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Figure 1: Illustration of the proposed paired rainy/clean images dataset. The proposed real rain dataset is to cope with various
rain categories, such as rain streaks, veiling effect, occlusion, and ground splashing. We recommend zooming in the figure
on PC for better visualization.

Abstract
Learning-based image deraining methods have made

great progress. However, the lack of large-scale high-quality
paired training samples is the main bottleneck to hamper
the real image deraining (RID). To address this dilemma
and advance RID, we construct a Large-scale High-quality
Paired real rain benchmark (LHP-Rain), including 3000
video sequences with 1 million high-resolution (1920*1080)
frame pairs. The advantages of the proposed dataset over
the existing ones are three-fold: rain with higher-diversity
and larger-scale, image with higher-resolution and higher-
quality ground-truth. Specifically, the real rains in LHP-Rain
not only contain the classical rain streak/veiling/occlusion
in the sky, but also the splashing on the ground overlooked
by deraining community. Moreover, we propose a novel ro-
bust low-rank tensor recovery model to generate the GT with
better separating the static background from the dynamic
rain. In addition, we design a simple transformer-based sin-
gle image deraining baseline, which simultaneously utilize

†These authors contributed equally to this work.
∗Corresponding author.

the self-attention and cross-layer attention within the image
and rain layer with discriminative feature representation.
Extensive experiments verify the superiority of the proposed
dataset and deraining method over state-of-the-art.

1. Introduction
Single image deraining is to improve the imaging qual-

ity by separating rain from image background. In recent
years, significant progress has been made in learning-based
single image deraining by various sophisticated CNN archi-
tectures [14, 36, 53, 10] and powerful Transformer models
[35, 44]. Although these state-of-the-art supervised methods
have achieved impressive results on simulated datasets, a fact
cannot be ignored that those competitive methods perform
unsatisfactory on diverse real rainy scenes. The core reason
is the domain shift issue between the simplified synthetic
rain and complex real rain [50, 32, 41, 51].

To solve this problem, an intuitive idea is to try the best
to make rain degradation model as real as possible [11].
The researchers formulate the rain imaging procedure into
a comprehensive rain simulation model [9, 48, 12, 24, 18],
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Table 1: Summary of existing real rain datasets.
Datasets Year Source Sequence Frame Resolution Rain Categories Annotation Paired

RID/RIS[19] 2019 Cam/Internet None 4.5K 640*368 streak, raindrop Object detection -
NR-IQA[43] 2020 Internet None 0.2K 1000*680 streak, veiling None -
Real3000[25] 2021 Internet None 3.0K 942*654 streak, veiling None -

FCRealRain[51] 2022 Camera None 4.0K 4240*2400 streak, veiling Object detection -
SPA-Data[37] 2019 Cam/Internet 170 29.5K 256*256 streak None X
RainDS[32] 2021 Cam None 1.0K 1296*728 streak, raindrop None X
GT-Rain[1] 2022 Internet 202 31.5K 666*339 streak, veiling None X

RealRain-1K[20] 2022 Cam/Internet 1120 1.1K 1512*973 streak, veiling, occlusion None X

LHP-Rain 2023 Camera 3000 1.0M 1920*1080 streak, veiling, occlusion, splashing Object detection/Lane X

in which different visual appearance of rain streaks[9], ac-
cumulation veiling [48], haze [12, 18], and occlusion [24]
factors are taken into consideration. Unfortunately, these
linear simulation models still cannot well accommodate the
distribution of realistic rains. For example, in Fig. 1, real-
istic rain streak is usually not exactly a regular line-pattern
streak but possesses irregular non-uniform in terms of the
intensity and width. Apart from the rain streaks, the existing
rain simulation models could not handle the complicated
rain splashing on the ground, which presents as dense point-
shape texture, droplets or water waves, ruining visibility of
traffic signs, such as lane lines, and also causes enormous
negative effects for the high-level vision.

Another research line obtains the ‘clean’ counterpart from
the realistic rainy videos [37, 20], which leverages the mo-
tion discrepancy between static image background and dy-
namic rain. Unfortunately, they simply employ naive fil-
tering strategies such as percentile filter [37] and median
filter [20], resulting in unsatisfactory GT with residual rain
or over-smoothing phenomenon. Moreover, the number and
diversity of the existing real paired rain datasets are still
limited. Few datasets have considered the rain splash on
the ground, which is commonly observed in the real world
but still rarely mentioned in deraining community. And the
number of existing video sequences and image frames are
not sufficient to cover diverse rains in terms of the varied
rain angle, intensity, density, length, width and so on. Last
but not least, the existing realistic rainy images are mostly
downloaded from the Internet with low-quality: compres-
sion, watermark, low-resolution, without annotation and so
on. As such, constructing a large-scale high-quality paired
realistic rain dataset is highly necessary.

