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Abstract

Although previous works on traffic scene understanding
have achieved great success, most of them stop at a low-
level perception stage, such as road segmentation and lane
detection, and few concern high-level understanding. In
this paper, we present Visual Traffic Knowledge Graph Gen-
eration (VIKGG), a new task for in-depth traffic scene un-
derstanding that tries to extract multiple kinds of informa-
tion and integrate them into a knowledge graph. To achieve
this goal, we first introduce a large dataset named CASIA-
Tencent Road Scene dataset (RSI0K) with comprehensive
annotations to support related research. Secondly, we pro-
pose a novel traffic scene parsing architecture containing
a Hierarchical Graph ATtention network (HGAT) to ana-
lyze the heterogeneous elements and their complicated re-
lations in traffic scene images. By hierarchizing the hetero-
geneous graph and equipping it with cross-level links, our
approach exploits the correlation among various elements
completely and acquires accurate relations. The experimen-
tal results show that our method can effectively generate vi-
sual traffic knowledge graphs and achieve state-of-the-art
performance. The dataset RSIOK is available at http:
//www.nlpr.ia.ac.cn/pal/RS10K.html.

1. Introduction

Traffic scene understanding [26, 3, 5, 34] plays an impor-
tant role in auto drive systems. Some of its subtasks, such as
road segmentation [11, 2], lane detection [43, 36], and traf-
fic sign detection [32, 22], have made significant progress in
the recent years. However, such low-level output with lim-
ited information is far from sufficient for auto drive. In this
work, we introduce Visual Traffic Knowledge Graph Gen-
eration (VTKGG), a high-level traffic scene understanding
task to provide comprehensive and well-formatted traffic
scene information for not only auto drive, but also position-
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Figure 1. Traffic knowledge graphs for scene images in RS10K.
Roads, lanes, and signs are noted with “R”, “L”, and “S”, respec-
tively. The current roads are masked by red and right roads by
green. For better visualization, some annotations are simplified.

ing assistance and map correction.

VTKGG aims to extract traffic information from traffic
scene images and organize the information into a knowl-
edge graph. Considering that the relevant techniques are
quite developed, VIKGG is carried out on the position-
known traffic signs, roads, and lanes. As shown in Fig-
ure 1, the traffic knowledge graph is a graph connecting
roads, lanes, locations, warnings, etc. To accomplish this,
we must parse the content of traffic signs and identify re-
lations between sign components (i.e., texts, symbols, and
arrowheads on signs) and their correspondence to traffic el-
ements (i.e., roads and lanes), which is complicated, how-
ever. First, relations exist between traffic signs (S-S rela-
tions), which indicate one sign is a supplement to another,
e.g., “S1” and “S2” in Figure 1(a) and Figure 1(c). Second,
relations exist between sign components (C-C relations),
which has been demonstrated in [12]. Third, relations exist
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between components and traffic elements (C-T relations),
since different components in the same sign, e.g., the three
arrows of “S0” in Figure 1(a), may correspond to different
traffic elements. All these relations are not independent.
For example, C-C relations may span two related signs to
connect their components and some C-T relations can be in-
ferred from other C-C and C-T relations. Therefore, we can
summarize two characteristics of VTKGG: multiple hetero-
geneous elements and complicated entangled relations.

Due to the aforementioned factors, pertinent studies are
limited. Guo et al. [12] proposed traffic sign understanding,
a task seeking to decipher traffic signs using sign compo-
nents and their relations. However, it only concerns cropped
distortion-free traffic panels without traffic elements. Greer
et al. [10] tried to detect salient traffic signs pertaining
to the current road, which is only a coarse-grained corre-
spondence, unfortunately. To take consider all elements and
obtain fine-grained relations, a straightforward approach is
creating a fully connected graph that treats all the elements
equally. However, this approach is inefficient for compli-
cated scene images by neglecting the hierarchy of elements
and relations. The S-S relations are high-level relations de-
pending on high-level features. They further affect C-C
relations since C-C relations may span two related signs.
The C-C relations support the reasoning of C-T relations by
helping the model to learn the layout of the sign. Based on
the analysis above, we suggest a novel architecture using
a Hierarchical Graph ATtention network (HGAT) to inte-
grate the reasoning of S-S, C-C, and A-T relations consid-
ering their interactions, where “A” denotes the representa-
tive arrow elements selected from all components. Along
with this architecture, a large dataset CASIA-Tencent Road
Scene dataset (RS10K) is collected and annotated.

