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Abstract

Computer vision models have known performance dis-
parities across attributes such as gender and skin tone. This
means during tasks such as classification and detection,
model performance differs for certain classes based on the
demographics of the people in the image. These dispari-
ties have been shown to exist, but until now there has not
been a unified approach to measure these differences for
common use-cases of computer vision models. We present a
new benchmark named FACET (FAirness in Computer Vi-
sion EvaluaTion), a large, publicly available evaluation set
of 32k images for some of the most common vision tasks
- image classification, object detection and segmentation.
For every image in FACET, we hired expert reviewers to
manually annotate person-related attributes such as per-
ceived skin tone and hair type, manually draw bounding
boxes and label fine-grained person-related classes such
as disk jockey or guitarist. In addition, we use FACET
to benchmark state-of-the-art vision models and present
a deeper understanding of potential performance dispari-
ties and challenges across sensitive demographic attributes.
With the exhaustive annotations collected, we probe models
using single demographics attributes as well as multiple at-
tributes using an intersectional approach (e.g. hair color
and perceived skin tone). Our results show that classifica-
tion, detection, segmentation, and visual grounding mod-
els exhibit performance disparities across demographic at-
tributes and intersections of attributes. These harms sug-
gest that not all people represented in datasets receive fair
and equitable treatment in these vision tasks. We hope cur-
rent and future results using our benchmark will contribute
to fairer, more robust vision models. FACET is available
publicly at https://facet.metademolab.com.

1. Introduction
The ability of computer vision models to perform a wide

range of tasks is due in no small part to large, widely used
datasets. These large-scale datasets containing millions of

Category:
Guitarist

Hair color:     
Black/Brown

Hair type:     
Wavy

Perceived Age:
Middle

Photo is: 
Underexposed

Visibility: 
Face, torso visible

Perceived skin tone:
 

Perceived gender presentation:  
With more maleness

Additional:
Tattoo, facial hair

3          4         4          5         5          5          6 

Figure 1: An example image and annotations from our
dataset FACET . Every image in FACET contains annota-
tions from expert reviewers on the primary class, sensitive
attributes include perceived gender presentation, perceived
skin tone, and perceived age group and additional visual
attributes like hair color and type, visible tattoos, etc.

images often have image-level labels such as ImageNet [16]
or object-level annotations found in datasets such as MS-
COCO [63] or Open Images [62]. Annotations are also used
at the person-level, in datasets such as CelebA [64], UTK-
Faces [98] and More Inclusive People Annotations (MIAP)
[84]. These person-level annotations in particular enable a
more fine-grained analysis and evaluation of model perfor-
mance accross groups. Prior work using these person-level
annotations to evaluate model fairness has shown that vision
models learn societal biases and stereotypes, which neg-
atively impact performance and cause downstream harms
[87, 101, 74, 90, 88]. This makes fairness datasets particu-
larly important as vision models continue to grow.

One weakness of existing fairness datasets is that they
lack exhaustive and diverse demographic annotations that

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Size – 32k images, 50k people

Evaluation
Annotations

– 52-person related classes
– bounding boxes around each person
– person/hair/clothing labels for 69k masks

Protected
Groups

– perceived skin tone
– perceived age group
– perceived gender presentation

Additional
Person

Attributes

– hair: color, hair type, facial hair
– accessories: headscarf, facemask, hat
– other: tattoo

Miscellaneous
Attributes

lighting condition, level of occlusion

Table 1: Statistics on size of FACET and person annotations
including labels for classification (e.g. soldier, teacher) and
attributes such as hair color and perceived skin tone.

can support multiple vision tasks. For instance, while Open
Images More Inclusive People Annotations (MIAP) [84]
can be used for classification and detection, the labels are
not particularly diverse as only perceived gender presen-
tation and perceived age group are labeled. Image-level
class labels are also sparse, with an incomplete set of true
positives and true negatives per image. Another dataset,
CelebA, contains many more person-level attributes but is
primarily for face localization. In addition, CelebA con-
tains many subjective and potentially harmful attributes e.g.
attractive, big lips, chubby [25]. These weakenesses can
greatly impact our ability to perform more fine-grained fair-
ness analyses.

In this paper, we present FACET (Fairness in Com-
puter Vision Evaluation Benchmark), a large-scale evalu-
ation benchmark with exhaustive annotations for 32k im-
ages from Segment Anything 1 Billion (SA-1B) [59]labeled
across 13 person attributes and 52 person classes. The 13 at-
tributes include examples such as perceived skin tone, hair
type, perceived age group; the 52 person classes include
categories such as hairdresser and reporter. To ensure the
annotations are both high quality and labeled by a diverse
group of people, we used trained, expert annotators sourced
from several geographic regions (North and Latin America,
Middle East, Africa, East and Southeast Asia).