In this work, we construct a new large-scale high-quality
paired real rain benchmark. The strength of our benchmark
is threefold. First, the LHP-Rain contains diverse rain cate-
gories with very large-scale, including 3000 video sequences
with over 1 million frame pairs. Second, apart from the
conventional streak and veiling, our benchmark is capable
of removing the representative challenging ground splash-
ing rain in the real world. Third, the LHP-Rain is collected
by the smartphone with high-resolution (1920*1080 pixels)
and abundant objects under self-driving and surveillance

scenes are captured for comprehensive evaluation. More-
over, we propose a novel robust low-rank tensor recovery
method (RLRTR) for video deraining, which can generate
higher-quality GT with better rain removal from sky to the
ground and image structure preserving. We summary the
main contributions as follows:

• We construct a large-scale high-quality paired real rain
benchmark for real single image deraining. To our best
knowledge, LHP-Rain is the largest paired real rain dataset
(3000 video sequences, 1 million frames) with high image
resolution (1920*1080), and the first benchmark to claim
and tackle the problem of ground splashing rain removal.

• We design a novel robust low-rank tensor recovery model
for video deraining to better acquire paired GT. We pro-
vide detailed analysis to show RLRTR can better differ
the rain from static background than previous datasets.

• We propose a new transformer-based single image de-
raining baseline, which exploits both self-attention and
cross-layer attention between the rain and image layer for
better representation. Extensive experiments on different
real datasets verify the superiority of proposed method.

2. Related Work
Real rain datasets. At present, the researchers have

mostly focused on the network architecture design, while
relative fewer attention has been paid on the real rain dataset.
The insufficiency of realistic rain dataset is the main bottle-
neck to hamper single image deraining. In Table 1, we pro-
vide a comprehensive summary of existing real rain datasets,
which can be classified into two categories: rainy image only
and paired rain-image. The former can be utilized via semi-
supervised [40, 13] or unsupervised methods [7, 51]. The
latter can be conveniently utilized by the supervised training.

The key to paired real dataset is how to acquire the pseudo-
‘clean’ image from its rainy counterpart. There are two main
ways to construct the pairs: video-based generation (SPA-
data [37], RealRain-1K [20]), and time-interval acquisition
(RainDS [32], GT-Rain [1]). All these datasets should ensure
that the camera is strictly immobile during the acquisition
process. SPA-data [37] was the first presented paired real
dataset which utilized the human-supervised percentile video
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Figure 2: Features of the proposed benchmark LHP-Rain. (a) Distribution of rain and scene of the proposed benchmark.
(b) Our proposed LHP-Rain outperforms others in terms of rain diversity and sequence amount. (c) LHP-Rain collects
high-resolution and annotated rainy images without copyright, compression and blur.

filtering to obtain the GT. Instead of generation, GT-Rain
[1] collected the pairs of same scene under rainy and good
weather, respectively. Similar idea has been adopt in RainDS
[32] by manually mimicking rainfall with a sprinkler.

Despite the rapid development promoted by those pioneer
datasets, there remain some important issues to be solved:
insufficient number and rain diversity (not consider ground
splashing). In this work, we contribute a large-scale high-
quality paired real rain dataset (Section 3.1) with diverse
rain and abundant objects. Moreover, a novel GT generation
method is proposed with higher-quality pairs (Section 3.3).

Single image deraining. The single image deraining
methods have made great progress in last decade including
the optimization models [26, 22, 4], deep convolutional net-
work [12, 36, 10] and transformer [35, 44]. Fu et al. [9] first
introduced the residual deep CNN for single image deraining.
Latter, the researchers have further improved the network
depth by stacking similar modules, such as the well-known
recurrent [21, 49] and multi-stage progressive [33, 53] strate-
gies. Meanwhile, the multi-scale has been widely explored
to improve the representation such as the multi-scale fusion
[14] and wavelet decomposition [46]. Further, the side in-
formation about the rain attribute: density [54], depth [12],
directionality [38], location [47], non-local [17] have been
extensively utilized to enhance the deraining performance.