The overall framework proposed is shown in Figure 3.
Concretely, given an input image, a sign component detec-
tor is applied to detect components on signs. Then node
features are gathered from bounding boxes or masks of el-
ements to build the input graph. After that, our HGAT per-
forms feature refining and relation classification to get all
the element relations. After all sign texts are recognized
by a text recognizer and an attribute recognizer, the traf-
fic knowledge graph is constructed from the above results.
Our HGAT adopts a top-down manner to organize its lay-
ers. Three levels in each layer process subgraphs for S-S
relations, C-C relations, and A-T relations respectively. To
make the best of the correlation between different levels,
cross-level links are created between adjacent levels to al-
low for cross-level interaction. Additionally, the affiliation
and the relative position between traffic elements are em-
bedded as edges between traffic elements, which we call
T-T links. By deploying these techniques, HGAT can lever-
age the correlation between relations completely and obtain
accurate relations for traffic knowledge graph generation.

RS10K has 10066 high-resolution images of various
traffic scenes. Over all these images, there are 42923 traffic
signs of different types. To facilitate VTKGG, comprehen-
sive annotations, as well as knowledge graphs, are provided,
including road mask, road direction, lane mask, lane type,
components on signs, and all kinds of relations. As shown
in Table 1, RS10K is a large versatile dataset that can also
be utilized in the future for tasks like road and lane segmen-
tation, traffic sign detection and understanding, etc.

Consequently, our contributions are as follows:

1. We propose a new valuable task VTKGG, and intro-
duce a new large dataset RS10K with rich annotations
to support it and other relevant research.

2. We propose a framework for VTKGG with HGAT
to reason all relations hierarchically while leveraging
their correlation effectively.

3. Experimental results on RS10K show that our frame-
work is an effective solution for VTKGG, and achieves
state-of-the-art performance compared with other rela-
tion reasoning methods.

2. Related Work
2.1. Traffic Scene Understanding

Although high-definition maps [20, 9, 29] exhibit high
positioning precision and rich traffic information, the ex-
pensive development and maintenance costs greatly limit
their application. In contrast, visual traffic scene under-
standing is cheap and real-time, thus having great applica-
tion prospects. Previous work on traffic scene understand-
ing mostly focused on low-level perception, such as road
segmentation [11, 2], lane detection [43, 36, 8, 13], traf-
fic sign detection [4, 45, 38, 41], etc., which is insufficient
to achieve a complete understanding of traffic scenes. Guo
et al. [12] proposed a multi-task learning framework com-
posed of component detection, relation reasoning, classifi-
cation, and semantic description to parse of traffic panels.
However, the limitation is that it can only handle regular
and distortion-free traffic panels and cannot directly be ap-
plied to traffic scene images like ours.

2.2. Visual Relation Detection

Visual relation detection aims to detect objects from
scene images and then parse the relations between differ-
ent objects. Previous methods [6, 33, 40, 35, 39] based on
Convolutional Neural Networks (CNN) or Recurrent Neu-
ral Networks (RNN) utilize CNN or RNN or LSTM [16]
to infer relations through paired object features, but they
have limitations on the context fusion and inference speed.
Graph Neural Network based methods [21, 37, 28] first con-
struct a graph whose nodes stand for objects and edges for
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Dataset images simple signs traffic panels roads lanes  relations
GTSDB [17] 900 1213 - - - - Exeenay)
CTSDB [38] 10000 17193 2072 - - - s N
CTSU [12] 5000 - 5000 - - 31536 4026%
UAS [42] 6380 - - 6380 - -
CamVid [1] 700 - - 700 - - il
CULane [26] 133235 - - - 298989 - -
RS10K 10066 24136 18787 21058 41891 104428

Table 1. Comparison between RS10K and other popular datasets.

relations, then fuse global context through message prop-
agation. The final relations come from edge classification.
Although these methods achieved great success in visual re-
lation detection, the objects and relations they concerned are
not as hierarchical as those in traffic scenes, which makes
these methods not directly applicable to VTKGG.

