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Figure 1: Our proposed framework enables robust zero-shot transfer of metric depth predictions. The pointclouds
above were generated by the same model, that has never seen any of these datasets, and without groundtruth scale alignment.
Ground-truth LiDAR pointclouds are shown as height maps, overlaid with colored predicted monocular pointclouds.

Abstract
Monocular depth estimation is scale-ambiguous, and

thus requires scale supervision to produce metric predic-
tions. Even so, the resulting models will be geometry-
specific, with learned scales that cannot be directly trans-
ferred across domains. Because of that, recent works fo-
cus instead on relative depth, eschewing scale in favor of
improved up-to-scale zero-shot transfer. In this work we
introduce ZeroDepth, a novel monocular depth estimation
framework capable of predicting metric scale for arbitrary
test images from different domains and camera parameters.
This is achieved by (i) the use of input-level geometric em-
beddings that enable the network to learn a scale prior
over objects; and (ii) decoupling the encoder and decoder
stages, via a variational latent representation that is con-
ditioned on single frame information. We evaluated Ze-
roDepth targeting both outdoor (KITTI, DDAD, nuScenes)
and indoor (NYUv2) benchmarks, and achieved a new state-
of-the-art in both settings using the same pre-trained model,
outperforming methods that train on in-domain data and re-
quire test-time scaling to produce metric estimates. Project
page: https://sites.google.com/view/tri-zerodepth.

1. Introduction

Monocular depth estimation is a key task in computer vi-
sion, with practical applications in areas such as robotics [9,
31] and autonomous driving [19, 23, 37, 27]. It is easy to
understand why: the promise of turning any camera into a
dense range sensor is very appealing, both as a means to re-
duce costs and in terms of its rich semantics and widespread
application. However, in order to be truly useful as a 3D re-

construction tool these predictions need to be scale-aware,
meaning that they need to be metrically scaled. Supervised
methods train with groundtruth depth maps [14, 38], while
self-supervised methods inject additional information in the
form of velocity measurements [23], camera intrinsics [2]
and/or extrinsics [27, 56]. Even so, the resulting models will
be camera-specific, since the learned scale will not transfer
across datasets, due to differences in the cameras used to
capture training data.

This geometric domain gap is separate from the tradi-
tional appearance domain gap, however while the latter
has been extensively studied in recent years [26, 59, 29,
39, 53, 34, 60], very few works have addressed the for-
mer [2, 12, 57]. Instead, the recent trend is to focus on
relative depth [10, 46, 47], eschewing scale completely in
favor of improved zero-shot transfer of unscaled depth pre-
dictions. Even though this approach qualitatively leads to
very accurate depth maps, the resulting predictions still re-
quire groundtruth information at test-time to be metrically
scaled, which severely limits their application in practical
scenarios, such as autonomous driving and indoor robotics.

In this paper, we rethink this recent trend and introduce
ZeroDepth, a novel monocular depth estimation framework
that is robust to the geometric domain gap, and thus capable
of generating metric predictions across different datasets.
We achieve this by proposing two key modifications to the
standard architecture for monocular depth estimation: (i)
we use input-level geometric embeddings to jointly encode
camera parameters and image features, which enables the
network to reason over the physical size of objects and learn
scale priors; and (ii) we decouple the encoding and decod-
ing stages, via a learned global latent representation. Im-
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portantly, this latent representation is variational, and once
conditioned can be sampled and decoded to generate mul-
tiple predictions in a probabilistic fashion. By training on
large amounts of scaled, labeled data from real-world and
synthetic datasets, our framework learns depth and scale
priors anchored in physical 3D properties that can be di-
rectly transferred across datasets, resulting in the zero-shot
prediction of metrically accurate depth estimates. In sum-
mary, our contributions are as follows:

• We introduce ZeroDepth, a novel variational monoc-
ular depth estimation framework capable of transfer-
ring metrically accurate predictions across datasets
with different camera geometries.

• We propose a series of encoder-level data augmenta-
tion techniques aimed at improving the robustness of
our proposed framework, addressing both the appear-
ance and geometric domain gaps.

• As a result, ZeroDepth achieves state-of-the-art
zero-shot transfer in both outdoor (KITTI, DDAD,
nuScenes) and indoor (NYUv2) benchmarks, outper-
forming methods that require in-domain training im-
ages and test-time ground truth scale alignment.

2. Related Work
2.1. Monocular Depth Estimation

Monocular depth estimation is the task of estimating per-
pixel distance to the camera based on a single image. Early
learning-based approaches were fully supervised [11], re-
quiring datasets collected using additional range sensors
such as IR [45] or LiDAR [17]. Although these meth-
ods naturally produce metric predictions, they suffer from
sparsity and high noise levels in the “groundtruth” train-
ing data, as well as limited scalability due to the need of
dedicated hardware and calibration. The work of Zhou et
al. [61] introduced the concept of self-supervised monocu-
lar depth estimation, that eliminates explicit supervision in
favor of a multi-view photometric objective. Further im-
provements in this setting have led to accuracy that com-
petes with supervised approaches [19, 20, 23, 25, 22]. How-
ever, because the multi-view photometric objective is scale-
ambiguous, such models are typically evaluated by align-
ing predictions to groundtruth depth at test time (typically
median-scaling [61, 18]), at the expense of practicality.

