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Abstract

In this paper, we introduce physics-augmented autoen-
coder (PAA) framework for 3D skeleton-based human gait
recognition. Specifically, we construct the autoencoder with
a graph-convolution-based encoder and a physics-based
decoder. The encoder takes the skeleton sequence as in-
put and produces the generalized positions and forces of
each joint, which are taken by the decoder to reconstruct the
input skeleton based on the Lagrangian dynamics. In this
way, the intermediate representations are physically plausi-
ble and discriminative. During the inference, the decoder is
discared and a RNN-based classifier takes the output of the
encoder for gait recognition. We evaluated our proposed
method on three benchmark datasets including Gait3D,
GREW, and KinectGait. Our method achieves state-of-
the-art performance for 3D skeleton-based gait recogni-
tion. Furthermore, extensive ablation studies show that our
method generalizes better and is more robust with small-
scale training data by incorporating the physics knowledge.
We also validated the physical plausibility of the intermedi-
ate representations by making force predictions on real data
with physical annotations.

1. Introduction
In general, gait refers to the walking style of a person.

It is a unique biometric pattern varying from person to per-
son. Gait recognition aims at identifying humans based on
their gaits. It has many important applications such as secu-
rity surveillance [2], smart homes [58], and healthcare [43].
Extensive work have been focusing on 2D-based gait recog-
nition such as using silhouettes [11], gait energy image [32]
and 2D human skeleton [49]. However, 2D-based gait
recognition suffers from occlusion and changing of view
angles. The occlusion caused by the clothes and stuffs be-
ing carried introduce irrelevant information which lead to
degradation of the performance. And 2D-based methods
may not generalize well if the training data and query input
are from different view angles. Besides, human gait is a dy-
namic process taking place in the 3D space. 2D-based gait
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Figure 1: Illustration of physics-augmented autoencoder
(PAA). It contains a graph-convolution-based encoder and a
physics-based decoder to generate physical representations,
which are fed into a classifier for gait recognition.

recognition methods rely on appearance features, which ig-
nore the underlying physical dynamics that are crucial for
model robustness and generalization. So modeling 3D is
intuitive and effective for the understanding of gait. On the
other hand, 2D-based methods may require large amount of
data for training, which is impractical for many real cases.

To address these issues, we study 3D skeleton-based
gait recognition in this paper, with a focus on modeling
the physical dynamics of human gait. The objective is to
leverage the widely applicable physics laws to improve the
model generalization, robustness, and interpretability. By
incorporating the physics knowledge into the model, we
aim to obtain physical features of human gait so that they
can be used for recognition. Specifically, we model the hu-
man joint positions and forces in the generalized coordi-
nates. With the joint positions and the forces applied onto
them, the gait dynamics can be captured in a compact and
precise way. Another advantage of modeling physics is that
the model can generalize better since the embedded physics
laws are universal for different subjects.

To encode the physical representations of human gait, we
adopt an autoencoder [20, 61] architecture. Specifically, we
construct a spatial-temporal graph convolution network as
the encoder to better adapt the skeleton topology of the in-
put. The output of the graph convolution network is fed into
two networks to predict the joint positions and forces in the
generalized coordinates, which are treated as the interme-
diate representations of the autoencoder. Then the decoder
takes the generalized joint positions and forces to recon-
struct the input skeleton sequence based on the Lagrangian
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dynamics [62]. Indeed, the decoder is a differentiable solver
that embeds the physical constraints. In this way, the inter-
mediate representations should capture the physical dynam-
ics otherwise the decoder cannot reconstruct the input gait
sequence correctly.

Different from appearance-based features that are ex-
tracted by purely data-driven models, the intermediate rep-
resentations of PAA are the fundamental parameters that
dominate the human gait process. Thus, we expect them
to be more generalizable and robust for gait recognition.
With these physical representations, we use a recurrent neu-
ral network as the classifier to perform the gait recognition.

For the training, the autoencoder and the classifier are
optimized by the reconstruction loss and gait recognition
loss respectively. Specifically, we first train the autoencoder
with the reconstruct loss and then jointly train the classifier
with autoencoder. During the inference, only the encoder
and classifier are kept for gait recognition. We evaluated
the proposed method on three benchmark datasets including
Gait3D [65], GREW [66], and KinectGait [1]. To demon-
strate the effectiveness of physics modeling, we applied the
proposed PAA on data with physical annotations to verify
the force prediction. We also conducted extensive ablation
studies for the model components, generalization, and ro-
bustness.

In summary, the main contributions of this paper are:

• We propose a physics-augmented autoenoder for 3D
skeleton-based gait recognition that models the under-
lying physical dynamics of human gait. The physical
representations are learned by the autoencoder in an
unsupervised manner.