Benefiting from self-attention mechanise for long-range
relationships modelling, transformer-based methods have
achieved significant performance for single image deraining
[39, 35, 44, 6]. Very recently, Xiao et al.[44] proposed an
image deraining transformer (IDT) with relative position en-
hanced and spatial-based multihead self-attention. Chen et al.
[6] proposed a sparse Transformer architecture to solve the
redundant feature issue. In this work, we propose a simple
yet effective dual-branch transformer baseline which simul-
taneously utilizes the self-attention within rain/image layer
and cross-layer attention between the rain and image layer,
so as to jointly improve the discriminative disentanglement
between the rain and image layer (Section 4).

3. Large-scale high-quality paired Benchmark
3.1. Benchmark Collection and Statistics

Due to the difficulty and inconvenience of collecting real
rain videos, the video sequences and frames of existing
paired real rain datasets are still limited as shown in Ta-
ble 1. In this work, we collect the real rain sequences by
smartphones with 24mm lens focal length, sampled in 30
fps. The data collection process is illustrated in Fig. 3(a).
Firstly, to keep the camera immobile, we employ tripod to
capture real rain videos with static background (no moving
object except rain). For each sequence, we record approx-
imate 15 seconds and extract the intermediate steady 10s
into our dataset. Then, we manually pick out moving object
to remove unexpected disturbance. Finally, we employ the
proposed RLRTR (Section 3.3) to obtain high-quality GT.

Overall, we collect 3000 video sequences with approxi-
mate 1 million frames across 8 cities from 4 countries around
the world, China (2091 sequences), England (51 sequences),
Philippines and Indonesia (858 sequences). We visualize the
per-country image counts and location distribution of LHP-
Rain in Fig. 3(b). The rainfall levels are varied from light
rain (10mm/day) to rainstorm (300mm/day) due to diversity
of local climates. Over 17 typical scenes are captured, in-
cluding the parking lot, street, alley, playground, courtyard,
and forest, etc. Besides, 2490 sequences are captured at
daytime and 510 sequences are at night. More Rainy/GT
pairs from LHP-Rain are displayed in Fig. 3(c). With the
changing of location, backgrounds are varied from nature
to city with diverse rain patterns, such as rain streak, veil-
ing effect, occlusion and splashing. Note that, although the
background is the same for each video sequence, the rain in
each frame is vastly different from the appearance, including
streak, veiling, occlusion and splashing. Here we separate
2100 sequences as training set, 600 sequences as validation
set and the other 300 sequences as test set. To further vi-
sualize the quantity distribution of rain and scene for each
sequence, a sunburst chart is illustrated in Fig. 2(a).
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Figure 3: Illustration of the proposed benchmark LHP-Rain. (a) Overall procedure of obtaining rainy/clean image pair. (b)
Quantity and location distribution of LHP-Rain. (c) Rainy/GT samples of LHP-Rain from different locations. Scenes are
varied from nature to city, over day and night with diverse rain patterns from sky to the ground.

3.2. Benchmark Features

Rain with higher-diversity and larger-scale. We concern
not only the sequence number and total frames but also
the rain diversity of realistic rain, which both have great
impact on the generalization for real-world rain. In Fig.
2(b), we show the statistic distribution of rain diversity and
sequences/frames in typical real paired rain dataset. All
datasets concern about the noticeable rain streak, especially
SPA-data [37]. RainDS [32] additionally takes the raindrop
into consideration with 1000 frames, while GT-Rain [1] and
RealRain-1K [20] further capture the accumulation veiling
artifact in heavy rain. LHP-Rain contains not only rain
streak and veiling in the sky, but also challenging highlight
occlusion and splashing water on the ground. To our best
knowledge, the proposed LHP-Rain is the first benchmark
to collect and tackle ground splashing rain in the real world,
which is commonly ignored by previous existing datasets.
Image with higher-resolution and abundant objects. The
existing datasets pay much attention to the rain, ignoring that
the high-quality image is also what we really need. Unfor-
tunately, existing realistic rainy images are generally down-
loaded from the Internet with various problems about the
image: compression artifact, watermark, low-resolution, out-
of-focus blur, without objects to name a few, which may
cause challenges for high-level vision applications. In Fig.
2(c), we show the typical examples in each dataset. The
image background of RealRain-1K [20] suffers from serious
out-of-focus blur, since they have manually focused on the
rain on purpose. GT-Rain [1] contains obvious compres-
sion artifact, since it origins from the compressed Youtube
stream. There are numerous scenes with narrow views and
watermark in the SPA-data [37], because they only release
patches (256*256) cropped from original frames.
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Figure 4: The GT quality of LHP-Rain is superior to others
on DIIVINE (lowest), NIQE (lowest) and B-FEN (highest).