FACET enables a deeper analysis of potential fairness
concerns and model biases for specific demographic axes.
We can explore questions such as: 1) Are models bet-
ter at classifying people as skateboarder when their per-
ceived gender presentation has more stereotypically male
attributes? 2) Are open-vocabulary detection models better
at detecting backpackers who are perceived to be younger?
3) Do standard detection models struggle to detect people
whose skin appears darker? 4) Are these problems mag-
nified when the person has coily hair compared to straight
hair? 5) Do performance discrepancies differ across the
detection and segmentation tasks? These questions illus-

trate a few examples of how model biases can be explored
at a deep, intersectional level using the exhaustive annota-
tions in FACET. We use FACET to evaluate multiple state-
of-the-art vision models to understand their fairness on de-
mographic attributes (perceived gender presentation, per-
ceived skin tone, perceived age group) as well as their ex-
isting demographic biases. FACET is publicly available at
https://facet.metademolab.com.

Our contributions include:
– our new publicly available fairness benchmark

FACET, containing 32k images from Segment Any-
thing 1 Billion (SA-1B) [59], manually annotated with
demographic and additional visual attributes labels by
expert annotators

– 52 person-related class labels and manually drawn
bounding boxes for every annotated person in every
image (50k total people)

– person, clothing, or hair labels for 69k masks
– a benchmark for using FACET to compare different

models, showing quantitative results and qualitative
analyses on existing vision models using FACET

FACET is an evaluation-only benchmark. Using any
of the annotations for training is strictly prohibited.

2. Related Work
Vision datasets that are annotated with apparent or self-

reported demographic attributes are frequently used for
studying model fairness. Table 2 compares FACET to other
annotated datasets.
Classification Datasets such as [64, 98, 8, 57] are used to
evaluate the gender and skin tone disparities in face recog-
nition1. Gender Shades [8], for instance, showed that gen-
der classification systems perform significantly worse on fe-
males compared to males and on darker skin compared to
lighter skin using labels from annotators. These datasets
cannot be used for tasks outside of facial recognition, e.g.
object detection or image classification. Casual Conver-
sations [43] is a dataset used for videos; this dataset was
used to highlight disparities across gender and skin tone
for the Deep Fake Detection challenge [23]. Geographic
and income-based disparities have been evaluated as well
[15, 89, 37], most commonly with the DollarStreet dataset
[1, 80].
Detection/Segmentation [101] generated gender annota-
tions via captions for MS-COCO. [94] annotated a subsec-
tion of pedestrians in BDD100k [97] for the task of pedes-
trian detection and found higher performance for lighter
skin tones. However, these demographic annotations are of-
ten noisy and either lack annotator training or lack annota-
tors altogether and are instead approximated from captions.

1We retain the same language used in the original papers, which is
based on gender labels of the datasets that were audited.
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Dataset Dataset Size Apparent or Self-Reported Attributes
Task

#/people #/images #/videos #/boxes #/masks gender age skin tone race lighting additional Tasks
UTK-Face[98] 20k 20k – – – Yes Yes No Yes No No –
FairFace[57] 108k 108k – – – Yes Yes No Yes No No –

Gender Shades[8] 1.2k 1.2k – – – Yes Yes Yes No No No –
OpenImages MIAP[84] 454k 100k – 454k * Yes Yes No No No No C*DS*

[94] annotations for BDDK 100k [97] 16k 2.2k – 16k * No No Yes No Yes No DS*

[100] annotations for COCO [63] 28k 16k – 28k 28k Yes No Yes No No No C*DS
Casual Conversations v1[43] 3k N/A 45k – – Yes Yes Yes No Yes Yes –
Casual Conversations v2 [42] 5.6k N/A 26k – – Yes Yes Yes No Yes Yes –

Ours – FACET 50k 32k – 50k 69k Yes Yes Yes No Yes Yes CDS
* represents tasks/annotations that are not included in the fairness portion of the dataset, but are included in the overall dataset.

e.g COCO has been used for multi-class classification [101, 92]

Table 2: Tasks and attribute annotations comparing existing datasets to FACET. These existing datasets were designed for
fairness evaluations for other use cases, which is not to suggest that they are limited in use. The tasks (CDS) considered
are Classification of an image, Detection of a person or person-related objects, Segmentation of a person or person-related
objects. For classification, we do not include the classification task of classifying protected or non-protected attributes of
a person. For attributes, FACET does not include race as it is not a visually salient category, exacerbates bias [58] and
misclassification has been shown to cause emotional distress [10]. Bounding boxes are denoted as bboxes.