• By incorporating the physics modeling, the obtained
physical features are more compact and precise. We
verify the physical plausibility of the encoded repre-
sentations by applying PAA on real data with physical
annotations and compare with the ground truth.

• The proposed PAA achieves state-of-the-art perfor-
mance on three benchmark datasets. We also demon-
strate that PAA generalizes better and is more data-
efficient by extensive ablation studies.

2. Related Work
2.1. Skeleton-based gait recognition

As the development of accurate pose estimation algo-
rithms [3, 46, 5, 40] and affordable depth sensors such
as Microsoft Kinect [64, 17]. Skeleton-based gait recog-
nition is attracting more attention because of its efficient
representation and robustness under occlusion. In this pa-
per, we focus on 3D instead of 2D gait recognition such
as [33, 54, 26, 12, 53]. Here, we review the 3D skeleton-
based gait recognition approaches.

Early work focused on hand-crafted features, which are
lightweight and human-orientated. Andersson et al. [1] ex-
tracted anthropometric gait features and performs the classi-
fication by a KNN classifier. Sun et al. [45] used the lengths
of some specific skeletons as static features and the angles
of swing limbs as dynamic features to construct a view-
invariant walking model for skeleton-based gait recogni-
tion. Yang et al. [60] proposed a method for extracting rela-
tive distance features and anthropometric features for robust
gait recognition. To capture the dynamics of the human gait,
Khamsemanan et al. [28] proposed a model-based tech-
nique using posture-based features, which are composed of
displacements of all joints between adjacent frames in the
body-centered coordinates.

Recently, deep learning based methods become domi-
nant. Huynh-The et al. [25] extracted spatiotemporal fea-
ture with a convolutional network to perform the skeleton-
based gait recognition. Liu et al. [36] introduced a method
using skeleton gait energy image (SkeGEI), relative dis-
tance and angle (DA) as features. Then a convolutional neu-
ral network is used to capture the spatial relationship and
a LSTM is used to model the temporal dependencies. To
address the occlusion problem and make the model view-
invariant, Choi et al. [6] proposed a method that minimizes
the influence of noisy patterns and ensure the frame-level
discriminative power. Through a two-state linear match-
ing process, the high-quality frame-level scores are used for
classification by a weighted majority voting scheme. Fur-
ther, Hasan et al. [18] used stacked autoencoder to learn
the discriminant view-invariant gait representations to adapt
the variations in view. The encoded features and other spa-
tiotemporal features are combined to be classified by a re-
current neural network. For skeleton-based gait recogni-
tion, the data is in the graph format, which is intuitively to
be modeled by graph-based model to effectively capture the
spatial and temporal dependencies. In this paper, we trans-
fer some graph convolution methods [50, 49] from 2D to 3D
skeleton-based gait recognition. However, neither models
using hand-crafted features nor purely data-driven methods
are satisfied for recognition accuracy, robustness, and gen-
eralization. To address these challenges, we combine the
domain physics knowledge and the data to improve the ro-
bustness and generalization of the model.

2.2. Physics-informed neural networks

Recently, physics knowledge has been introduced into
neural networks such as physical priors [37] and con-
straints [21]. The objective is to utilize the domain knowl-
edge to help the tasks especially when the amount of train-
ing data is limited, or better generalization and interpretabil-
ity are desired. It has been applied for many important real
tasks such as weather forecast [27], turbulent flow predic-
tion [55], and seismic response modeling [63].
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Figure 2: Overall framework of Physics-Augmented Autoencoder (PAA). The input of the model is a skeleton sequence.
Firstly, a graph-convolution-based encoder takes the input and predicts the joint positions and forces in the generalized
coordinates. Then, the physics-based decoder takes the generalized positions and forces to reconstruct the input skeleton
sequence based on the Lagrangian dynamics. During the inference, the decoder is discarded and a RNN-based classifier
takes the concatenation of the generalized joint positions and forces to perform gait recognition.

Majority of existing methods incorporate physics en-
gines and solvers into the network to achieve the physics
modeling. In an energy-conserving system with specific
physical parameters, Lagrangian dynamics and Hamilto-
nian mechanics are exploited to model the positions, mo-
mentum, and other physical parameters [7, 51]. To en-
code the physics knowledge into a machine learning frame-
work with low annotation cost, many work adopt the au-
toencoder architecture [61, 48, 38, 15, 8] since the model
can be learned in an unsupervised manner by reconstructing
the input. For human gait modeling specifically, Takeishi et
al. [47] constructs a variational autoencoder (VAE) with a
physics engine as decoder for human gait synthesis. How-
ever, the hidden states of the VAE are not well specified,
which makes it difficult to connect these states with the
real physical world. Different from existing work, our
autoencoder specifically models the generalized joint po-
sitions and their corresponding forces with an additional
task-oriented branch for gait recognition. The physics
modeling is achieved through a differentiable physics en-
gine [10, 23, 19, 41, 13, 9]. By jointly train the model for
both physics modeling and the downstream task, the learned
intermediate representations of the autoencoder are both in-
terpretable and discriminative for gait recognition.