To improve the image quality, we personally capture high-
resolution (1920*1080) realistic rain videos by smartphones.
Moreover, LHP-Rain is not only designed for rain restoration,
but also important for object detection and segmentation
tasks under adverse weather, with abundant objects which
are oriented for self-driving and video surveillance scenes.
Thus, we provide annotations for object detection and lane
segmentation. Five typical objects including person, car,
bicycle, motorcycle and bus are annotated by bounding box
with 326,961 instances totally. For lane segmentation, we
annotate 24,464 lane masks to evaluate the effect of rain
splashing removal. Note that the same object in different
frames will be regarded as different instances because rain
is inconstant and changing frame by frame.
Higher-quality ground-truth. The quality of GT is critical
for paired real rain dataset. It is difficult to determine what
is good or bad GT in an absolutely fair way. In this paper,
we assume that the better the rain removal, the better the
image quality is. Therefore, we employ several no reference
image quality assessments: DIIVINE [29], NIQE [28] and
B-FEN [43], to evaluate the image quality of the rain-free
image. The former two are hand-crafted based general image
quality indexes, and the last one B-FEN is the learning based
index especially designed for de-raining quality assessment.
We select all the video backgrounds in SPA-data [37], GT-
Rain [1], RealRain-1K [20] and LHP-Rain for evaluation. In
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Figure 5: Analysis of different video deraining results on our dataset. From left to right, the first column is the original rainy
frame, and the remaining five columns represent different methods, namely Median Filter, SPA, FastDeRain, J4R-Net and
the proposed RLRTR. From top to bottom, the first row shows the deraining results, the second row is the rain layer of the
deraining results, the third row denotes the section line of the deraining results and the last row represents the horizontal and
vertical gradient distributions of the deraining results.

Fig. 4, we can observe that the proposed LHP-Rain consis-
tently obtains the best results in terms of different evaluation
indexes which strongly support the higher-quality of the GT.

3.3. Robust Low-rank Tensor Recovery Model

Given the rainy video O ∈ Rh×w×t, the key is how to
properly obtain the paired GT. The existing methods simply
employ the naive filtering technique benefiting from the
temporal consistency of the static background. Due to the
slight camera vibration caused by the wild wind, we further
leverage an affine transformation operator τ [52] to achieve
the pixel-level alignment of each frame. Thus, a multi-frame
rainy video can be described as the following formula:

O ◦ τ = B +R+N , (1)
where B ∈ Rh×w×t is the rain-free video,R ∈ Rh×w×t

represents the rains,N ∈ Rh×w×t denotes the random noise,
and τ denotes the affine transformation to ensure the rainy
video of each frame is pixel-level aligned. In this work, we
formulate the video deraining into inverse problem via the
maximum-a-posterior as follow:

min
B,R,τ

1

2
||B +R−O ◦ τ ||2F + ωPb(B) + µPr(R), (2)

where Pb and Pr are the prior knowledge for the image
and rain, respectively, ω and µ are the corresponding hyper-
parameters. As for the aligned rainy video, when there are
no moving objects except the rain, the rain-free background
image is the same for all rainy frames. That is to say, clean
video B has extreme global low-rank property along the

temporal dimension, ideally its rank is equal to one for each
scene. On the other hand, the clean video B also has very
non-local low-rank property along the spatial dimension, due
to the self-similarity widely employed in image restoration
[8]. Moreover, we further take the local smoothness of
the video B into consideration via the total variation (TV)
regularization [4]. Thus, the joint global-nonlocal-local prior
along both the spatial and temporal dimension has been fully
exploited for better representation of the static video B:

Pb(B) = ω
∑
i

(
1
λ2
i
||SiB×3Qi − Ji||2F + ||Ji||tnn

)
+ γ||∇tB||1, (3)

where SiB ∈ Rp2×k×t is the constructed 3-D tensor via the
non-local clustering of a sub-cubic ui ∈ Rp×p×t [3], p and k
are the spatial size and number of the sub-cubic respectively,
Qi ∈ Rd×t(d � t) is an orthogonal subspace projection
matrix used to capture the temporal low-rank property, ×3

is the tensor product along the temporal dimension [16], Ji
represents the low-rank approximation variable, || • ||tnn
means the tensor nuclear norm for simplicity [3],∇t is the
difference operator, γ and λi is the regularization parameters.
As for the rain R, we formulate it as the sparse error [42]
via the L1 sparsity. Thus, the Eq. (2) can be expressed as:{
B̂, R̂, Ĵi, τ̂ , Q̂i