More Inclusive Annotations for People (MIAP) [84], which
is a subset of Open Images [62], is dataset that does focus
on high quality, more complete person-level demographic
annotations for bounding boxes. While MIAP is similar to
FACET, it only has annotations for perceived gender pre-
sentation and perceived age group. FACET has far more
exhaustive annotations spanning far more attributes. We
have 13 attributes, including demographic attributes (per-
ceived gender presentation, perceived age group, and per-
ceived skin tone) as well as additional attributes such image
quality (lighting and occlusion) and physical presentation
(e.g. hair type, accessories, tattoos, etc.).
Best Practices Audits of popular computer vision datasets
have found gender artifacts [66], a lack of geographic
diversity [85], malignant stereotypes and NSFW content
[12, 74, 6]. To combat these issues, there has been sig-
nificant research about dataset development including tools
[91], best practices for creating datasets [61, 82, 3, 52, 73,
42, 54, 81, 19, 83] and designing annotation tasks with
crowdworkers [17, 14]. A large body of work also explored
how researchers should document the intended use and con-
siderations made when developing models [69], datasets
[32, 76, 47, 67] and crowdsourced annotation tasks [21].

3. Benchmark Method
The goal of our benchmark is to evaluate and analyze

how vision models perform across different demographic
and additional attributes for different categories of people.
This analysis requires (1) images that contain people with a
diverse set of attributes and (2) images that contain people
matching a variety of person-related categories. We focus
on person-related categories such as occupations of people
or person-related pasttimes, e.g. doctor, basketball player,
student, backpacker, etc.). We prioritized a diverse set of

categories for a more thorough analysis.
To generate the list of person-related categories, we use

WordNet [68], which is a hierarchical database of language
concepts. Each language concept is a single node in the
hierarchy. For instance, the concept apple is a node with
parent edible fruit. We take the language concept person
and treat all of its children as potential categories, following
[96]. We filter out offensive synsets noted in [96] and [12],
generating 1,239 candidate synsets. We trim this list to 52
categories using the considerations below. Figure 2 shows
a sample WordNet tree structure for two classes in FACET,
and Figure 8 in Appendix A.2 shows the full hierarchy.

Connection to ImageNet-21k (IN21k) To ensure con-
sistency with existing concepts used for computer vision
model evaluation, we require our categories to overlap with
the taxonomy of the widely used ImageNet-21k (IN21k)
dataset [79]. This approach has been used to select ob-
ject classes by other datasets [5] and follows previous work
[34, 86]. This means models trained with IN21k can be
evaluated out-of-the-box on FACET. IN21k is a long-tailed
dataset, meaning many classes have very few images. We
exclude categories with < 500 examples similar to [79] to
ensure that models pre-trained on IN21k will transfer seam-
lessly to our evaluation set.

Concept Selection IN21k has overlapping classes with
varying levels of specificity (i.e. surgeon is a subcate-
gory of doctor). Following [49], we include classes with
roughly the same “basic level.” Using their findings of rel-
ative feature importance for classifying “basic level”, we
limit the depth in the WordNet hierarchy from the person
node to 5, as a proxy for level of specificity. To alleviate
ambiguity, we focus primarily on occupation/trade, sports,
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art, and leisure related categories of people. This leaves us
with 52 categories. Our final list of concepts is shown in
Table 17 in the Appendix.

Person

Adjudicator

Judge Official

Referee

Figure 2: Example of WordNet tree structure relating the
FACET classes referee and judge to the Person node.

4. Attribute Selection: Demographic and Ad-
ditional Visual Attributes

FACET includes both demographic attributes and addi-
tional visual attributes. These exhaustively labeled, man-
ually annotated attributes for all images in the dataset al-
lows for evaluation of model performance and robustness at
a fine-grained level. For example, we can investigate po-
tential biases associated with a single attribute as well as
at the intersection of multiple attributes. Intersectionality
is a framework exploring how multiple attributes can actu-
ally magnify societal biases [13]; the exhaustive attributes
in FACET means we can explore intersectional harms with
respect to model fairness as well. Examples questions we
can explore include “Do models struggle to classify people
with tattoos?” (single attribute) and “Do models perform
better for people with curly hair who appear to have per-
ceived lighter skin tones than to those with perceived darker
skin tones?” (intersection of attributes). See Appendix A.4
for the full list of attributes and their distributions.

4.1. Demographic Attributes
Perceived Skin Tone The Monk Skin Tone Scale [70],
shown in Figure 3, was developed specifically for the com-
puter vision use case. We intentionally use the Monk Skin
Tone scale over the Fitzpatrick skin type [29], which was
developed as means for determining one’s likelihood of
getting sunburn and lacks variance in darker skin tones
[51, 72]. Fitzpatrick skin type has been shown to be un-
reliable for image annotation [36].