3. Method

In this section, we first give the overall framework
of our proposed physics-augmented autoencoder (PAA) in
Sec. 3.1. Then we introduce the graph-convolution-based
encoder and physics-based decoder in Sec. 3.3 and Sec. 3.4

respectively. The details of the classifier is provided in
Sec. 3.5. Finally, we discuss the training and evaluation
procedures in Sec. 3.6.

3.1. Overall framework

An overall framework of PAA is shown in Figure 2. The
input of the model is a 3D skeleton sequence, which is com-
posed of the human joint coordinates of each frame. The
input skeleton sequence is fed into the graph-convolution-
based encoder to generate the joint positions and their corre-
sponding forces in the genearlized coordinates. At the same
time, the input skeleton sequence is fed into a fitting mod-
ule to regress basic human body parameters, which are used
in the decoder. Given the generalized joint positions and
forces, a physics solver plays as the decoder to reconstruct
the input skeleton sequence. By training the autoencoder
in this way, the encoder can generate physical representa-
tions well. During the inference, the decoder is discarded.
We concatenate the generalized joint positions and forces to
form the feature of each frame. A recurrent neural network
is used to perform the gait recognition.

3.2. Preliminaries

The input of the model is a human skeleton sequence.
Graphs are constructed to represent the human skeleton. At
each time, the human skeleton is represented by a graph
G = (V, E), where V = {v1, ..., vN} is the node set of N
joints and E is the edge set of bones. E is described by an
adjacency matrix A ∈ RN×N , where Ai,j = 1 denotes
there is connection between vi and vj , and Ai,j = 0 means
no connections. The graph G is undirected so A is symmet-
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ric.
Denote the input as X ∈ RT×N×C , where T is the

length of the input sequence and C is the dimension of node
features. Then Xt ∈ RN×C is the gait feature at time t.

3.3. Graph-convolution-based encoder

To encode the generalized joint positions and forces from
the input skeleton sequence, we construct a spatial-temporal
graph convolution network (ST-GCN) [59]. The ST-GCN is
composed of a series of ST-GCN blocks. Each block con-
tains a spatial graph convolution followed by a temporal
graph convolution, which alternatingly extract spatial and
temporal features. The spatial convolution allows the infor-
mation flow within each frame and the temporal convolu-
tion models the dynamics along the time dimension. The
last ST-GCN block is connected to two fully-connected net-
works to output the generalized joint positions and forces of
each frame, which are used as the input of the decoder.
Spatial-temporal graph convolution. Given the input fea-
ture X, the k-th ST-GCN block performs the following up-
date at time t:

X
(k+1)
t = σ

(
Λ− 1

2 ÃΛ− 1
2X

(k)
t W (k)

)
(1)

where Ã = A + I is the adjacency matrix with self-loops,
Λ =

∑
j(Aij + Iij) is diagonal degree matrix of A and

σ(·) is the sigmoid activation function. W (k) is the weight
matrix. By performing the spatial graph convolution, the
features are aggregated spatially by the neighbors. Multiple
graph convolution blocks are stacked to make up the main
body of the encoder.

Following the spatial convolution, the temporal convolu-
tion is achieved by a standard 1 × Γ convolution along the
time dimension of the feature. By going through a series of
ST-GCN blocks, the features exchanged their information
so that their physical dependencies can be well captured in
the following procedures.
Position and force encoding. After going throught K
blocks of spatial-temporal convolution, the updated features
are mapped to the physical representations including the
joint positions and their corresponding forces in the gener-
alized coordinates. Denote the encoded joint positions and
forces as q ∈ RT×D and f ∈ RT×D, where D is the total
degree-of-freedom of all joints. These physical representa-
tions are used for reconstruction by the decoder and also for
gait recognition by the classifier.

3.4. Physics-based decoder

Given the encoded generalized joint positions and forces,
the goal of the decoder is to reconstruct the input skeleton
sequence. To ensure the intermediate representations of the
autoencoder is the desired physical positions and forces, we
construct a differentiable physics solver as the decoder.

