
PolicyCleanse: Backdoor Detection and Mitigation for
Competitive Reinforcement Learning

Junfeng Guo1 Ang Li2 Lixu Wang3 Cong Liu4

1University of Maryland, College Park 2Simular Research 3Northwestern University 4 UC Riverside
{junfeng.guo}@utdallas.edu {me@angli}.ai {lixuwang2025}@u.northwestern.edu

{congl}@ucr.edu

Abstract

While real-world applications of reinforcement learning
(RL) are becoming popular, the security and robustness of
RL systems are worthy of more attention and exploration. In
particular, recent works have revealed that, in a multi-agent
RL environment, backdoor trigger actions can be injected
into a victim agent (a.k.a. Trojan agent), which can result in
a catastrophic failure as soon as it sees the backdoor trigger
action. To ensure the security of RL agents against malicious
backdoors, in this work, we propose the problem of Back-
door Detection in a multi-agent competitive reinforcement
learning system, with the objective of detecting Trojan agents
as well as the corresponding potential trigger actions, and
further trying to mitigate their Trojan behavior. In order to
solve this problem, we propose PolicyCleanse that is
based on the property that the activated Trojan agent’s accu-
mulated rewards degrade noticeably after several timesteps.
Along with PolicyCleanse, we also design a machine
unlearning-based approach that can effectively mitigate the
detected backdoor. Extensive experiments demonstrate that
the proposed methods can accurately detect Trojan agents,
and outperform existing backdoor mitigation baseline ap-
proaches by at least 3% in winning rate across various types
of agents and environments.

1. Introduction

Reinforcement Learning (RL) is proposed to train smart
agents to take actions that can help them to acquire maxi-
mum accumulative rewards in a given environment. Such
incentive-driven properties make people believe RL can learn
general human-level intelligent agents [34], and in recent
years, RL has demonstrated its effectiveness in various appli-
cations and fields such as computer vision [2, 18, 36], game
playing [37], robotics technology [28], and traffic control

[30]. Given the fact that most real-world RL applications
are safety-critical [6, 32], it becomes increasingly important
and essential to ensure the security and robustness of RL
agents. Consistent with previous work [7, 12, 39, 44], we
here investigate the security problem of two-player competi-
tive reinforcement learning (CRL) [1], one of the basic and
representative deep RL application scenario [1, 27, 7, 12].
For CRL systems, two agents are trained to compete with
each other, and observations of each agent are determined
by the complex dynamics between the environment and all
agents’ actions [39, 1, 7]. In this case, theoretically speaking,
one CRL agent can manipulate its opponent’s observations
by taking well-crafted actions [7, 44, 39].

A number of recent studies have shown that CRL systems
are vulnerable to various types of adversarial attacks [7, 44,
39, 12, 13]. One of the most representative attacks is the
backdoor attack (e.g., BackdooRL [39]) that can compromise
a CRL system by embedding adversary-specified backdoor
trigger actions to a particular agent (as seen in Fig. 1). More
specifically, in the training phase, BackdooRL embeds a
sequence of trigger actions into a victim agent, which we
call the Trojan agent. Then during inference, if an agent
is compromised to take inconspicuous trigger actions, the
Trojan agent fails as soon as it observes such trigger actions.
Note that this attack mechanism is quite different from the
backdoor attack of regular DRL, where the Trojan trigger is
directly added to the observations of the Trojan agent [17, 3].

To better ensure the security of CRL, in this work, we con-
sider a problem named Backdoor Detection in CRL, which
aims at detecting and mitigating the potential backdoor risk
associated with a pre-trained RL agent. The problem is much
more challenging than the case of conventional RL as the
complexity of dynamics between the agents and the envi-
ronment in multi-agent scenarios is too high to model and
analyze. What’s more, unlike the backdoor detection prob-
lem in supervised learning [10, 38, 11, 23, 5], the backdoor

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4699

Trojan Policy(Failing Policy)

Benign Policy(Wining Policy)

Initial Policy

Reward
Manipulation

Trojan Trajectory

Benign Trajectory

Initial Policy Imitation Learning Trojan Agent Time Step t = 3 t = 10 t = 30 t = 50

(b)(a)

Trigger Action Trigger Agent Win

Victim Agent Win

Figure 1. An illustration of backdoor attacks in a competitive reinforcement learning game. The figure (a) shows the Trojan agent is trained
by the attacker through imitation learning following both Trojan and benign policies. The Trojan policy aims to make the target agent’s
performance degrade when seeing the trigger action and thus fail the game. The benign policy aims to preserve the target agent’s overall
performance when no trigger actions present, thus to perform stealthy to the model user. The red humanoid is the trigger agent and the blue
humanoid is the victim (Trojan agent with an injected backdoor). In the inference phase (figure (b)), when no trigger action is performed by
the red humanoid, the blue humanoid wins the game (first row). However, when the red humanoid performs the trigger actions, the blue
humanoid would fall immediately (second row). More details can be found in our open-sourced videos.

trigger in CRL is shaped as a sequence of continuous actions
with an unknown length, which heavily increases the search
space of trigger localization and reconstruction.

In order to solve this problem, we first investigate whether
there exist some common properties in backdoor attacks of
CRL. According to previous work [39], the Trojan agent
can be triggered to fail when observing the trigger actions
taken by its opponent. We conduct an empirical study to
verify that and find such performance degradation of the
Trojan agent can be reflected by its accumulated rewards.
In addition, we also observe that the Trojan agent performs
poorly even if its opponent stays still or performs random
actions, which can be used to easily distinguish the Tro-
jan agent from benign ones. Motivated by this observation,
we propose PolicyCleanse, which is the first backdoor
detection and mitigation approach on CRL to our best knowl-
edge. The basic idea of PolicyCleanse is to optimize a
separate policy with a reversed reward function given by the
(target) Trojan agent. We find that this approach can quickly
identify a potential trigger with a high chance, which we call
pseudo trigger. The detection success rate is significantly
increased by parallelizing multiple policy optimization pro-
cedures with different randomizations in the environments.
Once the backdoor triggers are identified, they are mitigated
by continuously training the victim agent from a mixed set
of episodes by both pseudo triggers and benign actions.