3. Dataset

The CASIA-Tencent Road Scene dataset (RS10K) is cre-
ated to support Visual Traffic Knowledge Graph Genera-
tion (VTKGG) since there is no such comprehensive dataset
publicly available. This section presents the fundamental
details of RS10K, involving some settings of VTKGG.

3.1. Images

RS10K contains 10066 traffic scene images which are
taken by onboard cameras of various vehicles from 31 cities
in China. In each city, we randomly choose some sections
of high-level roads (roads above national standard level 6)
to collect images. We categorize all images based on their
road types and report the proportions, as shown in Figure 2,
among which urban road account for a large part. Most im-
ages have a resolution of 1080 x 1920, and their scenes are
widely distributed, including urban areas, small towns, the
countryside, service centers, tollbooths, etc. The road struc-
tures are diverse, including simple roads, diversion and con-
fluence sections, intersections, and overpasses. The whole
dataset is divided into a training set with 7066 images and a
testing set with 3000 images.

3.2. Annotations

RS10K contains comprehensive annotations to support
VTKGG, including roads, lanes, simple signs, traffic pan-
els, and multiple kinds of relations.

The roads and lanes for each scene image are annotated
by masks of their region. For roads, we divide them depend-
ing on their locations or branches of a fork or crossroad, i.e.,
the current road, the left road, the right road, and the front
road, which is a requisite for VTKGG but not provided in
previous datasets [42, 1].

Figure 2. Proportions of dif-
ferent road types in RS10K.

The positions of all traffic signs are annotated with
quadrilateral boxes, including simple signs and complex
panels. One sort of undirected S-S relation is annotated to
indicate whether the two signs are related or not. In traf-
fic panels, we annotated their components in detail, includ-
ing texts, symbols (59 categories), and arrowheads (i.e., the
heads of the arrow symbols, 8 categories), making a total
of 68 categories. The definition of C-C relation is consis-
tent with [12], that is, two types of undirected C-C rela-
tions: association relation and pointing relation. The asso-
ciation relation implies that multiple components represent
a same place or a same piece of information. Pointing re-
lation refers to the relation that a place is on the direction
of an arrowhead. Notably, these relations may span across
different traffic signs, but this only occurs between related
signs. In addition, to distinguish different types of informa-
tion, we provide attribute annotation for each text, i.e., road
code, road name, place name, direction, and description.

In RS10K, one type of unidirectional C-T relation is de-
fined to denote whether the component refers to the traf-
fic element or not. Due to a large number of components
in all signs and huge annotation costs, the C-T relation is
condensed into the A-T relation, since the arrow elements,
i.e., arrow symbols and arrowheads in components, have
the highest correlation with traffic elements and all C-T
relations can be inferred from the C-C and A-T relations.
Therefore, we annotate the A-T relation rather than the C-T
relation. For the signs without arrow elements, since most
of them are simple and their components only pertain to one
same traffic element, we directly annotate the correspond-
ing relations between the sign and traffic elements. These
signs will be represented by a virtual arrow element in our
framework when reasoning A-T relations.

The traffic knowledge graphs can be generated from the
above annotations. Each traffic knowledge graph is com-
posed of several knowledge trees with roads or virtual roads
as their roots and all other information is attached to the
trees based on relations and information types, where vir-
tual roads are indicated by arrow elements whose traffic el-
ements are invisible. Please see the supplementary material
for more details on traffic knowledge graphs.

21606



o> )
[1 - _ ™ ’

[

Input Image &
Quadrilateral Boxes of Signs

Road & Lane Masks

(HGAT Layer

o % |l= ©

H
H
N

Sign Texts

A
&

Text, Attribute
Recognizer Recognizer

All Elements and Relations

L A-T Subgraph ))

-

Figure 3. The overall framework of our proposed method. HGAT is composed of multiple layers. The structure of the input graph is shown
in the HGAT layer, where nodes denoted by the same shape are homogeneous and the triangle with grids is a virtual arrow element. Edges
representing potential relations are denoted by black solid lines, while the cross-level links are represented by dotted lines. Pink lines stand
for the T-T links between traffic elements. S: sign, C: sign component, A: arrow element, T: traffic element, ©: element-wise production.