2.2. Scale-Aware Monocular Depth Estimation

To address the inherent scale-ambiguity in self-
supervised monocular depth estimation, several works have
looked into ways to inject indirect sources of metric infor-
mation. In [23], the authors use velocity measurements as
weak supervision to jointly train scale-aware depth and pose
networks. In [54], the camera height is used at training

time in conjunction with a ground plane segmentation net-
work to generate scaled predictions. FSM [27] uses known
camera extrinsics with arbitrary overlaps to enforce spatio-
temporal photometric constraints at training time, leading
to improvements in depth estimation as well as scaled pre-
dictions. SurroundDepth [56] also uses known camera ex-
trinsics and proposes a joint network to process surround-
ing views, as well as a cross-view transformer to effec-
tively fuse multi-view information. Similarly, Volumetric-
Fusion [35] constructs a volumetric feature map by extract-
ing feature maps from surround-view images, and fuse fea-
ture maps into an unified 3D voxel space. DistDepth [57]
uses left-right stereo consistency to distill structure infor-
mation and metric scale into an off-the-shelf scale-agnostic
depth network, focusing on indoor datasets.

2.3. Zero-Shot Monocular Depth Estimation

The observation that models trained with in-domain data
will overfit to the camera geometry, along with limitations
in the self-supervised photometric objective [24, 19, 22, 13],
have led to a recent emphasis on zero-shot depth estimation,
in which a pre-trained model is evaluated on out-of-domain
data without fine-tuning. To achieve such robustness to do-
main shifts, these methods rely on large-scale and diverse
training data, usually from multiple sources, and propose
different ways to encode geometry. In [12], the authors pro-
pose CAM-Convs as a way to inject camera parameters into
the convolutional operation, resulting in calibration-aware
features. An alternative approach is described in [2], which
resizes and crops input images to conform to fixed cam-
era parameters, thus abstracting geometry away from the
learned features. Another way to abstract away geometry
is proposed in [47], that uses scale-invariant losses in com-
bination with heterogeneous datasets to achieve impressive
qualitative results, albeit unscaled. This approach is further
explored in [10], that proposes a novel pipeline for the gen-
eration of additional synthetic training data.

ZoeDepth [4] is a concurrent monocular depth estima-
tion work that also claims the zero-shot transfer of metri-
cally accurate predictions. This is achieved by fine-tuning
a scale-invariant model on a combination of indoor and
outdoor datasets, and predicting domain-specific adaptive
ranges. However, as we show in experiments, this leads
to specialization to these training domains, as well as to
their camera geometries. ZeroDepth instead directly de-
codes metric depth without adaptive range prediction, and
thus is not bounded by or conditioned on any specific do-
main.

3. Zero-Shot Scale-Aware Monocular Depth
3.1. Perceiver IO Overview

Perceiver IO [32] is an efficient Transformer architecture
that alleviates one of the main weaknesses of Transformer-
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Figure 2: Diagram of our proposed ZeroDepth framework. During the encoding stage, an input frame It with intrinsics
Kt is processed to generate image EI and geometric EG embeddings. These are concatenated and used to condition our varia-
tional latent representation, that can then be sampled and decoded to generate predictions using only geometric embeddings.

based methods [52], namely the quadratic scaling of self-
attention with input size. This is achieved by learning a
Nl × Dl latent representation R, and projecting Ne × De

encoding embeddings onto this latent representation using
cross-attention. Self-attention is performed in this lower-
dimensional space, producing a conditioned latent repre-
sentation Rc that is queried using Nd × Dd decoding em-
beddings to generate estimates. This architecture has been
successfully applied to multi-frame tasks such as optical
flow [32], stereo [58, 28], and video depth estimation [28].

3.2. The ZeroDepth Framework

Our ZeroDepth framework generalizes the Perceiver IO
architecture, proposing two key modifications relative to
prior works that use it for depth estimation [58, 28]. Firstly,
we focus on the monocular setting, leveraging input-level
inductive biases not to learn implicit multi-view geometry,
but rather scale priors that can be transferred across datasets.
By augmenting image features with camera information, we
enable our model to implicitly reason over physical proper-
ties such as size and shape, that are more robust to the ge-
ometric domain gap. Secondly, we maintain a variational
latent representation, that after conditioning results in a dis-
tribution which can be sampled during the decoding stage to
generate estimates in a probabilistic fashion. Our hypothe-
sis is that, given the extreme diversity in training datasets
both in terms of appearance and geometry, the entropy of
possible depth predictions is too high to be modelled as a
single point estimate, and hence we model it instead as a
probability distribution. A diagram of ZeroDepth is shown
in Figure 2, and below we describe in details each of its
components.