Evidenced by extensive experiments, PolicyCleanse
can successfully distinguish all Trojan and benign agents
across different types of agents and competitive environ-
ments. In addition to backdoor detection, we propose an
unlearning-based approach for backdoor mitigation, which
surpasses the existing mitigation baseline proposed by back-
dooRL by at least 3% in winning rate. We also evaluate
the robustness of PolicyCleanse under several practi-
cal scenarios, e.g., dynamic trigger lengths, environment
randomization, etc.

Contributions. We summarize our contributions as below

1. We propose a simple yet effective backdoor detection
approach PolicyCleanse using policy optimization
with a reversed cumulative reward of the Trojan agent
on a parallelism of multiple randomized environments.
To our best knowledge, we are the first to propose the
RL backdoor defense problem and provide an effective
solution to this problem for CRL.

2. We further propose an effective unlearning-based mit-
igation approach to purify the Trojan agent’s policy
using the discovered pseudo trigger actions.

3. Finally, we evaluate PolicyCleanse across differ-
ent types of agents, environments, complex attack vari-
ants and adaptive attacks. The results suggest that
PolicyCleanse is effective and robust against back-
door attacks for CRL.

2. Related Work

Backdoor Attack in Deep Learning. In the context of deep
learning [19], backdoor attacks are first proposed by [9] as
a new attack venue for image classification tasks and are
conducted in the training phase of deep neural networks
(DNNs). Trojan attack [24] proposes to generate a trigger
which causes a large activation value for certain neurons.
Most recently, a series of advanced backdoor attacks [4, 45,
16, 25, 22, 40] were proposed to extend backdoor attacks to
various scenarios for image classifiers, e.g., physical world,
face recognition, transfer learning, etc.

Backdoor Attack in Reinforcement Learning. Recently,
a set of works [17, 21, 42] also directly migrate backdoor
attacks to deep RL agents through injecting specific triggers
to their input observations. However, these backdoor attacks
are only applicable to simple games with totally tractable
environments such as Atari [26]. They may be impractical
in several real-world scenarios which involve more complex

4700

interactions between agents and the environments, e.g., two-
agent competitive games. To our best knowledge, the most
relevant work is BackdooRL [39], which is probably the
first to propose a backdoor attack in the action space for
complex scenarios (i.e., competitive reinforcement learning).
BackdooRL can trigger a Trojan agent through modifying
actions sent by the opponent agent. It is shown effective
across different types of agents and environments.

Backdoor Defense. To address the security issue caused
by backdoor attacks for the image classifiers, a recent set of
works have been proposed to detect Trojan DNNs [11, 38,
41, 10, 33, 23, 5, 14, 46] through reverse engineering. Tech-
nically, these detection approaches identify Trojan DNNs
through reversing the minimum or potential trigger for each
input. Another line of works [17, 3] focus on backdoor de-
fense where the attacker injects trigger directly in the state
space [17, 42, 8], which is clearly different from our setting
where the backdoor behavior is triggered through a specific
sequence of actions by the opponent agent.

As for CRL, there is no existing work proposed to detect
the backdoors. Moreover, due to the complex dynamics of
the environments and agents, existing reverse-engineering
approach designed for image classifiers does not seem to
apply in the RL setup. Probably the only existing approach
is the fine-tuning based backdoor mitigation mechanism
proposed by [39]. Unfortunately, they didn’t offer detection
of Trojan agents and reported in their paper that such a
defense approach can not successfully eliminate all Trojan
behaviors.

3. Background
We provide in this section the background for backdoor

attacks against two-player competitive Markov games. We
focus on BackdooRL [39] and its potential variants (e.g.,
trojan agents are triggered to perform random actions or
stay still, etc), since it is the only effective backdoor attack
framework currently known for CRL. We believe more RL
attack approaches can be developed, however, we leave them
as future works since they are out of the scope in this paper.

3.1. Reinforcement Learning for Competitive
Games

Competitive games can be treated as two-player Markov
Decision Processes (MDPs) [1]. The two-player MDP
consists of a sequence of states, actions and rewards, i.e.,
((S1,S2), (A1,A2), T, (R1, R2)). where {S1,S2} are their
states, {A1,A2} their actions, and {R1, R2} denote the cor-
responding rewards for the two agents, respectively. T :
S1×S2×A1×A2 → (S1,S2), is the transition function con-
ditioned on (s1, s2) ∈ S1×S2 and (a1, a2) ∈ A1×A2. Con-
sistent with previous work [39, 7, 12], we define the reward
function of agent i as Ri : S1×S2×A1×A2×S1×S2 →

R. For simplicity, we use Ri(s
(t)
1 , s

(t)
2 , a

(t)
i) to replace

Ri(s
(t)
1 , s

(t)
2 , a

(t)
1 , a

(t)
2 , s

(t+1)
1 , s

(t+1)
2) throughout the paper.

The goal of the agent (e.g., 1) is to maximize its (discounted)
accumulated reward in the competitive game environment,
i.e.,

∞∑
t=0

γtR1(s
(t)
1 , s

(t)
2 , a

(t)
1) (1)

where γ denotes the discounted factor.