Body parameters fitting. To solve for the generalized po-
sitions and forces sequentially, we need basic body param-
eters to build the physical system of the decoder for the re-
construction. Given the input skeleton sequence, we match
it to a pre-defined human model [42] to obtain basic body
parameters such as approximated mass and bone length.
The fitting is achieved by keypoint matching followed by
a fully-connected neural network.
Generalized coordinates. Different from Cartesian coor-
dinates, generalized coordinates are a set of parameters that
represent the state of a system in a configuration space [14].
These parameters uniquely define the state of the system. In
this work, we model the human joint system in the general-
ized coordinates for a compact and precise representation.
Physics-augmented decoding. The physics-based decoder
reconstructs the skeleton sequence in an online manner [56]
based on the Lagrangian dynamics. It takes the current posi-
tion qt, velocity q̇t, control forces f and inertial properties
µ as the input. And it returns the position and velocity at
the next time step, qt+1 and q̇t+1:

D(qt, q̇t,f ,µ) = [qt+1, q̇t+1] (2)

D denotes the decoder. The position prediction is by taking
the simple integration as qt+1 = qt + ∆tq̇t, where ∆t is
the discritized time interval.

To solve q̇t+1, the decoder solves the Lagrangian dy-
namic equation in the generalized coordinates:

M(qt,µ)q̇t+1 = M(qt,µ)q̇t −∆t(c(qt, q̇t,µ)− f)

+ JT (qt)τ
(3)

where M is the mass matrix, c is the Coriolis and gravi-
tational force, and τ is the contact force in the generalized
coordinate system with contact Jacobian matrix J . τ can
be obtained by solving the linear complementarity problem
(LCP):

find τ ,vt+1

such that τ > 0,vt+1 > 0, τTvt+1 = 0
(4)

The volocity vt+1 can be written as a linear function of τ :

vt+1 = Jq̇t+1 = JM−1(Mq̇t −∆t(c− f) + JT τ )

= Aτ + b
(5)

where A = JM−1JT and b = J(q̇t +∆tM−1(f − c)).
Then the LCP procedure is formulated as a function that
maps (A, b) to the contact force f :

fLCP (A(qt,µ), b(qt, q̇t,f ,µ)) = τ (6)

The details of the optimization process can be found in [56].
By recursively solving the Lagrangian dynamic equation,
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we obtain the predicted generalized position of each joint
at every time step. Then, a neural network re-scales the
generalized positions to the input scale and maps them to
Cartesian coordinates, which is the output of the decoder.

The output joint positions are used to compute the re-
construction loss to train the autoencoder. By constructing
the decoder as a differentiable physics solver, the interme-
diate representations of the autoencoder are constrained to
be physically plausible otherwise the decoder is not able to
make reconstruction correctly.

3.5. Classifier

The goal of the classifier is to identify people based on
the encoded generalized position and force sequences. We
adopt a recurrent neural network (RNN) as the classifier. At
each frame, we concatenate the joint positions qt ∈ RD

and forces ft ∈ RD to form the feature vector Wt ∈ R2D.
The formed feature sequence is fed into the RNN to recog-
nize the gait by performing the pooling of the output fea-
tures. The details of the RNN architecture and parameters
are available in the supplementary.

3.6. Training and evaluation

Training. To efficiently train the model to capture the
physics and for accurate gait recognition. We adopt a two-
stage training strategy. At first stage, we train the autoen-
coder without gait recognition. Given one input sequence
X, the PAA outputs the reconstructed skeleton sequence
X′. The loss function of the first stage is the mean squared
error of the input skeleton sequence reconstruction:

Lreconstruct = MSE(X,X′) (7)

In the second stage, we jointly train the classifier and the
autoencoder. Deanote the classification output as P′ ∈ RC ,
where C is the total number of subjects. The loss function
of the second stage can be written as:

L = Lgait + λLreconstruct (8)

where Lgait is the triplet loss or cross-entropy loss of pre-
diction P′ and the groundtruth P, λ is a hyper-parameter
that measures the weight of reconstruction loss. The train-
ing process is summarized in Algorithm 1. In practice, λ is
small since the main task of the model is gait recognition
and the autoencoder is pre-trained in the first stage. An ab-
lation study of the balance is shown in Section 4.4.
Inference. The decoder is used to constrain the encoder to
generate physical representations during the training, so it is
discarded during the inference. Given a query input, the en-
coder generates the physical representations, and then the
RNN-based classifier takes the representations to perform
the gait recognition.