}
= arg min

B,R,Ji,τ,Qi

1
2 ||B +R−O ◦ τ ||2F

+µ||R||1 + ω
∑
i

(
1
λ2
i
||SiB×3Qi − Ji||2F + ||Ji||tnn

)
+ γ||∇tB||1.

(4)

Optimization. Due to the difficulty of estimating multiple
variables directly, we adopt the alternating minimization
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Table 2: Quantitative comparisons with SOTA supervised methods on paired real datasets SPA-data (A), GT-Rain (B) and
proposed LHP-Rain (C) under 9 different task settings. X→Y means training on the dataset X and testing on the dataset Y.
The degraded results of the three datasets are also provided. Top 1st and 2nd results are marked in red and blue respectively.

Method
A→A B→A C→A A→B B→B C→B A→C B→C C→C

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Rainy Image 32.60 / 0.9173 19.48 / 0.5849 29.97 / 0.8497
SPANet 38.53 0.9875 22.93 0.8207 31.46 0.9612 20.01 0.6148 21.51 0.7145 19.20 0.5706 28.00 0.8905 20.10 0.8061 31.19 0.9346
PReNet 37.05 0.9696 22.44 0.7713 32.46 0.9387 20.29 0.5860 20.65 0.6005 19.34 0.5530 27.57 0.8595 20.91 0.7222 32.13 0.9177
RCDNet 39.74 0.9661 22.51 0.8392 32.30 0.9378 20.09 0.5785 21.04 0.6106 19.09 0.5264 25.46 0.7959 21.38 0.8047 32.34 0.9152

JORDER-E 40.63 0.9794 23.47 0.7426 31.23 0.9234 19.98 0.5799 21.24 0.6854 18.76 0.4861 27.13 0.8531 22.14 0.8433 31.24 0.8847
MPRNet 46.06 0.9894 24.27 0.8428 32.37 0.9379 19.87 0.6286 22.00 0.6515 19.47 0.5889 28.41 0.8807 23.82 0.8052 33.34 0.9309
GT-Rain 37.21 0.9827 25.30 0.9243 26.46 0.9145 20.07 0.6941 22.51 0.7300 21.14 0.5698 28.62 0.8675 23.19 0.8098 32.18 0.9132

Uformer-B 46.42 0.9917 24.08 0.8979 32.21 0.9667 19.70 0.6875 21.60 0.7124 19.10 0.6622 28.74 0.9262 22.91 0.8734 33.56 0.9317
IDT 45.74 0.9889 23.80 0.8334 32.38 0.9422 20.34 0.6306 21.98 0.6536 19.44 0.5977 26.90 0.8742 23.34 0.7897 33.02 0.9310

SCD-Former 46.89 0.9941 26.13 0.9122 34.38 0.9798 20.98 0.6985 22.79 0.7684 21.71 0.6893 29.41 0.9127 23.56 0.8626 34.33 0.9468

scheme to solve the Eq. (4) with respect to each variable.
1) Affine Transformation τ : Since O ◦ τ is a nonlinear

geometric transform, it’s difficult to directly optimize τ . A
common technique is to linearize around the current estimate
and iterate as follows: O ◦ τ +∇O4τ = B +R+N [31],
where∇O is the Jacobian of the image O with respect to τ .
This method iteratively approximates the original nonlinear
transformation with a locally linear approximation [31].

2) Rain EstimationR: By ignoring variables independent
ofR, we can obtain following subproblem:

R̂ = argmin
R

1
2 ||B +R−O ◦ τ ||2F + µ||R||1. (5)

Eq. (5) is a L1 minimization problem which can be easily
solved by soft thresholding with closed-form solution [23].

3) Subspace Projection Qi: We enforce the orthogonal
constraint on QTi Qi = I with the following subproblem:

Q̂i = arg min
QT

i Qi=I

1

λ2i
||SiB×3Qi − Ji||2F . (6)

According to [45], Eq. (6) has the closed-form solution,
which can be obtained by the rank-d singular value decom-
position of the folding matrix of SiB, where d is the mea-
surement of the intrinsic subspace of the temporal dimension.
In this work, we empirically set d ≤ 3.