3.3. Metrics

We first evaluate the two subtasks of VTKGG: sign com-
ponent detection and all relation classification. For detec-
tion, we evaluate its multi-class recall, precision, and F1-
measure. For relation classification, since there are S-S, C-
C, and A-T relations, we calculate the recall and precision
of these three relations, and finally calculate the overall F1-
measure and mean F1-measure of all relations.

To assess the traffic knowledge graph more reasonably,
we offer a new evaluation method TFPM based on Tree Full
Path Matching. For a leaf node, only when the entire path
from the root node to the leaf node is completely matched
with the ground truth can it be considered as a true posi-
tive. The recall, precision, and F1-measure are adopted as
the final metrics of TFPM. Depending on the node matching
mechanism used, TFPM is divided into TFPM-B for match-
ing by bounding boxes, TFPM-T for matching by texts, and
TFPM-BT for matching by both of them.

3.4. Statistics

RS10K is the first large-scale and comprehensive dataset
for VTKGG with rich annotations. As shown in Table 1,
we compare it to some popular datasets for traffic scene
parsing. Clearly, these datasets only concentrate on one or
several subtasks and are unable to offer sufficient data to
support in-depth traffic scene understanding. While RS10K
includes various annotations, which can be utilized for not
only VTKGG, but also other tasks like road and lane seg-
mentation, sign detection, traffic sign understanding, etc.
The challenges of RS10K can be summarized as follows:

Diversity of scenes. RS10K includes a variety of scenes
and a large part of them are in urban areas where there are
numerous vehicles, pedestrians, and billboards, which will
cause occlusion and interference.

Heterogeneity of data. The annotations of different el-
ements are heterogeneous, e.g., masks for roads and lanes
while bounding boxes for sign and sign components. The
scale of elements also varies widely from tiny symbols on
signs to roads with large areas.

Complexity of relations. The three sorts of relations
have many problems to address including entanglement, hi-
erarchies, and ambiguity, which will confuse the model if
not properly handled.

4. Approach

The pipeline of our framework is depicted in Figure
3. Given an input image and quadrilateral boxes of signs,
a sign component detector is first adopted to acquire the
quadrilateral bounding boxes of components inside the
signs. Then node features are extracted from the multi-scale
backbone features to build the input graph, where traffic
element features are collected by the given road and lane
masks. After that, the input graph is sent to HGAT for fea-
ture refining and relation classification to obtain all element
relations. In the end, the sign texts are recognized by the
text recognizer and attribute recognizer to support the final
traffic knowledge graph generation. In the following, we
will describe these four procedures sequentially. Some ba-
sic notations are given in Table 2.

4.1. Sign Component Detector

In our approach, we take FCOS [30] for rotated object
detection from [44] as our base sign component detector.
FCOS is a one-stage and anchor-free detector, whose core
idea is to regress the distances between the pixels in the
central area and the bounding box of the target. To detect
targets of different scales, it assigns targets of different sizes
to feature maps of different scales. However, this method is
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[ One of the elements, where e in {s, ¢, a,t}, * in
{4, 7, k,}, corresponding to sign, component,
arrow element, and traffic element respectively.

Qboxsi The quadrilateral box of s;, sized 1 x 8.

Rboxs;  The regular bounding rectangle of Qbox, ,
sized 1 x 4.

Qboxij_ The quadrilateral box of ¢; in s;, sized 1 X 8.

M, The mask of s; in Fy, , sized W/2 x W/2.

M The mask of ¢; in Fy, , sized W x W.

M, The mask of ¢; in F2, sized h/4 x w/4.

Fy Three-scale feature output from FPN [23], in form of
[FY, Fy, ] sized h x w x d, h/2 x w/2 x d,
and h/4 X w/4 x d respectively.