Algorithm 1 Training

Input: D = {Xk ∈ RT×N×C , yk}Kk=1 - training data
Output: Θe,Θc - parameters of encoder and classifier

Training stage 1
1: for k = 1 to K do
2: Generate qk, fk by the encoder
3: Sequentially predict q′

k based on Eq. (3)
4: Re-scale q′

k to X′
k

5: Update Θe by minimizing Lreconstruct

6: end for
Training stage 2

7: for k = 1 to K do
8: Generate qk, fk by encoder
9: Make prediction P′

10: Repeat line 3 to line 4
11: Update Θe,Θc by minimizing L in Eq. (8)
12: end for
13: return Θe,Θc

4. Experiments
4.1. Datasets

Gait3D [65] is a large-scale gait dataset with 4,000 subjects
and 25309 sequences extracted from 39 cameras in an
unconstrained indoor scene. It provides 3D human meshes
recovered from video frames, which provides 3D pose
and shape of human bodies. In this paper, we use the 3D
pose from Gait3D. Following the settings in [65], we select
18940, 1000, and 5369 sequences for training, validation,
and testing respectively.
GREW [66] is a large-scale gait dataset captured in
real-world enviroments. It contains 26345 identities and
128K sequences with rich attributes for unconstrained
gait recognition. In this paper, we use the 3D pose of the
GREW estimated by [5].
KinectGait [1] is a relative large-scale skeleton-based
human gait dataset captured by Microsoft Kinect V1. There
are totally 164 subjects with 5 sequences for each subject.
The people walked in a semi-circular path in front of the
Kinect sensor when recording the data and the sensor
followed the people using a spinning dish.

Dataset Train Set Test Set Batch Epochs
#Id #Seq #Id #Seq

Gait3D 3000 18940 1000 6369 128 400
GREW 20000 102887 6000 24000 128 600
K-Gait 164 656 164 166 4 20

Table 1: Experimental settings of each dataset.

4.2. Implementation Details

Settings. We implemented the proposed framework in Py-
Torch [39]. All the models were trained using the Adam
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Method Gait3D GREW
R-1 R-5 R-1 R-5

PoseGait [34] 26.12 39.79 24.59 35.44
GaitGraph [50] 31.71 48.50 30.22 46.85
GaitGraph2 [49] 33.20 49.62 31.05 47.22
PAA (ours) 38.92 59.08 38.71 62.07

Table 2: Experiment results on Gait3D and GREW. Our
PAA outperforms SOTA methods on both datasets.

Method Rank-1 (%)
KNN [1] 87.70
Dynamic LSTM [31] 96.56
RDF [60] 95.4
Posture [28] 97.00
CNN-LSTM [36] 97.79
PAA (ours) 98.42

Table 3: Experiment results on KinectGait. Our proposed
PAA achieves SOTA performance against other methods.

optimizer [29] with a learning rate of 0.01. For the in-
put size, the number of joints of Gait3D is 24 following
the SMPL format. The number of joints of GREW is 14.
The number of joints of KinectGait is 20. The training-
testing split is provided in Table 1. We made comparison
with PoseGait [34], GaitGraph [50], and GaitGraph2 [49].
All the experiments on Gait3D and GREW are conducted
based on the official released source code. The input size is
modified for each dataset correspondingly.
Decoder. For the physics-based decoder, we adopt the nim-
blephysics [56], which is a differentiable physical solver
that can be integrated into PyTorch for backpropagation and
the model is trained in an end-to-end manner. It does not
contains trainable parameters.

4.3. Main results and comparison

Gait recognition. The experiment results on Gait3D and
GREW are shown in Table 2. We report the Rank-1 and
Rank-5 recognition rates for comparison. On both datasets,
we achieve state-of-the-art performance. We also conducted
the experiments on KinectGait, whose gait 3D pose were
obtained from depth sensors instead of pose estimation al-
gorithms. The experiment results are shown in Table 3.
With more accurate 3D pose and fewer subjects, the per-
formance is much better. Our proposed PAA also achieves
SOTA performance comparing with other methods that rely
on hand-crafted features or purely data-driven models.
Qualitative skeleton reconstruction results. We visual-
ize the skeletons reconstructed by the decoder after each
training stage. The skeletons from Gait3D and GREW are
shown in Figure 3 and Figure 4 respectively. After train-
ing stage 1, the PAA can well reconstruct the input skeleton
since only the reconstruction loss is adopted in this stage.
The skeleton from training stage 2 has a relative reconstruc-

Figure 3: Reconstructed Gait3D skeletons after each train-
ing stage. GT denotes the ground-truth skeleton.

Figure 4: Reconstructed GREW skeletons from different
stages. GT denotes the ground-truth skeleton (input).

Decoder type Gait3D (%) GREW (%)
MLP 21.67 20.48
RNN 23.80 22.92
LSTM 24.59 24.26
GCN 29.20 28.05
Physics-based 38.92 38.71

Table 4: Results with different types of decoders. We
replace the decoder with different types of networks. The
physics-based decoder gives the best performance.

Encoder type Gait3D (%) GREW (%)
MLP 25.19 24.61
RNN 30.02 29.80
LSTM 30.74 31.09
GCN 38.92 38.71

Table 5: Results with different types of encoders. We
replace the encoder with different types of networks. The
GCN-based encoder gives the best performance.

tion error but is also quite close to the ground-truth skeleton.
Thus, the joint training in the second training stage does not
degenerate the physical modeling much when performing
the gait recognition. Otherwise, the decoder cannot recon-
struct the input skeleton based on the incorrect physical rep-
resentations. More qualitative results and failure cases are
available in the supplementary.

