViT-Base - ARD | 98.0 97.8 98.3 91.6 96.1 98.3 96.30 52M

Table 4. Comparison results of scene text recognition methods. “V” and “L” refer to the language-free and language-aware methods,
respectively. The best results are shown in bold font. “Avgl” denote the weighted average results of III'T, SVT, IC13, SVTP and CT by
size. “Avg2” denote the weighted average results of IIIT, SVT, IC15, SVTP and CT by size.

Methods Type Venue Data T SVT IC13 IC15 SVTP CT | Avgl | Avg2 | Params. | Time (ms)
PIMNet [43] MM’21 STD 952 912 934 835 843 844 | 92.60 | 89.89 - 28.4
TRBA [3] CVPR’21 STD 92.1 889 931 783 795 782 | 89.74 | 8597 50M 27.6
PREN2D [59] CVPR’21 STD 95.6 94.0 - 83.0 876 917 - 90.88 - 67.4
Text is Text [7] v ICCV’21 STD 923 89.9 - - 844 863 - - - -
SGBANet [68] ECCV’22 STD 954 89.1 951 - 83.1 882 | 9283 - - -
CornerTransformer [?] ECCV’22 STD 959 946 964 - 91.5 92.0 | 95.13 - 86M 294.9
MGP-STR [50] ECCV’22 STD 96.4 947 - 872 910 903 - 92.80 | 148M 12.3
SIGA [19] CVPR’23 STD 96.6 951 96.8 86.6 90.5 93.1 | 9558 | 92.84 | 113M 56.3
SRN [63] CVPR’20 STD 948 915 955 827 851 87.8 | 93.07 | 89.74 | 49M 26.9
ABINet [16] CVPR’21 | STD+WiKi | 96.2 935 - 86.0 89.3 892 - 92.02 3™ 339
JVSR [8] ICCV’21 STD 952 922 955 - 85.7 89.7 | 93.53 - 44M 26.3
VisionLAN [53] L ICCV’21 STD 958 91.7 957 837 86.0 885 | 93.80 | 90.64 | 33M -
S-GTR [24] AAAI'22 | STD+WiKi | 958 94.1 - 846 879 923 - 91.50 | 42M 18.8
ABINet+ConCLR [66] AAAT22 | STD+WiKi | 96.5 943 - 854 893 913 - 92.17 - -
PARSeq [4] ECCV’22 STD 97.0 936 962 865 889 922 | 9528 | 92.65 - -
LevOCR [12] ECCV’22 STD 96.6 929 - 864 83.1 917 - 92.26 | 109M 119.0
CCD-ViT-Tiny - STD 965 934 963 852 89.8 89.2 | 9496 | 91.98 20M 432
CCD-ViT-Small \% - STD 968 944 96.6 873 913 924 | 9563 | 93.11 36M 442
CCD-ViT-Base - STD 972 944 97.0 87.6 91.8 933 | 96.02 | 9348 | 52M 45.0
CCD-ViT-Tiny - ARD 97.1 96.0 975 875 91.6 958 | 96.34 | 93.65 20M 432
CCD-ViT-Small \% - ARD 98.0 964 983 903 927 983 | 97.27 | 95.13 36M 44.2
CCD-ViT-Base - ARD 98.0 978 983 91.6 961 983 | 97.83 | 9599 | 52M 45.0
4.3. Experiment Results of-the-art self-supervised method, DiG, using the same

Self-supervised text recognition. In Table 3, we evaluate
the robustness of feature representations for text recogni-
tion by comparing the proposed CCD-ViT-series (i.e., Tiny,
Small, Base) with previous self-supervised text recognition
methods. Our method achieves a new state-of-the-art per-
formance on both regular and irregular benchmarks.

Specifically, our CCD-ViT-Tiny outperforms the
sequence-to-sequence method SeqCLR by 13.6% and 8.4%
on IIIT and IC13 benchmarks, respectively. Compared
to the “PerSec-ViT*” method that exploits 100M private
unlabeled real images for pre-training, CCD-ViT-series is
pre-trained on the URD benchmark with 15.77M unlabeled
images, and still yields 8.80%, 9.82%, and 10.19% on
average accuracy, respectively.

We further conduct a comparison with the previous state-

pre-training data and network parameters. Specifically,
when fine-tuning with the STD, CCD-ViT-series get bet-
ter text recognition performances than DiG-ViT-series by
0.74%, 0.37%, and 0.47% on average accuracy, respec-
tively. When fine-tuning with the ARD, CCD-ViT-series
consistently and significantly achieves performance gains
of 0.81%, 0.88%, and 1.38% on average accuracy compared
to DiG-ViT-series. These results demonstrate that our pro-
posed character-level representation learning paradigm is
superior to the existing sequence-to-sequence self-learning
paradigm, particularly on real-world datasets.