Fys,  Three-scale feature RolAligned by Rboxs; from Fy,
in form of [Fy, , Fy,., Fi.. ] sized W x W x d,
W/2 xW/2 x d, and W/4 x W/4 x d respectively.

L., Category of element e..

N., Node feature of element e., sized 1 x d.
Ve. Visual feature of element e, sized 1 X d.
Ye. Semantic feature of element e, sized 1 X d.
P.,  Spatial feature of element e, sized 1 x d.

Table 2. Overview of some basic notations mentioned in the approach section.

still insufficient to detect texts and symbols on distant or
small signs. To address this problem, for the i-th sign s;,
we first resize its rectangular area inside Rbox,, in F} into
square window features Fjs, by RolAlign [14], and then
apply the detection head RFCOSHead of rotated FCOS to
the largest-scale window F\ to obtain sign components.
The whole process can be described as:

Fys, = RolAlign (Fy, Rboxs, ) , (1)
QboxSi, Qboxi, ... = RFCOSHead (Fy, ).  (2)

co?
4.2, Input Graph Construction

After sign component detection, we get all of the fol-
lowing: quadrilateral boxes and categories of signs (given),
quadrilateral boxes and categories of sign components (de-
tected), masks and categories of traffic elements (given). To
obtain the input graph for each scene image, we gather node
features first. All node features are fused by visual features,
spatial embedding, and semantic embedding features.

Ne*:‘/;*+Pe*+Ye*~ (3)

S-Features. For s;, visual feature is calculated as the
mean vector of the window feature F, inside the quadri-
lateral box after several convolution layers Conv.

Vi, = sum (Conv (Fy,, ) ® My,) /sum (M),  (4)

where sum means the sum operation on the first two di-
mensions; ® stands for element-wise production. Semantic
feature of s; is the embedding of its category Ls,.

Y;, = Embedding(Ls,). )

The spatial feature of s; is generated by a linear function
fr : R'? — R% to transform the position of s;.

P, = f, (Rboxsi Qboxsi), (6)

where || denotes the concatenation operation.
C-Features. The visual feature ch"', semantic feature
Ycii, and spatial feature PS] of ¢; in s; are obtained in the

c
same manner as signs but on F}, ~to include more details.

Vi = sum (Conv (Ffsi) ® M;J’) /sum (MZJ) , (D

Y = Embedding(L3), (8)

P = f, (Rbox,, || Qboxy; ). ©)

A-Features. The node features of arrow elements in the
A-T subgraph are cloned from their features in the C-C sub-
graph. For the sign without arrow symbols or arrowheads,
we create a virtual arrow element to represent the whole
sign, whose feature is the mean vector of all components on
the sign.

T-Features. For ¢;, its visual feature is extracted from
the backbone feature F}? by its mask M, since F}? contains
more high-level information.

Vi, = sum (Conv (F}) ® My,) /sum (My,),  (10)

We embed for current road, left road, right road, front road,
and lanes to get the semantic features.

Y;, = Embedding(Ly, ). (11)

At last, the mask My, is transformed into P;, by a linear
projection f, : R" — R<.

P, = f, (flatten (My,)), (12)

where flatten means a flattening operation.

Graph Structure. To reduce redundant connections and
calculations, the input graph is built into a globally sparse
but locally fully connected graph, as shown in Figure 3.

In the S-S subgraph, the bidirectional edge (represented
by two oppositely directed edges in the graph) is adopted
for the reasoning of the undirected S-S relation. Some S-
S relations can be prejudged by their relative distance and
alignment using the heuristic method. For example, there
are no relations between distant and spatially misaligned
signs. Therefore, such a heuristic method is employed to
determine edges in the S-S subgraph to make it sparse.

In the C-C subgraph, all C-C relations are inferred by
bidirectional edges. The relation between components is
hard to predict in advance [12]. Consequently, all compo-
nents of a single sign or all components of two signs with an
edge in the S-S subgraph are connected fully to infer C-C
relations within a sign or across different signs.
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In the A-T subgraph, the A-T edge flows from every ar-
row element to every traffic element, while there is no con-
nection between the arrow elements.