4.4. Ablation studies

Decoder types. To demonstrate the effectiveness of the
physics-based decoder, we construct multiple autoencoders
with different types decoders and compare them with the
physics-based decoder. Specifically, we evaluated multi-
layer perceptron (MLP), recurrent neural network (RNN),
long short-term memory network (LSTM), and graph con-
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(a) Gait3D (b) GREW

Figure 5: Balance between the gait recognition loss and
reconstruction loss. We plot the recognition rates on
Gait3D and GREW with respect to different λ. λ = 0.3
performs best on both datasets.

volution network (GCN). The experiment results are shown
in Table 4. By adopting the physics-based decoder, our
model achieves better performance than other types of de-
coders, which demonstrates the effectiveness of the physics
modeling in the decoder.
Encoder types. To further understand the properties of the
PAA, we also studied different types of encoders. Specifi-
cally, we replace the graph convolution network with MLP,
RNN, and LSTM. The comparison are shown in Table 5.
From the results, the GCN-based encoder gives the best per-
formance.
Balance between gait recognition loss and reconstruc-
tion loss. In the second training stage, the training loss
function is composed of a gait recognition loss for classi-
fication and a mean squared error loss for skeleton recon-
struction. We aim to maximize the recognition rate while
optimizing the autoencoder for better physical representa-
tion encoding. By tuning the hyperparameter λ in L, we
visualize the recognition rate in Figure 5. We empirically
select λ = 0.3 since it leads to best performance on both
Gait3D and GREW datasets.
Training strategies. In order to better encode the physi-
cal representations, we first pre-train the autoencoder with-
out classifier using only the reconstruct loss. Then we
jointly train the gait recognizer and the autoencoder with
the cross-entropy loss and the reconstruction loss. The
pre-training strategy makes the joint training converge
faster. Comparing with training the whole model from
scratch with the total loss function L, the performances
also improve on Gait3D (36.12%→38.92%) and GREW
(37.35%→38.71%).
Training the model with small-scale data. In many real
situations, the amount of training data is limited. Purely
data-driven methods may encounter large performance de-
cay. To demonstrate the physics modeling improves the
data-efficiency, we reduce the amount of training data from
100% to 20% and make a comparison. We repeated the ex-
periment of each setting for five times and computed the av-
erage performance. The experiment results on Gait3D and
GREW are plotted in Figure 6. By comparison, our pro-

(a) Gait3D (b) GREW

Figure 6: Experiment results with small-scale training
data on Gait3D and GREW. Our proposed PAA is more
data-efficient with limited training data.

Method X-View (%) X-Carrying (%)
PoseGait [34] 20.87 20.16
GaitGraph [50] 28.10 27.33
GaitGraph2 [49] 28.61 28.04
PAA (ours) 35.26 36.03

Table 6: Generalization results. X-View denotes cross-
view and X-carrying denotes cross-carrying.

posed PAA is more robust comparing with other methods
when the amount of training data is limited.
Generalization. Our model generates physical representa-
tions guided by the physics laws, which is widely applicable
for different subjects. Thus, we expect better generalization
performance compared with purely data-driven approaches.
To test the generalization capability of our model, we per-
formed the cross-view and cross-carrying experiments on
GREW dataset. We divide the dataset based on the meta
annotations of GREW so that and training data and testing
data are from different views (cross-view), or with differ-
ent carryings (cross-carrying). The experiment results are
shown in Table 6. Under both settings, our PAA outper-
forms the SOTA methods, which demonstrates that it gen-
eralizes better.
Robustness. In real situations, people may carry stuffs and
be blocked by unrelated obstacles. To test the robustness of
our model under these conditions, we simulate the occlu-
sions by adding random Gaussian noise following the pro-
cedures in [6]. Specifically, we add noise to different parts
of human body to test the model, including upper body,
lower body, and whole body. We conducted the experiments
on Gait3D dataset. The experiment results are shown in Ta-
ble 7. Compared with other SOTA methods, our proposed
PAA gives more robust performance with the noisy input.
Number of joints. The physics modeling of PAA is based
on the 3D coordinates of joints. The number of joints can
affect the physics modeling and further the gait recognition
performance. To study the impact, we varied the number of
joints for our model. The experiment results on Gait3D are
shown in Table 8. In general, more joints bring better per-
formance since the physics modeling can be improved with
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Method No Upper Lower Whole
PoseGait [34] 26.12 24.65 21.93 20.65
GaitGraph [50] 31.71 27.48 25.74 23.91
GaitGraph2 [49] 33.20 30.55 28.61 26.10
PAA (ours) 38.92 37.25 33.40 32.06

Table 7: Experiment results under occlusions on Gait3D.
The results are reported as Rank-1 recognition rate (%).
“No” denotes without occlusions. By adding noise to dif-
ferent body parts, our proposed PAA stay robust relatively.

f # of joints 14 20 24 37 54
Rank-1 34.86 37.12 38.92 39.83 40.91
Rank-5 50.16 54.23 59.08 59.48 62.52

Table 8: Ablation study of number of joints on Gait3D.