Scene text recognition. In Table 4, we present a compari-
son between CCD and previous state-of-the-art (SOTA) su-
pervised text recognition methods. Specifically, CCD-ViT-
Tiny achieves competitive recognition results (94.96% vs.
95.58%) with a minimum parameter of 20M. CCD-ViT-
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Table 5. The super-resolution evaluation results on the TextZOOM benchmark.

Method Loss - SSIM .PSNR

Easy = Medium  Hard Avg. Easy Medium Hard Avg.
Bicubic X 0.7884  0.6254  0.6592 0.6961 22.35 18.98 1939  20.35
SRCNN [13] Ly 0.8379 0.6323  0.6791 0.7227 23.48 19.06 19.34  20.78
SRResNet [29] Lo+Lyy+L, 0.8681 0.6406 0.6911 0.7403 24.36 18.88 19.29 21.03
HAN [40] Lo 0.8691  0.6537 0.7387 0.7596 23.30 19.02  20.16 20.95
TSRN [52] Lo+Lep 0.8897  0.6676  0.7302 0.7690 25.07 18.86 19.71 21.42
TBSRN [10] Lpos+Lcon 0.8729  0.6455  0.7452  0.7603 23.46 19.17 19.68 2091
PCAN [67] Lo+Lga 0.8830 0.6781 0.7475 0.7752 24.57 19.14  20.26 21.49
Scratch-ViT-Small Lo 0.8143  0.6288  0.6845 0.7156 22.90 19.65 2045 21.10
DiG-ViT-Small [61] Ly 0.8613 0.6561 0.7215 0.7522 23.98 19.85  20.57 21.60
CCD-ViT-Small (ours) Lo 0.8822  0.7005 0.7543 0.7843 2440  20.12  20.18 21.84

Table 6. The text segmentation results on the TextSeg benchmark.

Method Scratch- DiG- CCD-
ViT-Small ViT-Small [61] ViT-Small
TIoU(%) 78.1 83.1 84.8

Table 7. Ablation study on the text segmentation experiments.

K-means .
Method ® 1-0 M, Self-supervised
IoU(%) 398 40.1 70.0 73.6

Small gets higher performance and outperforms previous
SOTA by 0.27% on average accuracy while exhibiting a
cost-quality trade-off between accuracy and general evalua-
tion metrics (parameter count and latency). CCD-ViT-Base
further refreshes the best text recognition results, achieving
average gains of 0.44% and 0.64% with a smaller model
size (52M vs. 113M). When fine-tuning on annotated real
data, CCD-ViT-Base attains significantly higher accuracy
and establishes new SOTA results, with performance gains
by 1.0%, 2.7%, 1.5%, 4.4%, 4.6%, and 5.2% compared to
the best results from previous methods on IIIT, SVT, IC13,
IC15, SVTP, and CT benchmarks. These results underscore
the potential of our proposed self-supervised character-level
learning as a powerful and flexible method for text recogni-
tion.

Text image super-resolution. In Table 5, CCD is also ap-
plied to text image super-resolution task. Compared to the
Scratch-ViT-Small without the pre-training stage, our CCD-
ViT-Small gets better super-resolution results on the SSIM
and PSNR metrics. Compared to the self-supervised rep-
resentation learning method DiG, our method consistently
leads performance improvements on the SSIM (0.7843 vs.
0.7522) and PSNR (21.84 vs. 21.60) metrics, while us-
ing the same parameters and data for pre-training and fine-
tuning. Notably, our method also achieves higher perfor-
mance than previous state-of-the-art super-resolution meth-
ods, despite employing just three transformer units con-
nected to the ViT-Small structure without additional de-
signs. These experiments show the prominent superiority
of our CCD-ViT-Small in improving image quality.

Algorithm 2: The text pseudo-label M,,; selection.

Denote a clustering result ® € {0, 1}7*W,

Define O, ; is the pixel value of row i, column j.
Calculate the sum of pixel values for each side:
L= Zf{:l ©:1; R= Zf{:1 Oi,w;
T= ngll ©1,; B= ZJVZI OH,j;
Get condition I
F=lpewy+ Ipou) + Lo m) + gy
if I >= 3: then

| Mp=1-0©
else

| Mp =6
end

vl

],

Text segmentation. In the second row of Table 6, our
method yields state-of-the-art results and surpasses other
methods by a large margin on downstream text segmen-
tation task. Specifically, CCD-ViT-Small surpasses the
Scratch-ViT-Small by 6.7% in terms of Intersection over
Union (IoU). Compared with DiG, the first self-supervised
learning method to evaluate text segmentation performance
on text images, our method shows its prominent superiority,
with a performance improvement of 1.7% IoU. These ex-
perimental results demonstrate our self-supervised method
can learn more generalized text feature representations.