3.3. Input-Level Embeddings

Image Embeddings. We use a ResNet18 [30] backbone
as the image encoder, taking as input an H × W × 3 im-
age It and producing a list of feature maps at increasingly
lower resolutions and higher dimensionalities. Following
[28], feature maps at 1/4 the original resolution are con-
catenated with bilinearly upsampled lower-resolution fea-
ture maps, resulting in H/4×W/4×960 image embeddings

EI that are used to encode frame-specific visual information
onto the latent representation R.
Geometric Embeddings. We augment image embeddings
with camera information, as a way to generate geometry-
aware features capable of reasoning over the physical shape
of objects. For simplicity, we assume pinhole cameras with
3 × 3 intrinsics matrix Kt. The viewing direction of a
pixel pij = [uij , vij ] is given by rijt = K−1

t [uij , vij , 1]
T .

This vector is normalized and Fourier-encoded [58] to pro-
duce pixel-level 3(F + 1)-dimensional geometric embed-
dings EG, where F is the number of frequency bands. Note
that camera centers (and, by extension, poses) are not re-
quired, since we operate on a single-frame setting, and thus
each sample is at the origin of its own coordinate system.
During the encoding stage, camera parameters are scaled
down to 1/4 of the original resolution, to match image em-
beddings. During the decoding stage the original resolution
can be used, since only geometric embeddings are required.

3.4. Variational Latent Representation

Variational inference [6] is a powerful statistical tool
that provides a tractable way to approximate difficult-to-
compute probability densities using optimization. Given in-
put embeddings E , the posterior over our latent representa-
tion R is approximated by a variational distribution Q(R)
such that P (R|E) ≈ Q (R). In our setting, P (R|E) is
the conditioned latent representation RC , obtained as a re-
sult of the encoding stage. This distribution Q(R) is re-
stricted to a family of distributions simpler than P (R|E),
and inference if performed by selecting the distribution that
minimizes a dissimilarity function D(Q||P ). Following
standard practice, we use the Kullback-Leibler (KL) diver-
gence [36] of Q from P as the dissimilarity function:

DKL(Q||P )
∆
=

∑
R

Q(R) log
Q(R)

P (R|E) (1)

Practically, this is achieved by doubling the dimension-
ality of R to Nl × 2Dl, with each half storing respectively
the mean µl and standard deviation σl of the variational
distribution. After conditioning RC on input embeddings
E = EI ⊕ EG, a Nl × Dl sampled latent representation
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Figure 3: Example of encoder-level data augmentation.
The input image It is resized from resolution 4×7 to 3×4,
with the corresponding change in Kt to preserve 3D prop-
erties (Equation 3). The 2D location of each pixel pij is
perturbed and used to generate geometric embeddings EG.
Finally, a percentage of embeddings is discarded.

RS is generated by sampling from N (µc, σc), and can be
decoded to generated depth predictions. During training,
a single sample is generated, and an additional KL diver-
gence loss regularizes our variational distribution (Equation
8). During inference, multiple samples {Rn

S}Nn=1 can be
generated from the same RC , each leading to a different
decoded depth map D̃n. We show that these predictions sta-
tistically approximate per-pixel depth uncertainty, and can
be used to improve performance by selectively removing
pixels with high uncertainty values (Figure 7). Each pixel
pij has a mean µij and standard deviation σij given by:

µij =
1

N

∑
N

d̃nij σij =

√∑
N (d̃nij − µij)2

N
(2)

3.5. Encoder-Level Data Augmentation

Differently from traditional architectures for monocular
depth estimation [19, 23, 46, 37], ZeroDepth follows [28]
and decouples the encoding and decoding stages, which en-
ables the decoding of estimates from embeddings that were
not encoded. We take advantage of this property to de-
code estimates using only geometric embeddings, and em-
pirically show that this leads to improvements over stan-
dard encoder-decoder architectures. In [28] a series of
decoder-level geometry-preserving augmentations was pro-
posed, leading to increased viewpoint diversity for multi-
view depth estimation. Alternatively, here we introduce a
series of encoder-level data augmentation techniques, de-
signed to improve robustness to appearance and geometric
domain gaps (see Figure 3). Note that decoder information,
i.e. the geometric embeddings used as queries and the depth
maps used as supervision, is not modified in any way.
Resolution Jittering. Our geometric embeddings are gen-
erated given pixel coordinates pij and camera intrinsics Kt,
and therefore are invariant to image resolution (assuming
that Kt is scaled accordingly). However, this is not the case
for image embeddings, that are appearance-based with fixed
receptive fields, and therefore will change depending on im-
age resolution. Moreover, since our focus is direct transfer,

there is no guarantee that test images will have the same res-
olution as training images. Because of that, we randomly
resize images during training, from H×W to H̃×W̃ , thus
modifying the CNN features used as image embeddings for
encoding. The 3D scene structure (including metric scale)
is preserved by also modifying camera intrinsics, such that:

K̃t =

rwfx 0 rw(cx − 0.5) + 0.5
0 rhfy rh(cy − 0.5) + 0.5
0 1

 (3)

where rw = W̃/W and rh = H̃/H are respectively the
width and height resizing ratios.
Ray Jittering. Geometric embeddings are calculated using
2D pixel coordinates pij , located at their center. Because
of that, images with the same resolution and intrinsics will
always generate the same geometric embeddings. More-
over, since image size is discrete, resolution jittering as de-
scribed previously will not produce a continuous distribu-
tion of viewing rays that covers the entire operational space.
To ensure a proper coverage, we also perturb pij by inject-
ing uniform noise between [−0.5, 0.5], such that the new
location p̃ij is still within the pixel boundaries. This simple
modification promotes a larger diversity of geometric em-
beddings during training, and by extension facilitates trans-
fer to different resolutions and camera geometries. Corre-
sponding image embeddings EI are generated by bilinearly
interpolating image features in these new coordinates.
Embedding Dropout. At training time we randomly drop
a proportion p of the encoder embeddings, where p is uni-
formly sampled from [0, 0.5]. This dropout regularization
effectively promotes the learning of more robust latent rep-
resentations, by encouraging the model to reason over and
generate dense predictions conditioned on sparse input.

3.6. Training Losses

Our training objective has three components: depth su-
pervision, surface normal regularization, and KL diver-
gence, each with its own weight coefficient (for simplicity,
we assume αD = 1). Below we describe each one in detail.

L = LD + αNLN + αKLK (4)

Depth Supervision. We use a smooth L1 loss to supervise
depth predictions D̂t relative to groundtruth depth maps Dt.
Assuming ∆dij = |dij − d̂ij | to be the pixel-wise absolute
depth error, it is defined as:

LD =
1

N

∑
ij∈Dt

{
0.5 ∗∆d2/β if ∆d < β

∆d− 0.5 ∗ β otherwise
(5)

where N is the number of valid pixels pij = (u, v) in Dt,
and β is a threshold for the change between losses.
Surface Normal Regularization. As additional regular-
ization, we follow [26] and leverage the dense labels from
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(a) KITTI (b) DDAD

(c) nuScenes (d) NYUv2

Figure 4: ZeroDepth qualitative zero-shot depth estimation results using the same pre-trained model. We overlay
colored predicted monocular pointclouds with ground-truth pointclouds shown as height maps. Our framework is capable of
zero-shot metric depth estimation across datasets with different camera geometries and depth ranges.

synthetic datasets to also minimize the error between nor-
mal vectors produced by groundtruth and predicted depth
maps. For a pixel p, its normal vector n ∈ R3 is defined as:

n =
(
Pu+1,v −Pu,v

)
×
(
Pu,v+1 −Pu,v

)
(6)

where Pij = (x, y, z) = dij K
−1
t [u, v, 1]

T is the unprojec-
tion of p into 3D space. As a measure of proximity between
vectors, we use the cosine similarity metric:

LN =
1

2N

∑
p∈D

(
1− n̂ · n

||n̂|| ||n||

)
(7)

KL Divergence. We also minimize the Kullback-Leibler
(KL) divergence of our variational latent representation,
which promotes the learning of a Gaussian distribution that
is sampled during the decoding stage:

LKL = − 1

2N

∑
ij∈Dt

1 + sij − µ2
ij − exp(sij) (8)

where µ is the mean and s = log σ2 is the log-variance of
our conditioned latent representation (Section 3.4).

4. Experiments
4.1. Training Datasets

Parallel Domain [25, 26]. The Parallel Domain dataset is
procedurally generated, with photo-realistic renderings of
urban driving scenes. We use the splits from [25] and [26],
containing 40000 and 52500 images from 6 cameras.
TartanAir [55]. We use the TartanAir dataset as an addi-
tional source of synthetic data and camera geometries. It
contains a total of 306637 images from 2 stereo cameras.
Waymo [49]. The Waymo dataset is our primary source of
real-world training data. We use the official training and

validation splits, for a total of 198068 images from 5 cam-
eras, with LiDAR groundtruth.
Large-Scale Driving (LSD). As an additional source of
real-world training data, we collected depth-annotated im-
ages using in-house vehicles (further details are omitted for
anonymity). It contains a total of 176320 images from 6
cameras, with LiDAR groundtruth.
OmniData [10]. The OmniData dataset is composed of a
collection of synthetic datasets. For our indoor experiments,
we used a combination of the Taskonomy, HM3D, Replica,
and Replica-GSO splits, for a total of 14340580 images.