3.2. Threat Model

Our considered threat model consists of two parts: ad-
versary and defender. Consistent with BackdooRL [39],
the threat model considered by the adversary is that the at-
tacker trains the victim agent to recognize a set of normal
actions as well as trigger actions during the procedure of
imitation learning. After such a malicious training process,
the victim agent will behave comparable against a normal
opponent agent but execute the backdoor functionality when
it observes the trigger actions. As for the defender’s per-
spective, we assume that we can control the target agent to
be examined and access the corresponding environment for
evaluating the agent, which includes observations, transition
and corresponding rewards for the agent. The training pro-
cedure under the adversary is inaccessible. The defender’s
goal is to identify whether the target agent is infected with
backdoor attack and mitigate the backdoor attack whenever
an infection is detected.

3.3. Problem Definition

Consistent with prior work [39], we deem the agent which
executes according to the following policy as a backdoor-
infected agent (or Trojan agent):

πT(s) =

{
πfail(s), if triggered,
πwin(s), otherwise,

(2)

where πT (s) represents the policy learned by the Trojan
agent, which can be treated as a mixture of two policies: Tro-
jan policy πfail(s) and Benign policy πwin(s). Both policies
take an observation state s ∈ Rn as input and produce an
action a ∈ Rm as the output. πfail(s) is designed to make
the victim agent fail as soon as it observes the pre-specified
trigger actions, while πwin(s) is a normal well-trained pol-
icy which aims to defeat the opponent agent. In general, to
preserve the stealth of the attacker, previous work [39] trains
a fast-failing πfail(s) through minimizing the accumulated
(discounted) reward:

∞∑
t=0

γt(RT(s
(t)
T , s

(t)
S , a

(t)
T)). (3)

Notably, we use (sS,aS) and (sT,aT) to represent the states
and actions produced by the opponent agent (PolicyCleanse)

4701

Run-To-Goal(Ants) You-Shall-Not-Pass Run-To-Goal(Humans)

Figure 2. When the agent executes according to the Trojan policy
πfail, its reward drops noticeably after observing several steps. The
figures show the accumulated rewards with different random en-
vironment seeds for Run-to-goal (Ants), You-Shall-Not-Pass and
Run-to-goal (Humans) games.

and the victim (target) agent, respectively, throughout the
rest of the paper.

3.4. The Challenges of RL Backdoor Detection

The backdoor detection in image classifiers [11, 38, 41,
10, 33, 23, 5] has been well studied, where the trigger be-
haves in a stateless manner. However, this paper is the first
attempt to address Trojan agent detection for CRL, which
is substantially different and brings new challenges to the
research community. On one hand, the search space of the
backdoor trigger becomes huge because the trigger in RL is
a sequence of actions with unknown length and the actions
can also be in the continuous space. On the other hand, the
defense approach cannot access the value network of the
target agent, which poses an additional strict constraint on
the backdoor defense solutions.

4. Our Approach: PolicyCleanse
We introduce in this section our approach to detecting and

mitigating the backdoors in reinforcement learning agents.
Sec. 4.1 discusses the high level intuition for detecting and
identifying backdoor attacks in CRL. The detection approach
is introduced in Sec. 4.2, followed by the mitigation method
in Sec. 4.3.

4.1. Key Intuition

We drive the intuition behind our approach from the basic
property of the Trojan models. In the context of reinforce-
ment learning task, the Trojan agent would perform Trojan
policy πfail and its performance degrades after observing the
specific backdoor trigger, which results in a noticeable in-
creasing failure rate. Different from image classifiers, the
performance degradation procedure caused by the Trojan
policy πfail typically lasts for several steps till failure. We
here perform an empirical study to understand such property
of Trojan policy in Fig. 2. In the experiment, we hard-code
the opponent agent to perform random actions and observe
the accumulated reward for Trojan policy πfail and benign
policy πwin. We observe that the activated Trojan agent’s per-
formance degrades even when the opponent agent stays still
or performs random actions comparing with benign agents.

However, it is visible from Fig. 2 that a safer approach to
recognizing the Trojan policy πfail is by looking at the cumu-
lative rewards after a few steps (e.g., ≥ 40); it seems hard
to directly recognize it at the very first step. Basically, this
observation gives us a way to measure whether or not the
target agent is performing the Trojan policy πfail, i.e., waiting
for a few steps and then checking its cumulative rewards.

4.2. Trojan Detection

Inspired by the above observation, we propose
PolicyCleanse to identify the trigger (if a backdoor
exists) for a given agent (a.k.a. the target agent). The
high-level idea of our approach is to learn a policy πS(·|θS)
parameterized by θS to approximate the trigger actions.
Given an environment setting, the training procedure of a
PolicyCleanse contains two phases: Phase 1 (Perform-
ing) and Phase 2 (Observing). The target agent’s policy is
frozen, i.e., only executes and does not learn at the same
time. An overview of PolicyCleanse is illustrated in
Fig. 3, where the full solution also includes training the
PolicyCleanse policy under a parallelism of random-
ized environments.