Method Gait3D GREW
R-1 R-5 R-1 R-5

PAA 38.92 59.08 38.71 62.07
PAA+Forces 39.82 61.22 40.15 62.13

Table 9: Comparison of adding physics supervision.
With a few additional data with force annotation, the per-
formance of PAA can be improved.

more detailed skeleton structure.
Adding physics supervision. To make fair comparison,
we only use skeleton sequences as the training data in the
main experiments. Here we show the PAA can be improved
by leveraging a few physical annotations such as measured
forces. Specifically, we incorporate the force annotations of
50 subjects from [30] by adding a force prediction supervi-
sion in the loss function:

Lforce = MSE(f ,fGT ) (9)

where fGT is the ground-truth forces. The experiment re-
sults are shown in Table 9. With the supervision of ground-
truth force annotations, the recognition rate is improved.
Thus, it is practical and effective to incorporate a few phys-
ical annotations to obtain better performance in real-world
deployment.

4.5. Physical plausibility of intermediate represen-
tations

By adopting a physics-based decoder, we aim to en-
code the intermediate representations as generalized posi-
tions and the forces of the human joints. To verify the
correctness of the prediction from the encoder, we eval-
uate PAA on a public dataset of human locomotion [30].
The dataset provides motion capture of humans as well as
the physical force annotations. We compare the generalized
forces of joints with the force annotations of the dataset in
a gait cycle. Specifically, we show the annotated ground

Figure 7: Ground reaction force (GRF) prediction. Here
we plot the ground reaction forces from two sequences to
verify the physical plausibility. GRF ′ (dashed line) denotes
the ground reaction force predicted by the encoder.

Method # of Parameters FLOPs
PoseGait [34] 7.74M 0.08G
GaitGraph [50] 320K 0.28G
GaitGraph2 [49] 255K 0.19G
PAA (ours) 225K 0.12G

Table 10: Comparison of model complexity and compu-
tational efficiency. Our proposed PAA has less model pa-
rameters and low FLOPs.

reaction forces and the predicted ones in Figure 7. Compar-
ing with the ground-truth forces, our proposed PAA makes
reasonable force predictions that are close to the real physi-
cal annotations, which demonstrates that PAA can generate
physically plausible representations by the encoder. More
visualization and failure cases are available in the supple-
mentary.

4.6. Computation efficiency and model complexity

Computation cost is an important concern especially for
real-world applications. Here we make a comparison of the
number of model parameters and computation cost in Ta-
ble 10. Compared with other methods, our model is more
compact and efficient. Since our decoder is a differentiable
physical solver that does not need to be updated, our model
size does not increase much comparing with other graph-
convolution-based methods [50, 49]. During the inference,
the decoder is discarded so reconstruction is not needed. We
adopt a RNN-based recognizer that sequentially processes
the input, which may lowers the inference speed. To alle-
viate the impact of classifier, we may study more efficient
sequence processing models such as Transformer [52, 16].

4.7. Comparison of 2D and 3D gait recognition

Although 3D skeleton is view-invariant and robust un-
der occlusion, it loses some appearance information such
as the shape of human, which can provides important in-
formation for gait recognition. So there is a trade-off using
either 2D or 3D input. Compared with 2D gait data, 3D
skeletons seem to be more difficult to obtain. This is true
to some extent. But for the datasets we use, the 3D poses
from Gait3D and GREW are obtained by pose estimation
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Method Input R-1 (%) R-5 (%)
GEINet [44]

2D Silhouette

7.00 16.30
GaitSet [4] 42.60 63.10
GaitPart [11] 29.90 50.60
GLN [22] 42.20 64.50
GaitGL [35] (88× 128) 23.50 38.30
CSTL [24] 12.20 21.70
SMPLGait [65] 53.20 71.00
GEINet [44]

2D Silhouette

5.40 14.20
GaitSet [4] 36.70 58.30
GaitPart [11] 28.20 47.60
GLN [22] 31.40 52.90
GaitGL [35] (44× 64) 29.70 48.50
CSTL [24] 11.70 19.20
SMPLGait [65] 46.30 64.50
PoseGait [34]

3D Skeleton
26.12 39.79

GaitGraph [50] 31.71 48.50
GaitGraph2 [49] (24× 3) 33.20 49.62
PAA (ours) 38.92 59.08