4.2. Evaluation Datasets

KITTI [16]. The KITTI dataset is the standard benchmark
for depth estimation. We evaluate on the Eigen split [11],
composed of 697 images. Following standard protocol, we
consider distances up to 80m and use the garg crop [15].
DDAD [23]. The DDAD dataset includes multiple cameras
and long-range sensors for ground-truth depth maps. We
use the official validation split, with 3950 images from 6
cameras, and consider distances up to 200m without crops.
nuScenes [7]. The nuScenes dataset is a well-known bench-
mark for multi-camera 3D object detection. We use the offi-
cial validation split, with 6019 images from 6 cameras, and
consider distances up to 200m without crops.
NYUv2 [45]. The NYUv2 dataset is a widely used bench-
mark for indoor monocular depth estimation. We use the
official validation split, with 654 images and groundtruth
depth maps captured by a Kinect RGB-D camera.

4.3. Scale-Aware Monocular Depth Estimation

We evaluated the zero-shot metric scale transfer capabil-
ities of ZeroDepth across multiple traditional depth estima-
tion benchmarks, both indoors and outdoors (Figure 4). To
this end, we trained a single model using a combination of
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KITTI

Method

Su
pe

rv
is

io
n

M
ed

.S
ca

le Lower is better Higher is better

AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 [19] M ✓ 0.115 0.903 4.863 0.193 0.877 0.959 0.981
M ✓ 0.111 0.785 4.601 0.189 0.878 0.960 0.982PackNet-SfM [23] M+v ✗ 0.111 0.829 4.788 0.199 0.864 0.954 0.980

GUDA [26] M+Sem ✓ 0.107 0.714 4.421 — 0.883 — —
MonoDEVSNet [29] M ✓ 0.104 0.721 4.396 0.185 0.880 0.962 0.983
FeatDepth [48] M ✓ 0.104 0.729 4.481 0.179 0.893 0.965 0.982
Guizilini et al. [24] M+Sem ✓ 0.102 0.698 4.381 0.178 0.896 0.964 0.984

✓ 0.112 0.894 4.852 0.192 0.877 0.958 0.981Chawla et al. [8] M+GPS
✗ 0.109 0.860 4.855 0.198 0.865 0.954 0.980
✓ 0.103 0.654 4.300 0.178 0.891 0.966 0.984Swami et al. [50] M+V
✗ 0.109 0.702 4.409 0.185 0.876 0.962 0.984

✓ 0.102 0.627 4.044 0.172 0.910 0.980 0.996ZeroDepth (outdoor) —
✗ 0.100 0.662 4.213 0.181 0.899 0.973 0.992

✓ 0.105 0.647 4.194 0.178 0.886 0.965 0.984ZeroDepth —
✗ 0.102 0.728 4.378 0.196 0.892 0.961 0.977

Method

Su
pe

rv
is

io
n

M
ed

.S
ca

le DDAD (all) nuScenes

AbsRel↓ RMSE↓ δ < 1.25↑ AbsRel↓ RMSE↓ δ < 1.25↑

Monodepth2 [19] M ✓ 0.217 12.962 0.699 0.287 7.184 0.641
PackNet-SfM [23] M ✓ 0.234 13.253 0.672 0.309 7.994 0.547
ZoeDepth∗ [4] M ✗ 0.647 16.320 0.265 0.504 7.717 0.255

✓ 0.203 12.810 0.716 0.301 7.892 0.729FSM [27] M+e
✗ 0.205 13.688 0.672 0.319 7.860 0.716
✓ 0.221 13.031 0.681 0.271 7.391 0.726VolumetricFusion [35] M+e
✗ 0.218 13.327 0.674 0.289 7.551 0.709
✓ 0.200 12.270 0.740 0.245 6.835 0.719SurroundDepth [56] M+e
✗ 0.208 12.977 0.693 0.280 7.467 0.661

✓ 0.160 10.814 0.811 0.236 7.054 0.747ZeroDepth (outdoor) —
✗ 0.161 11.034 0.813 0.255 7.205 0.746

✓ 0.156 10.678 0.814 0.221 7.226 0.754ZeroDepth —
✗ 0.157 10.818 0.810 0.234 7.485 0.717

Table 1: Depth estimation results on KITTI [16], DDAD [23], and nuScenes [7]. Supervision refers to the training super-
vision used in the target dataset (M for monocular self-supervision, v for velocity, V for synthetic data with similar camera ge-
ometry, e for extrinsics, and Sem for semantic segmentation), and Med. Scale refers to the use of ground-truth median-scaling
during evaluation. Best and second best overall numbers are bolded and underlined. Best and second best median-scaled
numbers are colored in shades of blue , and best and second best metric numbers are colored in shades of red . Methods
with ∗ were obtained using the official pre-trained model, evaluated following the standard protocol for each dataset.

the Parallel Domain, TartanAir, Waymo, and LSD outdoor
datasets, with a total of 3, 159, 424 samples, as well as the
Omnidata indoor dataset, with a total of 14, 340, 580 sam-
ples. Outdoor samples were repeated 5 times, to ensure a
similar distribution to indoor samples, resulting in a total
of 30, 137, 700 samples. A single depth decoder was used,
with a maximum range of 200m. The training session was
distributed across 8 A100 GPUs, with a batch size b = 16
per GPU, for 10 epochs, totalling roughly 7 days (for addi-
tional details, please refer to the supplementary material).