The Performing Phase. The purpose of the first phase (a.k.a.
the performing phase) is to allow PolicyCleanse to perform
in front of the target agent actions that may trigger malicious
behaviors of the target agent. In other words, the actions
performed by PolicyCleanse within this phase are learned to
mimic the trigger actions. The learning procedure is similar
to the common procedure of training an opponent agent in
this competitive environment [1], which is built upon policy
gradients such as Proximal Policy Optimization (PPO) [31].
Specifically, we first use the PolicyCleanse policy πS to
generate trajectories of length N , along with the target agent
πT(·) following the default state-transition. We set the s

(N)
S

as the terminal state, which means the PolicyCleanse πS only
play N steps against the target agent πT(·) in this phase and
the policy gradients (i.e., PPO) are computed upon these N
timesteps, which can be formulated as :

θ̂S = argmax
θS

∑N−1
t=0 −γtRT(s

(t)
S , s

(t)
T , a

(t)
T)︸ ︷︷ ︸

Performing phase

+ γNR
(N)
S︸ ︷︷ ︸

Observing phase
(4)

where s(t+1) ∼ T (s(t), a
(t)
S , a

(t)
T) and a

(t)
S ∼ πS(·|s(t); θS).

RT is the reward function of the target agent given by the
default environment following [1]. In the performing phase,
the reward for each step t except the terminal state (sNS) is
given by the negation of RT(t). The reward for the terminal
state (R(N)

S) is determined in the observing phase. And the
policy gradient ĝθS can be estimated by:

ĝθS = Et[∇θS log πS(a
(t)
S |s(t); θS)Â

t
]

4702

Target Agent

Policy Gradient Time Step:1 2

...
N

Performing Phase

N+1 N+2

...

Observing PhasePolicyCleanse

Aggregation

Figure 3. An overview of PolicyCleanse: A separate policy πS (the PolicyCleanse) is learned by executing the target agent (target agent’s
policy parameters are not required). The PolicyCleanse’s training procedure contains two phases. In Phase 1 (Performing phase),
PolicyCleanse agent performs according to its current policy. However, in Phase 2 (Observing phase), PolicyCleanse does not
act and simply observes the target agent to collect the target agent’s cumulative reward. The reverse of this cumulative reward becomes
PolicyCleanse’s reward.

where Â
t

is an estimator of the advantage function at
timestep t used in PPO [31].

The Observing Phase. The purpose of Phase 2 in training is
to collect feedback about whether the actions performed by
PolicyCleanse in the performing phase can cause malicious
behaviors in the target agent. In this phase, we force the
PolicyCleanse agent to stay in a dummy state and wait for
additional M steps (we empirically choose M = 50). This
wait is to ensure that the malicious behavior appears in a
more distinguishable manner (Detailed in Sec. 4.1). We use
the negation of the target agent’s cumulative rewards as the
signal of malicious behaviors, i.e.,

Rsum = −
∑
t=N

RT(s
(t)
S , s

(t)
T , a

(t)
T). (5)

For Run-To-Goal (Ants) game, we tag the learned actions
whose corresponding Rsum larger than a threshold T as the
(pseudo) trigger actions and the selection of T is described
in Sec. 5.1. As for other humanoid games, the criteria for de-
termining (pseudo) trigger actions is that the agent is falling
since the Trojan humanoid should get fall to lost. i.e.,

R
(N)
S =

{
R+, if Rsum ≥ T,

R−, otherwise.
(6)

When Rsum is deemed as an outlier, we say the PolicyCleanse
successfully finds the trigger and gives a reward of R+;
otherwise, we say the PolicyCleanse fails with a penalty
of R− reward. The value of R+(−) follows the winning
(defeat) reward for an agent given by each corresponding
environment, which follows the configuration of [1]. R+(−)

is given to the terminal state (sNS) and distributed to the
rewards of former states by a discounted factor γ. The setting
of reward/penalty values follows [1] and the algorithm for
training PolicyCleanse is detailed in the Appendix.

Environment Randomization. We train PolicyCleanse’s
policy πS(·|θS) through maximizing its cumulative rewards
under a given environment. Notably, during each training
procedure, we keep the environment seed fixed since the

activation of Trojan behavior may be impacted by the initial
states, as illustrated in [39]; A different environment seed
can result in a different game.

Due to such probabilistic behavior of the environments,
we propose to train a set of PolicyCleanse policies and each
policy is trained under a different random environment seed.
Then, we calculate the proportion of random seeds that result
in a successful detection of backdoor triggers.

4.3. Trojan Mitigation

Once we identified the Trojan agent and its triggers,
the next question is how to mitigate these triggers and pu-
rify the Trojan agent’s policy πT(·|θ). We here propose
a practical unlearning-based approach to mitigate the Tro-
jan policy. We leverage the collected malicious trajectories
τT = {s(0)T , a

(0)
T , s

(1)
T , a

(1)
T , . . .} from the Trojan agents to

remove the backdoors. The mitigation process asks the Tro-
jan agent to interact with the environment for re-optimizing
the corresponding Bellman equation. Specifically, we re-
place each action a

(t=n)
T in τT to maximize the cumulative

discounted reward, i.e.,

â
(n)
T = argmax

â
(n)
T

∞∑
t=n

γtRT(ŝ
(t)
T , â

(t)
T) (7)

where âT is the array of actions and ŝT is the corresponding
state for each time step given by the environment with ŝ

(n)
T =

s
(n)
T . More details of the mitigation process are included in

Appendix. We optimize Eq. (7) using policy gradient [35].
It is also feasible to leverage a benign agent (if available) to
re-assign a

(t)
T value by inferring on the state s

(t)
T at time t.

Finally, we re-train the target agent using behavior
cloning [15] with a mixed set of trajectories including both
purified trajectories τ̂T and the benign trajectories τB ob-
tained through playing itself.

4703

5. Experiments

5.1. Setup

Evaluated Environments. We evaluate our approach
against BackdooRL and its variants (i.e., Random, and
Dummy agents) based on two types of agents (i.e., Hu-
manoid, Ant). The Random and Dummy agents here repre-
sent the Trojan agents developed upon BackdooRL frame-
work but with performing random actions and staying still as
Trojan behaviors [39]. Three competitive environments are
used following previous work [39], i.e., Run to Goal, You
Shall Not Pass and Sumo. Please refer to Appendix for more
detailed descriptions and videos.