5. Ablations and analysis

Selection of text pseudo-labels. The clustering result pro-
vided by the K-means algorithm may correspond to a text
region or a background region. Thus, as illustrated in
Algo.2, we make a minor adaptation to select appropriate
text regions from the clustering results by leveraging the
observation that text regions are typically located in the cen-
ter of most scene text instance images, with the four sides
of the image being mainly background regions. Compared
with randomly selected clustering results (® or 1 — @), this
adaptation results M,,; leads to a 29.9% IoU performance
gain (70.0% vs. 40.1%), as shown in Table 7.

Effectiveness of self-supervised text segmentation. In
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Table 8. Feature representation evaluation of CCD on scene text recognition benchmarks.

Method mT SVvT IC13 1IC15 SVTP CUTE COCO CTW TT HOST WOST | Avg.
Gen-ViT-Small 86.6 82.1 88.7 729 74.4 72.2 48.5 64.1 633 33.8 56.5 59.3
Dis-ViT-Small 926 904 934 81.2 81.7 84.0 60.0 72.8 73.1 333 56.1 67.0
DiG-ViT-Small | 942 93.0 953 843 86.1 87.5 63.4 779 758 417 64.0 71.1
CCD-ViT-Small | 93.5 89.6 92.8 82.7 85.1 83.0 60.4 733 734 476 66.5 69.9
Table 9. Comparison results when training with different data ratios.
Label Fraction Method \ HOIT SVT IC13 IC15 SVIP CUTE COCO CTW TT HOST WOST \ Avg.
19(27.8K) DiG-ViT-Small | 884 862 899 79.0 76.6 77.8 54.8 679 672 332 533 | 629
st CCD-ViT-Small | 89.3 86.5 88.8 76.5 80.1 74.7 54.9 655 678 384 559 | 63.7
10%(278K) DiG-ViT-Small | 953 944 959 853 879 91.7 67.1 80.5 81.1 421 64.0 | 735
v CCD-ViT-Small | 959 941 96.6 87.1 89.9 94.1 69.2 81.6 843 634 762 | 78.2
100%(2.78M) DiG-ViT-Small | 97.7 96.1 973 88.6 91.6 96.2 75.0 863 889 56.0 757 | 80.7
o CCD-ViT-Small | 98.0 964 983 903 927 98.3 76.7 86.5 913 773 86.0 | 84.9

the first row of Table 7, our self-supervised text segmenta-
tion network achieves a 3.6% IoU improvement (73.6% vs.
70.0%) by utilizing the text regions clustered by K-means
as pseudo-labels. Additionally, when K -means is employed
for character-to-character representation learning, the aver-
age accuracy understandably decreases by 0.24% in row B
of Table 10. This can be attributed to two reasons: 1) Neu-
ral network has the ability to learn generality from massive
training data, which alleviates the noise in the pseudo-labels
introduced by K-means. 2) The underlying morphologi-
cal representations of glyphs that we need are relatively in-
variant to slight structural changes, e.g., thicker or thinner,
which reduces the dependence on pixel-level high-precision
segmentation with expensive costs.

Feature representation evaluation. Referring to DiG, we
freeze the encoder and train the decoder with ARD. As
shown in Table 8, our result is 1.2% lower than DiG (71.1%
vs 69.9%). However, this result is not closely related to the
final STR results. As evidenced in Table 2 and 3 of DiG,
although the discriminative task “Dis-+" outperforms the
generative task “Gen-x" by 7.7%, it only shows comparable
performance to “Gen-*" in the final STR results. Besides,
the reason behind DiG’s superior result is attributed to their
utilization of both “Gen-*" and “Dis-*", which brings 4.1%
gains. Therefore, when we fairly compare to the same type
of pretext task “Dis-x”, CCD gets a gain of 2.9% (69.9%
vs 67.0%). Even compared to DiG, Ours improve by 5.9%
(47.6% vs 41.7%) and 2.5% (66.5% vs 64.0%) on the chal-
lenging occluded datasets HOST and WOST, respectively.

Fine-tuning with different data ratios. To demonstrate
the effectiveness of our proposed CCD, we further fine-
tuned our method with 1%, 10% and 100% of ARD. As
shown in Table 9, CCD outperforms DiG by 0.8%, 4.7%
and 4.2%, respectively.

Effectiveness of distillation strategy. The distillation strat-
egy serves as a fundamental component in self-supervised

representation learning. To demonstrate the effectiveness of
the distillation strategy, we consider CCD without distilla-
tion as the baseline model. Specifically, we add the result
as shown in row A of Table 10. Compared to Baseline, the
total improvement is 4.12%.

Effectiveness of augmentation strategy. In Table 10,
we compare two augmentation strategies used to es-
tablish character-to-character representation consistency
across regular and irregular views. 1) “R2R”: both the reg-
ular and irregular views adopt color-based augmentations;
2) “CCD”: the default setting, as regular views adopt color-
based augmentations, and irregular views adopt a combina-
tion of both color- and geometry-based augmentations.