The S-S, C-C, and A-T edges in the three subgraphs are
represented by black solid lines in Figure 3. For one of these
edges from e, to e,, the visual and semantic features are
the sum of its two endpoint features.

Vion =Ve,, + Ve, . Yy =Y, + Yo, . (13)

The spatial feature is the difference.
Ppn=PF., —P.,. (14)

The final edge feature is as follows.
Ern = Vin + Yon + P, (15)

There are also some relations between traffic elements,
such as the affiliation between roads and lanes: a lane sub-
ordinate to a road, or a road superordinate to a lane, and the
relative position between roads or lanes: on left, on right, in
front of, behind. All of them are known given the category
and location of traffic elements. These relations are embed-
ded as features of T-T edges between traffic elements, which
we call T-T links as shown in Figure 3. T-T links only ex-
ist between the road and its lanes or two traffic elements
adjacent to each other.

Cross-level links only exist from a sign to its compo-
nents, the same arrow element from C-C subgraph to the
A-T subgraph, and all components on a sign without an ar-
row element to its virtual arrow elements, which is single-
directional. Cross-level links do not contain edge features,
but only provide message propagation channels.

4.3. Hierarchical GAT

The Hierarchical GAT (HGAT) is proposed to deal with
the input graph with heterogeneous nodes and edges in a
top-down manner hierarchically. It includes three update
mechanisms: Bidirectional Attention (BiAtt), Cross-Level
Attention (CLAtt), and Bipartite Matching (BiMat). By uti-
lizing them, HGAT performs feature refining layer by layer
as shown in Figure 3.

BiAtt (for S-S and C-C subgraphs). BiAtt is imposed
on subgraphs with homogeneous nodes to update its node
and edge features, whose motivation is for context fusion in
the subgraph. N, stands for initial node feature of e,,,, and
E,,,, for feature of edge e, to e,. N/, and E!, . denote the
updated features.

For N,,, we first calculate its attention coefficient with its
in-flow edges, denoted by v, .

. exp (O' (fa (Enm || Nn)))
G = S e o U B [ N)) O

z€N,

where f, : R24 5 R; N,, is the neighborhood of e,; o is
the activation function. Then we aggregate the in-flow edge
features into IV,,.

Nr/L =0 <fN1 <<Z aanzn) H Nn>> y (17)
2€Ny,

where fni: R?*? — R? The edge feature is updated by
aggregating features of its two endpoints with bidirectional
attention coefficients.

O N + Qi Ny

anm Jr anLn

where fz1 : R?* — R?. In this way, the edge can integrate
features of both source and destination nodes.

CLACtt (for cross-level links). CLAtt fuses the source
node features into the destination nodes through the atten-
tion mechanism, whose motivation is to achieve cross-level
communication. Here we denote the source node by p,,, and
the destination node by ¢, .

The feature of the source node is first processed by a
linear transformation fy : RY — R,

N, =0 (fn2(Np,))- (19)

Then we calculate the attention coefficient between p,,, and
Gn», Which can be formulated as:

exp (o (fs (N, I Ng,.)))
> exp (o (fs (N I N,)))’

p=€Ng,

an = 20)

where f5: R? — R. B, is directly set to 1.0 when ap-
plied to cross-level links between S-S and C-C subgraphs.
Finally, all source node features are fused into their destina-
tion nodes through fx3 : R?* — R? and a residual link.

N;L =N,+o | fns Z anNg/;z ” Ngy,

P €Ny

BiMat (for A-T subgraph). BiMat performs A-T edge
feature updation for the final matching between arrow and
traffic elements.