4) Low-rank Approximation Ji: Dropping the irrelevant
variables, we can get following subproblem:

Ĵi = argmin
Ji

1
λ2
i
‖ SiB×3Qi − Ji ‖2F +||Ji||tnn. (7)

This is a typical tensor nuclear norm minimization problem,
can be solved by singular value thresholding algorithm [2, 3].

5) Clean Video Estimation B: We fix the other variables
and optimize B with the following subproblem:

min
B

1
2 ||B +R−O ◦ τ ||2F + ω

∑
i

1
λ2
i
||SiB×3Qi − Ji||2F + γ||∇tB||1. (8)

Due to the non-differentiability of the L1 norm in Eq. (8), we
apply the ADMM [23] to decouple this problem into several
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Figure 6: Overall framework of the SCD-Former. It utilizes
self and cross-layer attention from rain layer to image layer
which serves as side information to recover image layer.

sub-problems with closed-form solutions. Please refer to the
supplementary material for the whole algorithm details.
Discussion. Figure 5 illustrates the comparison re-
sults of representative video deraining methods: filter-
based methods (median filter[20], SPA[37]), optimization-
based (FastDeRain[15]) and learning-based methods (J4R-
Net[24]). The first and second rows show the video deraining
of the image and rain layer, respectively. RLRTR removes
almost all the rain from sky to the ground, including rain
streaks and splashing, and preserve the image details well,
while other methods more or less have rain streaks residual
but also cause noticeable damage to the image. In third row,
we randomly choose two 1D section lines of the deraining re-
sults. The section line of RLRTR is smoother with less burr
than other methods. Moreover, the SPA, FastDeRain and
the J4R-Net unexpectedly attenuate the spike signal of the
share edge, while the proposed RLRTR has well preserve the
spike signal. It is well-known the natural image is isotropic
and its gradient distribution along different directions should
be close to each other [34]. Compared with other results, in
forth row the gradient distributions along the vertical and
horizontal directions of RLRTR are most similar to each
other, which further indirectly verify the naturalness of the
deraining result and produce better paired clean-rainy GT.
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Rainy Image JORDER-E SCD-FormerMPRNet IDT
Figure 7: Visual comparisons on LHP-Rain. Comparing with state-of-the-arts, SCD-Former achieves more visual pleasing
deraining results and it is capable of removing the highlight occlusion on the car and the splashing water on the ground.

4. SCD-Former: Image Deraining Baseline
The degradation procedure can be formulated as:

O = B + R. (9)
It has been proved that the rain such as location [47]

serving as an attention would be informative in CNN-based
image restoration. In this work, we show the rain attention
would also be beneficial in transformer. In Fig. 6, we design
a simple two-stream Self- and Cross-attention Deraining
Transformer (SCD-Former), in which the two-stream net-
work is designed to restore rain and image layer respectively.
On one hand, we utilize the self-attention in each rain/image
stream independently; on the other hand, we further exploit
the cross-layer attention between the rain and image streams.
Thus, the rain collaboratively interactive with the image layer
to further improve the discriminative representation.
Self-attention and cross-layer attention. In this work, we
exploit self-attention on rain and image layer as Rain layer
Self-Attention (RSA) and Image layer Self-Attention (ISA).
Given the input feature X, it will be projected into query (Q),
key (K) and value (V) by three learnable weight matrices
Wq, Wk and Wv. Then dot-product, scaling and softmax
among Q, K and V will be conducted. The self-attention
function is defined as:

Attention(Q, K, V) = softmax(
QKT

√
dk

)V. (10)

We further design a Cross-Layer Attention (CLA) module
which bridges the attention relationship between rain and
image layer. The CLA conducts attention operation among
Qr from rain layer and Kb, Vb from image layer as follow:

CLA(Qr,Kb,Vb) = softmax(
QrKb

T

√
dk

)Vb. (11)

The token of rain layer serves as a query token Qr to inter-
act with the patch tokens Kb and Vb from the image layer
through attention mechanism. By calculating the correlation
degree between both layer, the highly attentive location of
rain residual can be acquired, which provides an extra prior
for enhanced feature representation. Note that, the CLA
module has been stacked over the whole network. Compared
with previous work, SCD-Former exploits not only the self-
attention but also cross-layer attention of the rain and image
layer for better restoration.
Implementation details. We train the network using the
Charbonnier loss[5] supervised by the ground truth of rain
and image layer:
L = ||O−B−R||2F +λr||R− R̂||1+λb||B− B̂||1. (12)

The framework is implemented with two RTX 3090 GPUs.
We set the hyperparameter λb and λr as 1. The images are
randomly cropped into 256 * 256 for training. The learning
rate of network is set as 0.0002. The Adam optimizer is
adopted for optimization with a batch size of 32.