Evaluated Models. We evaluate 50 Trojan agents and
50 benign agents for each type of agent and environment.
Each Trojan agent is embedded with different random trig-
ger actions, following the training configuration of Back-
dooRL [39]. Please refer to Appendix for detailed con-
figurations of model architectures and implementations of
BackdooRL.

Evaluation Metrics. To evaluate PolicyCleanse, we
propose a metric called Trigger Detection Success Rate
(TDSR). It is defined as the proportion of PolicyCleanse
successfully searches the trigger actions under various envi-
ronment seeds; A given agent is identified as infected if they
have at least one trigger action searched by PolicyCleanse.

Hyper-parameters. Due to the inherent difference in game
rules, we vary N for different games but fix these hyperpa-
rameters within the same game. We set N = 40 in Run-
To-Goal (Ants). For the other three environments with Hu-
manoid agents, we set N = 10. The values are selected
based on the empirical observations reported in Sec. 4.1
and BackdooRL as well as our observations on a held-out
set of Trojan agents. We also discuss the impact of hyper-
parameters in Sec. 5.4. The threshold T for ant agents is
defined by MAD outlier detection [20] and we select T value
which owns an anomaly index ≥ 4 among Rsum collected
from the inactive target agent, following previous work [10].
The computation for the anomaly index is detailed in Ap-
pendix. We implement PPO following stable baselines [29].

5.2. Results

Backdoor Detection. We first investigate whether
PolicyCleanse can successfully find triggers to acti-
vate the Trojan agents. The results are shown in Fig. 4 over
500 random environment seeds. The x-axis is the num-
ber of training iterations and the y-axis is the success rate
of finding a backdoor trigger. We observe from the fig-
ure that PolicyCleanse can correctly identify the trig-
ger (pseudo) actions with at least 11.6% and 36.6% chance
within 2000 iterations for ant and humanoid agents, respec-

tively. For benign agents, PolicyCleanse cannot find
any potential trigger actions, which is expected. Such re-
sults show that PolicyCleanse can identify BackdooRL
including its variants (i.e., Random and Dummy agents) as
well benign agents with 100% accuracy on a parallelism of
multiple randomized environments within 2500 iterations.
Moreover, we notice PolicyCleanse identifies the trig-
ger actions for both Dummy and Random agents with a
lower probability compared with agents infected with Back-
dooRL. This is because both Random and Dummy agents
would cause a rather smaller failure rate (≤ 39.4% for ants,
and ≤ 75.9% for humanoid agents) compared with Back-
dooRL which trains a fast-failing πfail(s). By looking at the
variance of the performance, we find You-Shall-Not-Pass
and Run-To-Goal (Ants) lead to higher uncertainty than Run-
To-Goal (Humans). This is probably because the agents in
both You-Shall-Not-Pass and Run-To-Goal (Ants) are much
more competitive than the agents in Run-To-Goal (Humans).
Additional ablation studies on the impact for trigger length,
size of random environment seeds as well as step length are
provided in Sec. 5.4. We also report the computation cost
for PolicyCleanse in Appendix.

The purpose of PolicyCleanse is to reverse the trig-
ger actions. So we perform another set of experiments to
compare the difference between the actions produced by
PolicyCleanse and the true trigger actions (by Back-
dooRL). The results are shown in Fig. 5 where the x-axis
is the number of steps and the y-axis is the accumulated
rewards of the Trojan agents, after seeing the two action
sequences. We can see that the Trojan agents degenerate
after seeing both PolicyCleanse’s actions and the true
trigger actions (by BackdooRL). And the results suggest that
the actions produced by PolicyCleanse result in similar
consequences, compared to the true trigger actions.

Backdoor Mitigation. We have shown PolicyCleanse
is able to detect the backdoor triggers. In this section, we
present the results about backdoor mitigation in Fig. 6. Three
agents are compared: (a) the original Trojan agent (Back-
dooRL), (b) Wang et al., a fine-tuning based mitigation
method proposed by BackdooRL, and (c) our mitigation
approach. We use the same amount of samples to implement
both the baseline and our approach. We find PolicyCleanse
surpasses Wang et al. in all games, and performs signifi-
cantly better than the Trojan agent. For Run-To-Goal (Ants)
and You-Shall-Not-Pass games, both our method and Wang
et al. significantly improve the Trojan agents’ winning rate.

5.3. Visualizing the Action Space

One interesting question is how do the identified (pseudo)
trigger look like, compared to the real trigger and benign
actions? We conduct both basic and t-SNE visualizations of
the reversed trigger, actual trigger and benign actions, shown
in Fig. 7 and Fig. 8. From Fig. 7, we find that the reversed

4704

Figure 4. The statistics are obtained from 500 runs with different environment seeds. The solid lines represent the medium success probability.
Notably, for Sumo game, the Trojan agents are sensitive to the actions sent by the trigger agents. It becomes very likely for triggers noticeably
different from the benign actions to trigger the Trojan agents. Please refer to Appendix for details.

Figure 5. The comparison of accumulated reward for Trojan agent against PolicyCleanse and trigger agents. The solid lines represent
the medium value for each step. More results can be found in the Appendix.