To make the model perceive the affiliation and relative
position between traffic elements, we first apply BiAtt to T-
T links, where, concretely, N,, is the traffic element nodes
in the neighborhood of ¢,,. Then we denote the updated traf-
fic element node feature N; , arrow element feature N,,,,,
and edge feature between a,, and t,, E,,,. Therefore, the
updated edge feature E!_ is calculated by:

Ew =0 (fe2 (Nay | Emn | N/)) (22)

where fgo : R3® — R
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Method Detection Relation Reasoning VTKGG FPS
S-S C-C AT Overal Mean TFPM-B TFPM-T TFPM-BT

FCOS [44] 0.853 - - - - - - - - -
GCN [18] 0.893 0.859 0.789 0.802 0.800 0.816 0.791 0.774 0.762 54
GAT [31] 0.903 0.848 0.807 0.813 0.810 0.822 0.802 0.784 0.773 44
aGCN [37] 0.902 0.849 0.806 0.812 0.809 0.822 0.803 0.785 0.774 4.5
HL-Net [25] 0.895 0.861 0.806 0.806 0.808  0.825 0.799 0.780 0.769 3.4
HGAT-U 0.900 0.819 0.792 0.810 0.799  0.807 0.796 0.779 0.767 4.2
HGAT-S 0.901 0.867 0.812 0.813 0.814 0.831 0.808 0.788 0.776 5.1
HGAT 0.903 0.878 0.821 0.823 0.823 0.841 0.812 0.792 0.781 4.7

Table 3. Performance of some methods on RS10K. Except for FPS, all results are F1-measures.

Relation Classification. The output edge features of
the S-S, C-C, and A-T subgraphs are employed for the re-
lation classification through three linear classifiers respec-
tively. Then the output probabilities are filtered by three
thresholds to get the final relations. When testing, S-S rela-
tions are leveraged to filter C-C relations between unrelated
signs to improve the precision. During training, the focal
loss [24] is adopted as the final loss function for S-S rela-
tion loss Lgsre1, C-C relation loss Lccrel, and A-T relation
loss L aTvel. Therefore, the total loss can be expressed by:

Liotal = Lrcos + Lrel, (23)

Lyet = A Lssrel + A2Lccrel + AsLatrel,  (24)
where A1, A2, and A3 are hyperparameters.

4.4. Traffic Knowledge Graph Generation

To generate the traffic knowledge graph, a crucial step is
to recognize the sign texts and their attributes. As shown in
Figure 3, after relation reasoning, we gather all sign texts
and input them into an external text recognizer and an at-
tribute recognizer respectively. The text recognizer derives
from [7], which is a model for scene text recognition trained
on RS10K along with other closed-source data. The at-
tribute recognizer is a visual classifier trained on RS10K. At
last, after we obtain the contents and attributes of the sign
texts, the traffic knowledge graph is generated by arranging
all components and traffic elements into a predefined format
of graph structure through postprocessing.

S. Experiments

To evaluate the performance of the proposed method, we
conduct some comparative and ablation experiments, all of
which are carried out under the same conditions.

5.1. Implementation Details

Our implementation is built on PyTorch [27] and MM-
Rotation [44] framework. The stem network adopts Res-
Net-50 [15], which inherits parameters trained on ImageNet

dataset [19]. HGAT is composed of two stacked layers with
512 as its feature vector dimension d. In training and test-
ing, we scale the long edge of input images to 1920 pixels
while keeping the aspect ratio. The model is trained on the
training set for 32 epochs with a batch size of 8. The learn-
ing rate is set to 0.01 at the beginning and decays with a rate
of 0.1 at epoch 24 and epoch 30. Hyperparameters A\, Ao,
and A3 are all set to 1.0.

5.2. Comparison with Other Methods

As shown in Table 3, to prove the superiority of our
framework, we compare it with several classical and state-
of-the-art methods.

We first evaluate the detection results of the Rotated
FCOS [44], which is directly applied to the whole scene im-
age. For fairness, invalid detection outside traffic signs will
be removed. As shown in Table 3, our improved detector
outperforms the origin by 0.05 in sign component detection
(0.903 vs 0.853).

Several relation reasoning methods are applied to
RS10K, including classical graph neural network GCN [18]
and GAT [31], and visual relation detection methods aGCN
[37] and HL-Net [25]. Notably, we only replace the mes-
sage propagation mechanism of our HGAT with these meth-
ods, while other parts, including the sign component detec-
tor, the input graph and recognizers, remain unchanged. As
shown in Table 3, our HGAT outperforms other methods
when evaluating the S-S, C-C, and A-T relations. HGAT
surpasses the best method HL-Net by 0.016 on the mean
F1-measure (0.841 vs 0.825).