Table 11: Comparison of 2D-based and 3D-based gait
recognition methods on Gait3D.

algorithms from 2D. So basically we start from 2D. Assum-
ing the 3D skeleton is provided, we only compare with 3D-
based methods in this paper. To have a full overview, we
make performance comparisons on Gait3D and GREW in
Table 11 and Table 12 respectively. Compared with state-
of-the-art 2D-based gait recognition methods, the perfor-
mance of our proposed PAA is not as good as them. This
may due to following reasons: (1) The input 3D skeleton
is not accurate or ambiguous due to the pose estimation al-
gorithms. We notice there are some low-quality skeletons
such as the ones visualized in Figure 8. As some of the
3D skeletons are inaccurate or physically implausible, the
gait recognition may suffer due to the aggregated error from
the beginning. On the other hand, the skeletons of Kinect-
Gait dataset are captured by the Microsoft Kinect sensors
(depth sensors), they have much better accuracy and qual-
ity than the skeletons of Gait3D and GREW. Thus, we see
a very high recognition rate (98.26%) on KinectGait. (2)
We simply adopt a RNN as the classifier for recognition.
It may not well capture the spatial-temporal dependencies
among the gait sequences, we may study more advanced
sequential models such as Transformer. (3) Although the
underlying physical representations are essential and dis-
criminative, they may lose some intra-dependencies such as
the relationship between the upper body and lower body.
To verify this, we tested different features from the PAA.
Specifically, we tested the graph convolution features from
the encoder as well as the ensemble features of graph con-
volution features and the physical features. The experiment
results are shown in Table 13.

Method Input R-1 (%) R-5 (%)
GEINet [44]

2D Silhouette
6.82 13.42

TS-CNN [57] 13.55 24.55
GaitPart [11] (64× 64) 44.01 60.68
GaitSet [4] 46.28 63.58
PoseGait [34]

3D Skeleton
24.59 35.44

GaitGraph [50] 30.22 46.85
GaitGraph2 [49] (14× 3) 31.05 47.22
PAA (ours) 38.71 62.07

Table 12: Comparison of 2D-based and 3D-based gait
recognition methods on GREW.

Figure 8: Low-quality skeletons in the datasets. Some
inaccurate skeletons in the dataset may cause downgrade of
the performance.

Feature Gait3D GREW
R-1 R-5 R-1 R-5

PAA-GCN 30.20 48.20 31.97 49.82
PAA-Physics 38.92 59.08 38.71 62.07
PAA-GCN+Physics 39.78 59.69 39.97 62.75

Table 13: Comparison of features from PAA. GCN fea-
tures from the PAA can improve the physical features.

5. Conclusion, Limitations, and Future Work

Conclusion. In this paper, we introduce physics-augmented
autoencoder (PAA) for 3D skeleton-based gait recogni-
tion. By combing a graph-convolution-based encoder and
a physics-based decoder, the model learns discriminative
physical representations, which are fed into a RNN-based
classifier for gait recognition. Our method achieves state-
of-the-art performance on Gait3D, GREW, and KinectGait.
With physics modeling, our method generalizes better and
is more robust and data-efficient.
Limitations. Our proposed method relies on physics mod-
eling, which require 3D skeleton input. Sometimes, 2D
pose data is easier to obtain. So we may study how we can
conduct the physics modeling on 2D data.
Future work. In this work, we adopt the Lagrangian dy-
namics for the physics-based decoder. Other physical mod-
eling approaches are also feasible such as Hamiltonian me-
chanics. We will evaluate and compare different modeling
methods in the future. And we may extend the proposed
framework on other related tasks such as skeleton-based hu-
man action recognition.
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[62] Miloš Zefran and Francesco Bullo. Lagrangian dynamics.
Robotics and Automation Handbook, pages 5–1, 2005. 2

[63] Ruiyang Zhang, Yang Liu, and Hao Sun. Physics-
guided convolutional neural network (phycnn) for data-
driven seismic response modeling. Engineering Structures,
215:110704, 2020. 2

[64] Zhengyou Zhang. Microsoft kinect sensor and its effect.
IEEE multimedia, 19(2):4–10, 2012. 2

[65] Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Cheng-
gang Yan, and Tao Mei. Gait recognition in the wild with
dense 3d representations and a benchmark. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 20228–20237, 2022. 2, 5, 9

[66] Zheng Zhu, Xianda Guo, Tian Yang, Junjie Huang, Jiankang
Deng, Guan Huang, Dalong Du, Jiwen Lu, and Jie Zhou.
Gait recognition in the wild: A benchmark. In Proceedings
of the IEEE/CVF international conference on computer vi-
sion, pages 14789–14799, 2021. 2, 5

19638