Run-To-Goal(Ants) Run-To-Goal(Humans)You-Shall-Not-Pass(Humans) Sumo(Humans)0.0
0.1
0.2
0.3
0.4
0.5
0.6

W
in

in
g

Ra
te

Trojan Wang et al. Ours Benign

Figure 6. The comparison in mitigation performance for Back-
dooRL between Ours and Wang et al. for different games

triggers look close to actual Trojan actions for several games
whereas are quite different from benign actions for any game.
We think such an observation is reasonable since when the
model is trained to recognize the trigger, it may not learn
the exact trigger pattern [38]. Backdoor attacks for image
classifiers [38, 11, 33, 43, 41] yield a similar observation,
where trigger patterns reversed by detection approaches look
different from the actual triggers but can still activate the Tro-
jan behavior [38, 41]. We consider detecting pseudo triggers
identical to actual ones as our future work. From Fig. 8, We
find the reversed triggers are highly separable from the be-
nign actions from all four games, and Humanoid’s reversed
triggers are clustered close to the actual action. Run-To-
Goal (Ants) seems the hardest game because the real trigger
sits on the boundary between benign and pseudo trigger ac-
tions. We further perform empirical studies to show that the
pseudo trigger actions are not natural Trojans that present as
universal adversarial policy [12] in appendix.

5.4. Ablation Study

We perform five studies to further understand our ap-
proach in different settings.

The Impact of Environment Randomization. We notice

the performance of an RL agent is related to the random seed.
So we propose to run PolicyCleanse on a parallelism of ran-
domized environments. Fig. 9(b) shows its impact where
x-axis is the number K of random seeds and y-axis is the
backdoor detection accuracy. The accuracy is obtained over
50 different models. For each model, we run 1000 experi-
ments with K randomly chosen seeds. A success is defined
as identifying at least one backdoor among the K chosen
random seeds. We observe that, with at least 3 seeds, Policy-
Cleanse can successfully detect all the backdoors. When it
runs only on one random seed, its detection accuracy drops
to ∼ 80% for three of the games.

The Number of Pseudo Triggers used in Mitigation. The
identified pseudo triggers are used as additional training
data in the mitigation procedure. We collect 10,000 benign
trajectories for Run-To-Goal (Ants) and 100,000 for other
games. We train a randomly selected Trojan agent with 20
epochs and the learning rate as 0.01 using our mitigation
approach. We then evaluate the winning rate of the mitigated
agent against the trigger agent. The results are averaged over
10 runs and shown in Fig. 9(c). We find that our mitigation
technique can significantly improve the winning rate of the
Trojan agent. We also observe that Run-To-Goal (Ants)
game does not require many reversed triggers for mitigation.
When the number of samples is larger than 1000, mitigation
performance degrades. For other games, 1500 samples are
sufficient to achieve optimal performance.

The Number of Steps in the Observing Phase. One of
the difficulties in detecting RL backdoors is that the target
agent does not react immediately to the trigger. That is why

4705

Run-To-Goal(Ants) Run-To-Goal(Human) You-Shall-Not-Pass Sumo(Human)

Figure 7. The visualization of true trigger actions and reversed trigger actions for four games. For each game, we show the benign action
(left), true trigger action (middle) and reversed trigger actions (right). We select the last timestep of each sequence of actions for illustration.
Each true and reversed trigger actions are selected randomly for a given Trojan agent. More results can be found in the Appendix.

Figure 8. The t-SNE visualizations of the reversed trigger, trigger actions and benign actions for different Mujoco games. The reversed
trigger actions and benign actions are selected randomly across multiple environment seeds for a given Trojan agent.

1 2 3 4
of Seed

0.6

0.7

0.8

0.9

1.0

1.1

De
te

ct
io

n
Ac

cu
ra

cy

Run-To-Goal(Ants)
Run-To-Goal(Humans)
You-Shall-Not-Pass(Humans)
Sumo(Humans)

(a)

0 500 1000 1500 2500 3000
of Pseudo Triggers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
in

in
g

Ra
te

(T
ro

ja
n

Ag
en

t)

Run-To-Goal(Ants)
Run-To-Goal(Humans)
You-Shall-Not-Pass
Sumo(Humans)

(b)

20 25 30 35 40 45 50 55 60
Step length (Phase II)

0.0

0.2

0.4

0.6

0.8

1.0
De

te
ct

io
n

Ac
cu

ra
cy

(c)

10 20 30 40 50
Trigger Length

0.0

0.2

0.4

0.6

0.8

1.0

TD
SR

Run-To-Goal(Humans)
You-Shall-Not-Pass
Sumo(Humans)
Run-To-Goal(Ants)

(d)

Figure 9. Ablation study: (a) The impact of number of generated random environment seeds for PolicyCleanse. We run 1000
experiments over 50 models. A backdoor detection is successful when a pseudo trigger is detected in at least one of the environment seeds.
The observing phase step length is 50. Choosing 3+ seeds is sufficient to reach 100% success rate. (b) The mitigation performance of
PolicyCleanse with varying amounts of identified pseudo triggers. Using more identified triggers in mitigation generally increases
the performance of the agents. (c) The impact of the number of steps in the Observing Phase during training. A successful detection is
defined as finding at least one backdoor over 60 random environment seeds. The detection accuracy is averaged over 50 models. (d) The
performance of PolicyCleanse given a varying length of the real trigger actions. TDSR is the percentage of 500 random environment
seeds that allows PolicyCleanse to identify a backdoor trigger.

we set up an observing phase during training. We show the
backdoor detection accuracy in Fig. 9(d), an experiment on a
Humanoid agent, with a varying step length in the Observing
Phase. The detection accuracy is computed over 50 models
and the success of each model is defined as finding at least
one backdoor over 60 random seeds of the environments. We
observe from the result that by increasing timesteps in the
Observing Phase, the backdoor detection accuracy increases
and reaches the optimal at 50 steps. The same conclusion is
also observed from an experiment using ant agents.