This model was then evaluated on the KITTI, DDAD,
nuScenes, and NYUv2 datasets without fine-tuning, using
the standard evaluation protocol for each benchmark. Quan-

titative results for all these datasets are shown in Tables
1 and 2. Due to a lack of baselines capable of zero-shot
transfer for comparison, we also included methods that (i)
self-supervise on the target dataset, using temporal context
frames; and (ii) rely on median-scaling at test time to gen-
erate metric predictions. As we can see, ZeroDepth out-
performs all published methods, despite never having seen
any of the target data. Compared to other methods that pre-
dict metric depth, on the KITTI dataset, ZeroDepth signif-
icantly improves upon methods that use velocity as weak
supervision [23], as well as synthetic data with similar cam-
era geometry [50] and GPS information [8]. On the DDAD
and nuScenes datasets, ZeroDepth also outperforms vari-
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Method

Su
pe

rv
is

io
n

M
ed

.S
ca

le Lower is better Higher is better

AbsRel RMSE δ < 1.25 δ < 1.252

Monodepth2 [19] M ✓ 0.160 0.601 0.767 0.949
SC-Depth [19] M ✓ 0.159 0.608 0.772 0.939
P2Net (5-frame) M ✓ 0.147 0.553 0.801 0.951
Bian et al. [5] M ✓ 0.147 0.536 0.804 0.950
Struct2Depth [41] M ✓ 0.142 0.540 0.813 0.954
MonoIndoor [33] M ✓ 0.134 0.526 0.823 0.958
MonoIndoor++ [42] M ✓ 0.132 0.517 0.834 0.961
DistDepth [57] — ✓ 0.158 0.548 0.791 0.942
DPT + OmniData [10] — ✓ 0.089 0.348 0.921 0.981

ZeroDepth (indoor) — ✓ 0.084 0.321 0.921 0.983
ZeroDepth — ✓ 0.081 0.338 0.926 0.986

DistDepth [57] — ✗ 0.289 1.077 0.706 0.934

ZeroDepth (indoor) — ✗ 0.104 0.389 0.895 0.965
ZeroDepth — ✗ 0.100 0.380 0.901 0.961

Table 2: Depth estimation results on the NYUv2 [45]
dataset. ZeroDepth outperforms published methods that
use self-supervision in the target dataset (M) and median-
scaling during evaluation (Med. Scale), and improves upon
[10] by enabling the transfer of metric scale across datasets.

ous methods that rely on cross-camera extrinsics to recover
metric scale [27, 35, 56]. A similar trend is observed on
the NYUv2 dataset, where ZeroDepth outperforms several
methods that rely on in-domain self-supervision, as well as
test-time median-scaling. The only method that is compet-
itive to ours in terms of median-scaled evaluation is [10],
that uses DPT [46] pre-trained on the same dataset. How-
ever, we note that this method uses a scale-invariant loss,
and thus abstracts away geometry to focus solely on ap-
pearance features. Because of that, it is unable to gener-
ate metric predictions, whereas our method achieves similar
median-scaled performance while establishing a new state-
of-the-art in zero-shot metric depth estimation.

We also evaluated ZeroDepth variants trained specifi-
cally for each setting (indoors and outdoors). The outdoor
model was trained using the Parallel Domain, TartanAir,
Waymo, and LSD datasets, for 20 epochs, in roughly 4.5
days. The outdoor model was trained using the Omnidata
dataset, for 5 epochs, in roughly 4.5 days as well. As we can
see, the generalization to both settings did not impact per-
formance in a meaningful way, leading only to marginally
worse outdoor results, and actually improved indoor results.
We also note that, differently from [4], our entire model is
reutilized across settings, without specialized adaptive de-
coders for different depth ranges.

4.4. Ablative Analysis

Here we discuss the various components of ZeroDepth,
analyzing design choices and robustness to different param-
eter choices. Additional ablations considering other aspects
can be found in the supplementary material.
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Figure 5: Network complexity ablation on the KITTI
dataset, for different latent space sizes with the GPU infer-
ence requirements to process a 192× 640 image.
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Figure 6: Effects of removing individual datasets on zero-
shot transfer results to the KITTI dataset.
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Figure 7: Depth estimation performance on KITTI with
varying confidence levels. Valid pixels are selected filtered
on the standard deviation from multiple samples.