Compared with “R2R” method, the latter achieves
0.49% improvements, which demonstrates large geometric
augmentations are still suitable for text images with a di-
versity of word length, and encourage CCD to reach a data-
efficient self-supervised learning regime.

More comparison results. 1) We first compared with
the language-aware PARSeq (0.5% gains) in Table 4 when
training with STD. Besides, we also conduct the compara-
tive experiment using real data provided by PARSeq, result-
ing in 0.35% gains (+.0, +.4, +.3, +.2, +.5, +.6, +.7, +1.0,
respectively). 2) Compared to using the cropped patches,
CCD achieves 0.7%, 1.1%, 0.0%, 0.7%, 4.3% and 2.0%
gains on six standard benchmarks, respectively.

Further discussion on data-hungry nature of models.
Generally, existing methods achieve significant improve-
ments when training on ARD compared to STD. However,
the amount of ARD (only 2.78M) pales in comparison to
massive and readily available unlabeled data. Therefore,
CCD provides an effective solution by leveraging the in-
trinsic qualities of unlabeled data (15.77M) to extract ro-
bust feature representations, which can generalize well on
multiple text-related downstream tasks.

Further discussion on density-based spatial clustering.
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Table 10. Ablation results on scene text recognition benchmarks.
Index | Method | IIT SVT IC13 IC15 SVTP CT | Avg.

A | Baseline | 950 929 949 852 86.7 88.9| 9145
B | K-means | 97.6 962 98.0 90.5 923 97.4| 9533
C | R2R | 97.8 96.4 973 895 927 96.4| 95.08
E |CCD | 980 964 983 903 927 98.3| 9557

Table 11. Quantification results for different types of clusters.

Types  background string semi-character character

Number 1583 991 1802 14665

The density-based spatial clustering method may encounter
difficulties in separating interconnected characters into iso-
lated clusters and has a proneness to cluster an individual
character into multiple clusters due to the different densi-
ties of connected regions as shown in Fig. 4. Such failures
are typically observed in images with tightly interconnected
strokes and can also arise due to inaccuracies in text mask
predictions generated by our self-supervised text segmenta-
tion network. To provide a detailed statistical illustration,
we count the number of different types of clusters evalu-
ated on the TextSeg dataset in Table 11. The result was
obtained through 7 hours of meticulous manual counting.
Clearly, these failures are rare while most clusters still be-
long to complete characters.

For further discussion, self-supervised learning objec-
tive is to obtain general text feature representations, e.g.,
text foreground features (b) or even character instance fea-
tures (c) in Fig. 5, while the latter takes a step forward than
the former, towards semantic features (d) extracted by su-
pervised learning regimes. As presented above, CCD can
obtain more complete characters, enjoying approximately
77% pairwise character alignment under flexible augmenta-
tions, towards learning character instance feature represen-
tations (c). Even in situations where it struggles to clus-
ter characters due to the issues mentioned above, repre-
sentation consistency in string or semi-character (both be-
longing to foreground compared with an item of sequence)
can still effectively facilitate the learning of text foreground
features (b). Overall, our method can at least degener-
ate into the same representation consistency learning with
sequence-level self-supervised methods in worse-case sce-
narios, which demonstrates the feasibility and effective-
ness of our CCD. More visualization examples about M,,;,
M4, and S,.4 are shown in Supplementary Material.
Hyper-parameters. The density-based spatial clustering
method is sensitive to the parameters, namely, eps and
min_samples. The eps controls the granularity of the clus-
tering, while the min_samples sets a threshold for the mini-
mum number of points required for a cluster to be formed.
To achieve optimal clustering performance, we conduct a
grid search over a range of parameter values and select the
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Figure 4. Representative clustering visualization results.
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Figure 5. Three different types of text feature representations.
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Figure 6. Ablation study of the hyper-parameters.

best combination based on the IoU metric, as illustrated in
Fig. 6. Specifically, we first apply this clustering method to
the text masks in the training set of Textseg to obtain char-
acter clustering results, and then calculate the IoU between
these results and the annotated character structures.

6. Conclusion

In this paper, we propose a novel self-supervised text

recognition method in character-level, termed CCD, which
ensures character-to-character representation consistency
under flexible augmentations by keeping their pairwise
alignment of character regions. Different from exist-
ing sequence-to-sequence self-supervised learning models,
CCD takes the delineated character structures as basic items
for representation learning, and proposes an effective aug-
mentation strategy to enrich the diversity of local charac-
ter regions. Eventually, CCD shows significant improve-
ment in the robustness and generalizability of the extracted
feature representations and refreshes state-of-the-art perfor-
mance on three text-related tasks.
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