The Impact of the Backdoor Trigger Length. The length
of true trigger actions is pre-determined by the attacker. Ac-
cording to [39], the length of trigger actions that achieves
the optimal attack efficacy may be different from the trig-
ger length defined by the attacker. For example, by default,
the true trigger length used by BackdooRL is 25. How-

ever, for ant agents, the best trigger actions to trigger the
Trojan agent has a length of 40. So we also conduct experi-
ments to evaluate PolicyCleanse with varying lengths
of attacker-defined trigger actions. The configuration for
PolicyCleanse is consistent with Sec. 5.1. The results are
shown in Sec. 5.2. PolicyCleanse performs effective
with different true trigger lengths; however, it performs better
against a longer trigger action with a higher TDSR. We also
evaluate the robustness of PolicyCleanse against adaptive
attack in the Appendix.

6. Conclusion

We proposed and addressed backdoor detection in re-
inforcement learning for competitive reinforcement learn-
ing. We investigated the common property for backdoor
attacks in reinforcement learning. We further proposed

4706

PolicyCleanse, which detects potential trigger actions
through reinforcement learning, together with a mitigation
solution. Extensive experiments demonstrate the effective-
ness of PolicyCleanse across various agents and en-
vironments under different complex settings, such as envi-
ronment randomization, dynamic trigger length, potential
adaptive attacks, etc.

References
[1] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever,

and Igor Mordatch. Emergent complexity via multi-agent
competition. arXiv preprint arXiv:1710.03748, 2017. 1, 3, 4,
5

[2] AV Bernstein and Evgeny V Burnaev. Reinforcement learning
in computer vision. In Tenth International Conference on
Machine Vision (ICMV 2017), volume 10696, pages 458–464.
SPIE, 2018. 1

[3] Shubham Kumar Bharti, Xuezhou Zhang, Adish Singla, and
Jerry Zhu. Provable defense against backdoor policies in
reinforcement learning. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho, editors, Advances in
Neural Information Processing Systems, 2022. 1, 3

[4] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn
Song. Targeted backdoor attacks on deep learning systems
using data poisoning. arXiv preprint arXiv:1712.05526, 2017.
2

[5] Yinpeng Dong, Xiao Yang, Zhijie Deng, Tianyu Pang, Zihao
Xiao, Hang Su, and Jun Zhu. Black-box detection of backdoor
attacks with limited information and data. arXiv preprint
arXiv:2103.13127, 2021. 1, 3, 4

[6] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio
Lopez, and Vladlen Koltun. Carla: An open urban driving
simulator. In Conference on robot learning, pages 1–16.
PMLR, 2017. 1

[7] Adam Gleave, Michael Dennis, Cody Wild, Neel Kant,
Sergey Levine, and Stuart Russell. Adversarial policies:
Attacking deep reinforcement learning. arXiv preprint
arXiv:1905.10615, 2019. 1, 3

[8] Chen Gong, Zhou Yang, Yunpeng Bai, Junda He, Jieke
Shi, Arunesh Sinha, Bowen Xu, Xinwen Hou, Guoliang
Fan, and David Lo. Mind your data! hiding backdoors
in offline reinforcement learning datasets. arXiv preprint
arXiv:2210.04688, 2022. 3

[9] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Bad-
nets: Identifying vulnerabilities in the machine learning
model supply chain. arXiv preprint arXiv:1708.06733, 2017.
2

[10] Junfeng Guo, Ang Li, and Cong Liu. AEVA: Black-box
backdoor detection using adversarial extreme value analysis.
In International Conference on Learning Representations,
2022. 1, 3, 4, 6

[11] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn
Song. Tabor: A highly accurate approach to inspecting
and restoring trojan backdoors in ai systems. arXiv preprint
arXiv:1908.01763, 2019. 1, 3, 4, 7

[12] Wenbo Guo, Xian Wu, Sui Huang, and Xinyu Xing. Adver-
sarial policy learning in two-player competitive games. In
Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pages
3910–3919. PMLR, 18–24 Jul 2021. 1, 3, 7

[13] Wenbo Guo, Xian Wu, Usmann Khan, and Xinyu Xing. Edge:
Explaining deep reinforcement learning policies. Advances
in Neural Information Processing Systems, 34:12222–12236,
2021. 1

[14] Kunzhe Huang, Yiming Li, Baoyuan Wu, Zhan Qin, and Kui
Ren. Backdoor defense via decoupling the training process.
arXiv preprint arXiv:2202.03423, 2022. 3

[15] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and
Chrisina Jayne. Imitation learning: A survey of learning meth-
ods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017. 5

[16] Yujie Ji, Xinyang Zhang, Shouling Ji, Xiapu Luo, and Ting
Wang. Model-reuse attacks on deep learning systems. In Pro-
ceedings of the 2018 ACM SIGSAC conference on computer
and communications security, pages 349–363, 2018. 2

[17] Panagiota Kiourti, Kacper Wardega, Susmit Jha, and Wen-
chao Li. Trojdrl: evaluation of backdoor attacks on deep
reinforcement learning. In 2020 57th ACM/IEEE Design Au-
tomation Conference (DAC), pages 1–6. IEEE, 2020. 1, 2,
3

[18] Ngan Le, Vidhiwar Singh Rathour, Kashu Yamazaki, Khoa
Luu, and Marios Savvides. Deep reinforcement learning in
computer vision: a comprehensive survey. Artificial Intelli-
gence Review, pages 1–87, 2022. 1

[19] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep
learning. nature, 521(7553):436–444, 2015. 2

[20] Christophe Leys, Christophe Ley, Olivier Klein, Philippe
Bernard, and Laurent Licata. Detecting outliers: Do not use
standard deviation around the mean, use absolute deviation
around the median. Journal of experimental social psychol-
ogy, 49(4):764–766, 2013. 6