Network Complexity. The first component we ablate (Fig-
ure 5) is the size of our latent representation R, in terms
of number Nl and dimension Dl of latent vectors. As ex-
pected, reducing R leads to a steady degradation in results.
In particular, reducing Nl leads to a roughly linear degra-
dation, although even with Nl = 32 we still achieve per-
formance comparable with monodepth2 [19] (RMSE 4.881
v. 4.863). Interestingly, reducing Dl leads to a much faster
degradation in metric results (at Dl = 32 we observe an
RMSE of 4.904 for median-scaled and 6.421 for metric re-
sults). This is evidence that our model is not simply learning
to produce metrically scaled predictions from depth super-
vision, but rather additional scale priors that can be trans-
ferred across datasets. As we decrease network complexity,
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Evaluation Dataset
Lower is better Higher is better

AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

PWA [40] 0.060 0.221 2.604 0.093 0.958 0.994 0.999
BTS [38] 0.059 0.245 2.756 0.096 0.956 0.993 0.998
AdaBins [3] 0.058 0.190 2.360 0.088 0.964 0.995 0.999
ZoeDepth [4] 0.057 0.194 2.290 0.091 0.967 0.995 0.999

KITTI

ZeroDepth 0.053 0.164 2.087 0.083 0.968 0.995 0.999

BTS [38] 0.094 1.913 11.437 0.212 0.888 0.947 0.978
PackNet [21] 0.088 1.760 11.331 0.195 0.899 0.960 0.981DDAD (front)
ZeroDepth 0.086 1.709 10.652 0.180 0.909 0.967 0.984

BTS [38] 0.153 2.413 10.437 0.272 0.813 0.915 0.956
PackNet [21] 0.145 2.318 10.049 0.242 0.845 0.909 0.951DDAD (all)
ZeroDepth 0.142 2.234 9.842 0.235 0.851 0.939 0.967

nuScenes ZeroDepth 0.143 1.508 4.891 0.233 0.862 0.938 0.966

BinsFormer [43] 0.094 — 0.330 0.040 0.925 0.989 0.997
PixelFormer [1] 0.090 — 0.322 0.039 0.929 0.991 0.998
VA-Depth [44] 0.086 — 0.304 0.036 0.939 0.992 0.999
ZoeDepth [4] 0.077 — 0.277 0.033 0.953 0.995 0.999

NYUv2

ZeroDepth 0.074 0.031 0.269 0.103 0.954 0.995 1.000

Table 3: In-domain depth estimation results, obtained by fine-tuning ZeroDepth on the training splits of each evaluation
dataset. Best and second best numbers are bolded and underlined. Reported results are metric (i.e., without median-scaling).

the model is unable to properly learn these priors, and hence
metric predictions degrade at a faster rate.
Training Datasets. We also ablate the impact of different
training datasets in the final performance. In Figure 6 we
show results when removing each of the 4 outdoor datasets,
and training for the same number of iterations. As expected,
removing each individual dataset results in some amount
of degradation, with median-scaled and metric results de-
grading by roughly the same amount. Removing real-world
datasets (LSD and Waymo) has the highest impact in over-
all performance, both because these datasets are larger and
also because they decrease the appearance domain gap be-
tween training and evaluation datasets. Complete tables are
available in the supplementary material.
Variational Uncertainty. Here we evaluate the quality of
uncertainty estimates generated by our variational architec-
ture. In Figure 7 we show results using different percent-
ages of valid depth pixels, filtered from lowest to highest
standard deviation based on a varying number of samples.
We see a steady performance increase as pixels with lower
standard deviation are considered, indicating that our vari-
ational architecture succeeds in detecting areas with higher
uncertainty. Moreover, as we increase the sample size the
quality of the estimated distribution also increases, leading
to further improvements until saturation at around 50 sam-
ples. At this point, selecting the top 50% pixels leads to a
58% improvement, from RMSE 4.044 to 1.678. Qualitative
results are shown in the supplementary material.
Network Architecture. In Table 4 we ablate the dif-
ferent components of ZeroDepth, starting with the choice
of network architecture. To that end, we trained under

the same conditions (including augmentations) both Mon-
odepth2 [19] models with ResNet backbones, as an example
of CNN-based networks, as well as a DPT [46] model, as an
example of Transformer-based network without an interme-
diate latent representation. As shown, Monodepth2 mod-
els struggle both in terms of median-scaled and metric pre-
dictions (A and B), regardless of network complexity. The
DPT model (C) achieves better median-scaled performance,
however it still struggled to transfer scale across datasets.
To test our first claim, that input-level geometric informa-
tion is key to scale transfer, we modified DPT to include
the same geometric embeddings used in ZeroDepth. In-
terestingly, this simple modification (D) not only improved
median-scaled performance (0.126 to 0.119 AbsRel), but
also significantly impacted metric performance (0.240 to
0.144). Even so, ZeroDepth still outperforms this DPT vari-
ant by a large amount (0.100 vs. 0.144). This is evidence
of our second claim, that maintaining an intermediate latent
representation is beneficial for scale transfer.
Design Choices. We also ablate in Table 4 the different
design choices of ZeroDepth. Firstly, we show that replac-
ing our 3D geometric embeddings with 2D positional em-
beddings (E) leads to a large degradation in metric perfor-
mance. This is in accordance with our previous DPT ex-
periments, however even in such conditions ZeroDepth still
outperforms DPT by a large margin (0.175 vs. 0.240 Ab-
sRel). We also removed the surface normal regularization
term (F), and observed some amount of degradation, show-
ing that dense synthetic data can be leveraged for additional
structural supervision. Afterwards, we experimented with
replacing our variational latent representation (G) with the
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Method