5. Experiments
Datasets. We conduct the experiments on paired datasets
SPA-data[37], GT-Rain[1] and LHP-Rain. For the SPA-data,
training set is cropped from 29,500 images and 1000 rainy
images are used for testing. For the GT-Rain, 89 sequences
are used for training and 7 sequences are used for testing.
For the LHP-Rain, 2100 sequences are used for training
and 300 sequences are used for testing. To evaluate the
deraining performance on real scenes, we choose typical
real rainy images from Internet-data. For single image de-
raining methods, we select the representative supervised
deraining methods, including the CNN-based SPANet[37],
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Figure 8: Evaluation of the diversity of the LHP-Rain. We train SCD-Former on different datasets: Rain100L, SPA-data,
GT-Rain and LHP-Rain, and test on other datasets. The model trained on LHP-Rain has achieved better deraining results.

PReNet[33], RCDNet[36], JORDER-E[47], MPRNet[27],
GT-Rain[1], transformer-based Uformer[39] and IDT[44].
Evaluation metrics. We employ the full-reference PSNR
and SSIM to evaluate the single image deraining results.
Moreover, mean Average Precision (mAP) and Accuracy
(Acc) are employed to evaluate object detection and lane
segmentation after restoration by deraining methods.

5.1. Quantitative Evaluation

Deraining results on benchmarks. We make comparisons
with state-of-the-art deraining methods on three datasets
SPA-data (A), GT-Rain (B) and LHP-Rain (C). The quan-
titative results are reported in Table 2 under the follow-
ing columns: A→A, B→B and C→C. It is observed that
transformer-based methods perform better than most CNN-
based methods except for MPRNet in terms of PSNR and
SSIM because of the superior representation of self-attention.
Note that SCD-Former outperforms the existing state-of-the-
art methods on all benchmarks, which confirms the effective-
ness of our method with both self and cross-layer attention.

5.2. Qualitative Evaluation

Evaluation on LHP-Rain. To further validate the deraining
performance, we compare with the qualitative results of typi-
cal methods on LHP-Rain. As shown in Fig. 7, SCD-Former
achieves more visual pleasing results without rain residual
and artifacts comparing with other methods, which cleans
the rain streaks and veiling effect on the trees, highlight
occlusion on the red car and the ground splashing water.
Evaluation on real rainy images. To evaluate the perfor-
mance on real rainy images, we train SCD-Former on syn-
thetic rain Rain100L[48], real rain SPA-data, GT-Rain and
LHP-Rain respectively and test on real rainy images. As
shown in Fig. 8, the model trained on Rain100L performs
poorly due to the huge domain gap. SPA-data and GT-Rain
could remove real rain in the sky partially but they cannot
handle the splashing water on the ground. The model trained
on LHP-Rain has the best deraining performance which
simultaneously removes rain streaks, veiling and ground
splashing water without destroying image details.
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Figure 9: Ablation study of the robust low-rank tensor re-
covery model. The first row represents the deraining results,
and the second row is corresponding rain. The first column
is the original rainy frame and the remaining three columns
represent the model without subspace projection, without
affine transformation and full RLRTR.

Table 3: Ablation study of cross-layer attention.

Cross-layer attention PSNR / SSIM
- 33.92 0.9384
X 34.33 0.9403

5.3. Ablation Study

Effectiveness of subspace projection. The subspace pro-
jection is used to characterize the extreme global low-rank
property along the temporal dimension. In Fig. 9, there are
obvious rain residual without subspace projection, imply-
ing that it is insufficient to characterize the property of the
temporal dimension relying on the local prior of the tem-
poral smoothness. Since the temporal low-rank property is
neglected, leading to the rain residual in the results.
Effectiveness of affine transformation. The affine trans-
formation is exerted to guarantee the pixel-level alignment
of rainy video. As shown in Fig. 9, it can be observed that
background residual and distortion obviously exist in the
rain layer without affine transformation, because the extreme
low-rank property along the temporal dimension is affected
by data alignment among each frame in the video.
Effectiveness of cross-layer attention. The design aims
to find the correlations between rain layer and image layer.
After iterations, the image layer sub-network obtains more
attention on the rain features brought by cross-layer attention.
In Table 3, We show that the complementary guidance from
rain layer promotes the restoration of image layer.
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Figure 10: Evaluation of high-level tasks on lane segmenta-
tion and object detection. The performance improves signifi-
cantly after removing rain streak and ground splashing from
lanes and bicycles by our proposed SCD-Former.