[21] Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Back-
door learning: A survey. IEEE Transactions on Neural Net-
works and Learning Systems, 2022. 2

[22] Yiming Li, Haoxiang Zhong, Xingjun Ma, Yong Jiang, and
Shu-Tao Xia. Few-shot backdoor attacks on visual object
tracking. arXiv preprint arXiv:2201.13178, 2022. 2

[23] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma,
Yousra Aafer, and Xiangyu Zhang. Abs: Scanning neural
networks for back-doors by artificial brain stimulation. In
Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 1265–1282, 2019.
1, 3, 4

[24] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan
Zhai, Weihang Wang, and Xiangyu Zhang. Trojaning attack
on neural networks. 2017. 2

[25] Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflec-
tion backdoor: A natural backdoor attack on deep neural net-
works. In European Conference on Computer Vision, pages
182–199. Springer, 2020. 2

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Ried-

4707

miller. Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602, 2013. 2

[27] Laura Noonan. Jpmorgan develops robot to execute
trades. https://www. ft. com/content/16b8ffb6-7161-11e7-
aca6-c6bd07df1a3c, 2017. 1

[28] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek
Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron, Alex
Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas
Schneider, Nikolas Tezak, Jerry Tworek, Peter Welinder, Lil-
ian Weng, Qiming Yuan, Wojciech Zaremba, and Lei Zhang.
Solving rubik’s cube with a robot hand, 2019. 1

[29] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam
Gleave, Anssi Kanervisto, and Noah Dormann. Stable base-
lines3. GitHub repository, 2019. 6

[30] Faizan Rasheed, Kok-Lim Alvin Yau, Rafidah Md. Noor,
Celimuge Wu, and Yeh-Ching Low. Deep reinforcement
learning for traffic signal control: A review. IEEE Access,
8:208016–208044, 2020. 1

[31] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017. 4, 5

[32] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua.
Safe, multi-agent, reinforcement learning for autonomous
driving. arXiv preprint arXiv:1610.03295, 2016. 1

[33] Guangyu Shen, Yingqi Liu, Guanhong Tao, Shengwei An,
Qiuling Xu, Siyuan Cheng, Shiqing Ma, and Xiangyu Zhang.
Backdoor scanning for deep neural networks through k-arm
optimization. arXiv preprint arXiv:2102.05123, 2021. 3, 4, 7

[34] David Silver, Satinder Singh, Doina Precup, and Richard S.
Sutton. Reward is enough. Artificial Intelligence, 299:103535,
2021. 1

[35] Richard S Sutton, David A McAllester, Satinder P Singh, and
Yishay Mansour. Policy gradient methods for reinforcement
learning with function approximation. In Advances in neural
information processing systems, pages 1057–1063, 2000. 5

[36] Graham W Taylor. A reinforcement learning framework for
parameter control in computer vision applications. In First
Canadian Conference on Computer and Robot Vision, 2004.
Proceedings., pages 496–503. IEEE, 2004. 1

[37] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki,
Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H. Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo
Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P.
Agapiou, Max Jaderberg, Alexander S. Vezhnevets, Rémi
Leblond, Tobias Pohlen, Valentin Dalibard, David Budden,
Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre,
Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani
Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith,
Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis
Hassabis, Chris Apps, and David Silver. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature,
575(7782):350–354, 2019. 1

[38] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal
Viswanath, Haitao Zheng, and Ben Y Zhao. Neural cleanse:
Identifying and mitigating backdoor attacks in neural net-
works. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 707–723. IEEE, 2019. 1, 3, 4, 7

[39] Lun Wang, Zaynah Javed, Xian Wu, Wenbo Guo, Xinyu Xing,
and Dawn Song. Backdoorl: Backdoor attack against competi-
tive reinforcement learning. arXiv preprint arXiv:2105.00579,
2021. 1, 2, 3, 5, 6, 8

[40] Lixu Wang, Shichao Xu, Ruiqi Xu, Xiao Wang, and Qi Zhu.
Non-transferable learning: A new approach for model owner-
ship verification and applicability authorization. In Interna-
tional Conference on Learning Representations, 2021. 2

[41] Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen, Jinjun
Xiong, and Meng Wang. Practical detection of trojan neural
networks: Data-limited and data-free cases. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXIII 16, pages
222–238. Springer, 2020. 3, 4, 7

[42] Yue Wang, Esha Sarkar, Wenqing Li, Michail Maniatakos,
and Saif Eddin Jabari. Stop-and-go: Exploring backdoor at-
tacks on deep reinforcement learning-based traffic congestion
control systems. IEEE Transactions on Information Forensics
and Security, 16:4772–4787, 2021. 2, 3

[43] Zhenting Wang, Kai Mei, Juan Zhai, and Shiqing Ma. UNI-
CORN: A unified backdoor trigger inversion framework. In
The Eleventh International Conference on Learning Repre-
sentations, 2023. 7

[44] Xian Wu, Wenbo Guo, Hua Wei, and Xinyu Xing. Adversarial
policy training against deep reinforcement learning. In 30th
USENIX Security Symposium (USENIX Security 21), pages
1883–1900. USENIX Association, Aug. 2021. 1

[45] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y Zhao.
Latent backdoor attacks on deep neural networks. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 2041–2055, 2019. 2

[46] Yi Zeng, Si Chen, Won Park, Zhuoqing Mao, Ming Jin, and
Ruoxi Jia. Adversarial unlearning of backdoors via implicit
hypergradient. In International Conference on Learning Rep-
resentations, 2021. 3

4708