M
ed

.S
ca

le Lower is better Higher is better

AbsRel RMSE δ < 1.25 δ < 1.252

✓ 0.194 5.489 0.718 0.916A ResNet18 [19]
✗ 0.233 5.961 0.639 0.869
✓ 0.191 5.530 0.713 0.903B ResNet50 [19]
✗ 0.224 5.885 0.632 0.868
✓ 0.126 4.615 0.863 0.971C DPT [46]
✗ 0.240 6.090 0.590 0.936
✓ 0.119 4.287 0.869 0.966D DPT w/ Geom. Embed.
✗ 0.144 4.712 0.808 0.956

✓ 0.135 4.818 0.819 0.961E w/o Geom. Embed.
✗ 0.175 5.332 0.751 0.923
✓ 0.107 4.277 0.881 0.978F w/o Surface Normal
✗ 0.109 4.379 0.879 0.977
✓ 0.113 4.461 0.877 0.979G w/o Variational R
✗ 0.122 4.702 0.869 0.973
✓ 0.126 4.666 0.865 0.969H w/o Res. Jittering
✗ 0.142 4.884 0.824 0.963
✓ 0.105 4.177 0.898 0.976I w/o Ray Jittering
✗ 0.112 4.598 0.881 0.972
✓ 0.104 4.129 0.901 0.974J w/o Embed. Dropout
✗ 0.109 4.432 0.887 0.971

✓ 0.102 4.044 0.910 0.980ZeroDepth
✗ 0.100 4.213 0.899 0.973

Table 4: ZeroDepth ablation study on the KITTI dataset.
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Figure 8: Depth estimation performance on KITTI with
different noise levels for camera intrinsics.

original representation from [32], as well as removing our
various encoder-level data augmentations, namely (H) reso-
lution jittering, (I) ray jittering, and (J) embedding dropout.
Each component contributes to improvements in depth esti-
mation across datasets, particularly for metric predictions.

Camera Intrinsics. Although our framework does not re-
quire camera poses, it still requires intrinsic calibration. In
Figure 8 we ablate the impact of perturbing samples during
evaluation, by adding random noise to their camera param-
eters. As expected, performance degrades with higher noise
levels, since geometric embeddings become increasingly in-
accurate. Moreover, we observe a much steeper degradation
in metric predictions, relative to median-scaled ones. This is
further evidence that our model goes beyond simply gener-
ating metric predictions, and relies instead on learned scale
priors based on physical properties. These scale priors re-
quire accurate intrinsics to correlate 2D information with
3D properties, which leads to degradation when camera pa-
rameters are inaccurate.

4.5. Fine-Tuned Depth Estimation

Even though ZeroDepth is designed for the zero-shot set-
ting (i.e., a single model is trained and directly evaluated on
other datasets), if in-domain data is available it is possible
to fine-tune our original model to further improve perfor-
mance for a specific dataset. Here we explore this capability
and fine-tune ZeroDepth in each of the evaluation datasets.
We start from the same pre-trained weights, and for each
dataset we train for 5 additional epochs on its correspond-
ing training split, with a learning rate of lr = 10−5. The
evaluation procedure is the same, except for KITTI, where
we use instead the split proposed in [51] because it is the
standard protocol reported by supervised methods. Quan-
titative results are reported in Table 3, and show that fine-
tuning ZeroDepth with in-domain data leads to significant
improvements, to the point of outperforming state-of-the-art
methods trained specifically for each dataset.

5. Conclusion

In this paper we introduce ZeroDepth, a novel monoc-
ular depth estimation architecture that enables the robust
zero-shot transfer of metric scale across datasets, via large-
scale supervised training to learn scale priors from a com-
bination of image and geometric embeddings. We main-
tain a global variational latent representation, that is con-
ditioned using information from a single frame during the
encoding stage, and can be sampled and decoded to gener-
ate multiple depth maps in a probabilistic fashion. We also
propose a series of encoder-level data augmentation tech-
niques, designed to address the appearance and geometric
domain gaps between datasets collected in different loca-
tions with different cameras. We evaluated the same pre-
trained ZeroDepth model on both indoor and outdoor set-
tings, and demonstrated state-of-the-art results in multiple
benchmarks, outperforming methods that rely on in-domain
self-supervision and test-time median-scaling.

References
[1] Ashutosh Agarwal and Chetan Arora. Attention attention ev-

erywhere: Monocular depth prediction with skip attention.
In Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision (WACV), pages 5861–5870,
January 2023. 8
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