5.3. Ablation Studies

Why Hierarchical. The difference between the three
relations is obvious. The S-S relation mainly focuses on
the appearance of signs and the distance between them, the
C-C relation concerns the spatial position inside the sign
and the type of components more, and the A-T relation lay
more stress on the relative position between signs and traffic
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Figure 4. Visualization results of our approach. The first row displays the scene images and the second shows the generated knowledge
graphs, in which the roads or virtual roads are denoted by circles, and lanes are hexagons. The current road is in red, the left road in blue,
the right road in green. The lane dividing lines are highlighted by red dashed lines inside the road areas. For better visualization, we only

show the information provided by the traffic panels inside pink bounding boxes.

HGAT w/o S-S C-C A-T Overall Mean

S-S 0.878 0.800 0.823 0.810 0.834
T-T 0.860 0.805 0.815 0.810 0.827
SeF 0.853 0.797 0.809 0.803  0.820
SpF 0.873 0.803 0.811 0.808  0.829

- 0.878 0.821 0.823 0.823  0.841

Table 4. Ablation studies. “S-S” denotes S-S relations; “T-T”
stands for T-T links; “SeF” means the semantic node feature Y, .
“SpF” represents the spatial node feature P.,. All results are the
F1-measures for relation reasoning.

elements and layout of components. Therefore, it is natural
and reasonable to employ three levels to reason these three
relations. To prove this, we first convert the input graph
into a homogeneous graph, and then refine the graph with
HGAT-U, a GNN containing only BiAtt layers. As shown
in Table 3, HGAT outperforms HGAT-U by 0.024 (0.823
vs 0.799) on the overall Fl1-measure and 0.034 (0.841 vs
0.807) on the mean F1-measure over all relations.

Cross-Level Links. These three sorts of relations are
not independent. As mentioned earlier, the relations of the
upper level are helpful to the below. Therefore, cross-level
links and CLAtt are introduced to realize cross-level inter-
action. To verify their effectiveness, we suggest HGAT-S by
removing cross-level links and CLAtt of HGAT. As shown
in Table 3, the experiment on RS10K shows that CLALtt in-
creases the overall Fl-measure by 0.009 (0.823 vs 0.814)
and the mean F1-measure by 0.01 (0.841 vs 0.831).

S-S Relations. When testing, S-S relations are used for
filtering invalid C-C relations across two unrelated signs to
improve the precision of C-C relations. To prove the ef-
fectiveness of S-S relations, we adopt the heuristic rules to
replace the S-S relations predicted, as shown in Table 4,

which causes a reduction of 0.021 on the F1-measure of the
C-C relations (0.800 vs 0.821).

T-T Links. The affiliation and the relative position be-
tween traffic elements are also critical. To verify their sig-
nificance, we remove T-T links and conduct the experiment.
As shown in Table 4, T-T links improve the model by 0.014
on the mean F1-measure (0.841 vs 0.827).

Semantic and Spatial Node Features. Semantic and
spatial features are as crucial as visual features to the model.
We conduct experiments by removing the two features and
compare them with the complete model. As shown in Table
4, the two features improve the model by 0.021 (0.841 vs
0.820) and 0.012 (0.841 vs 0.829) on mean F1-measure.

Visualization Analysis. As shown in Table 3, our ap-
proach achieves a good performance (0.786 on TFBM-
BT). Some visualization results are displayed in Figure 4,
showing that our framework can generate traffic knowledge
graphs effectively for various traffic scenes. For more com-
parisons of visualization results, please refer to the supple-
mentary material.

6. Conclusion

In this paper, we introduce VITKGG, a new task that
aims at extracting traffic knowledge from scene images
and formatting it into a graph. To achieve this, we cre-
ate a large dataset with comprehensive annotations to sup-
port VTKGG. Meanwhile, a novel framework is introduced
by us to generate traffic knowledge graphs through sign
component detection, relation reasoning, and text and at-
tribute recognition, in which our HGAT performs relation
reasoning in a top-down manner to utilize the correlation
in different types of relations. Experiments show that our
framework achieves good performance and generates traffic
knowledge graphs effectively.
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