Table 4: Evaluation of high-level tasks on deraining results.
Method Det. (mAP) Gain (Det.) Seg. (Acc) Gain (Seg.)
Rainy 0.543 - 0.237 -

SPANet 0.563 +0.020 0.268 +0.031
PReNet 0.560 +0.022 0.255 +0.018
RCDNet 0.556 +0.018 0.361 +0.124

JORDER-E 0.568 +0.025 0.385 +0.148
MPRNet 0.560 +0.017 0.350 +0.113

Uformer-B 0.568 +0.025 0.306 +0.069
IDT 0.570 +0.027 0.365 +0.128

SCD-Former 0.575 +0.031 0.449 +0.212

5.4. Discussion

Rain diversity of different datasets. The rain diversity of
dataset can be validated by the experiment of training mod-
els on one dataset and testing on the other unseen datasets
among SPA-data (A), GT-Rain (B) and LHP-Rain (C). As
shown in Table 2, on one hand, the best results of C→A
methods positively improve the performance of A, while all
A→C results performing worse than degraded result of C.
On the other hand, the best results of C→B have promotion
while B→C drop severely. Therefore, the outcome proves
that our LHP-Rain contains more diverse rain categories than
others, because they could not handle extreme challenging
cases such as occlusion and ground splashing.
Evaluation on downstream tasks. We further evaluate the
image deraining results on high-level tasks. For object de-
tection, we apply the official YOLOv5 model on deraning
results and report the mean average precision (mAP) of dif-
ferent classes in Table 4, where SCD-Former reaches the best
average mAP among typical objects. For lane segmentation,
we choose the LaneNet[30] to predict the lane on LHP-Rain
and SCD-Former has larger promotion on the segmentation
accuracy. It is reasonable because SCD-Former performs
well on removing ground splashing water and recovering the
lane lines. The visualization results in Fig. 10 shows that
the lane on the surface of ground and the bicycles could be
properly predicted after deraining by SCD-Former.
User study on benchmarks quality. We look for 126 vol-
unteers to anonymously vote for the benchmark with best
quality. Among existing benchmarks, we randomly select

(a) Rainy Image (b) RLRTR Result

Figure 11: The limitation of RLRTR. The challenging oc-
clusion effect could be removed by RLRTR from the back-
ground while the static haze is preserved.

Table 5: User study on benchmarks quality.
LHP-Rain SPA RealRain1K GT-Rain

Rain diversity 63% 8% 13% 16%
Image quality 51% 14% 20% 15%

GT quality 55% 15% 16% 14%

100 samples and conduct user study including: rain diver-
sity, image quality (resolution, JEPG, blur) and GT quality.
The result is listed in Table 5, where LHP-Rain consistently
outperforms other benchmarks more than 50%.

6. Limitation
Our proposed video deraining method is limited to re-

move the haze in the heavy rain scenes. RLRTR is adept
at separating the static background from the dynamic rain.
However, due to the steadiness of mist in the short inter-
val, which is almost motionless in the background, RLRTR
cannot decompose the haze from image layer well. Fig. 11
shows examples of rain and mist in our benchmark. Al-
though the challenging rain patterns such as rain streaks
are clearly removed, the result still contains haze. We look
forward to handling the static haze in the future.

7. Conclusion
In this paper, we propose a large-scale and high-quality

paired real rain benchmark. Our proposed LHP-Rain pro-
vides diverse rain categories, especially the ground splashing
rain issue which is first claimed in deraining community.
The model trained on LHP-Rain could generalize well on
various real rainy scenes with great rain removal perfor-
mance. Moreover, the proposed low-rank tensor recovery
model could generate high-quality GT and detailed analysis
confirms better results than others. In addition, we propose a
single deraining baseline which performs well on removing
rain from sky to the ground. Extensive experiments verify
the superiority of the proposed benchmark and significantly
improves segmentation task after removing splashing.
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