Skin tone as a spectrum. Skin tone is difficult to anno-
tate2 and can vary based on the lighting of the photo [55].
For this reason, we annotate skin tone as a spectrum. We
gather annotations from three different annotators, allowing
annotators to select as many skin tone values they feel best
represent the person. This gives us a distribution over var-
ious skin tones. We note that perceived skin tone is not a
proxy for race or ethnicity, and should not be used as such.

2Studies show even annotating one’s own skin tone is difficult [27].

Figure 3: Monk Skin Tone Scale[70], an inclusive scale that
includes 10 different skin tones.

Perceived Gender Presentation Annotators select
whether they perceive a person as having more stereotyp-
ically female attributes, having more stereotypically male
attributes, or having attributes outside of the gender binary.
We annotate perceived gender presentation instead of gen-
der, as gender cannot be determined purely from an image;
attempting to do so can be harmful to groups who are mis-
gendered [40]. A more thorough discussion is in Section
6.4.

Perceived Age Group We have three distinct perceived
age group groups – younger are people perceived to be un-
der 25 years old; middle are people perceived to be be-
tween 25-65 years old and older are people perceived to
be over 65 years old. This follows the recommendations of
[42] which matches the United Nation’s breakdown of age
[2], but we collapse Adults 25-40 and Middle-age

Adults 41-65 into one category middle.
While it is impossible to tell a person’s true age from

an image, these numerical ranges are a rough guideline to
delineate each perceived age group .

4.2. Additional Attributes
Hair color and hair type Because conv-nets are shown
to recognize patterns and textures [30, 31, 33, 7] and hair
types represent a range of different textures, we annotate
the hair color and hair type.

Perceived lighting. Annotators labeled the lighting con-
dition on the person. This annotation is important in part
because it heavily impacts perceived skin tone [55]. These
annotations can also guide the difficulty of the classifi-
cation/detection problem, as models have been shown to
have robustness vulnerabilities with respect to brightness
[45, 53].

Additional attributes. We also annotate additional items
relating to a person’s appearance, using the recommenda-
tions of [42]. We condense the recommendations to the fol-
lowing list. These are facial hair, head scarf 3, hat/cap,
eyewear (eyeglasses/sunglasses), face masks 4, tattoos
and a person’s visibility .

3The motivation for this annotation is from a finding of [86] that the
concept hijab is predicted far more frequently for images with perceived
lighter skin tones in UTK-Faces [98] than for those with perceived darker
skin tones. It is unknown if this is a source of bias, as it is unknown whether
or not there was a hijab in the photo.

4Many images in FACET include more face masks than prior works,
such as ImageNet, due to the COVID-19 pandemic.

20373



5. Annotation Method
5.1. Data Preprocessing

FACET is composed of images from Segment Anything
1 Billion (SA-1B). We preprocessed the dataset to create a
rough pool of relevant examples (with a focus on high re-
call) before beginning the annotation process. We use cap-
tion and tags for each image to create a candidate pool of
images to annotate. First, for each of the 52 selected cate-
gories, we created a list of related terms.

As each category corresponds to a WordNet synset, we
use the lemmas for each synset to generate the related terms
per concept. For categories with low frequency in the
dataset, we supplement the list with related nouns (ie flute
when looking for examples of flutist).

Separately, for each example (image, caption, tag), we
tokenize and lemmatize the caption using the Natural Lan-
guage Toolkit (NLTK) [65]. For instance, the caption “The
person is playing the flute” gets lemmatized to {person,
play, flute} (without stop words). We compute the overlap
between the caption’s lemmas + tags with the relevant term
lists for each of the 52 categories to approximate which cat-
egories likely occur in each image. We select images with
the most overlap for annotation.

5.2. Annotation Pipeline
Given the sensitivity of these labels, we took multiple

steps to ensure high-quality annotations. Annotators com-
pleted stage-specific training before beginning labeling and
perceived skin tone annotations underwent multi-review.
Annotators could also mark cannot be determined for any
image where they could not perceive the attribute. See Fig-
ure 6 in Appendix A.2.

Stage 1: Filtering Images by Target Categories First, an-
notators are tasked with quickly filtering images based on
whether they contain people who belong to a subset of cat-
egories. Following the process described earlier in this sec-
tion, we use the metadata for each image to create a shorter
list of likely categories per photo. We do not use any classi-
fication or detection models to filter images to avoid poten-
tial model biases that can skew the data distribution. Anno-
tators note the number of people in each image who match
the specified categories. We exclude images marked with
more than 5 people matching the target categories, given
the time-intensive nature of annotating attributes for each
person. This stage eliminates roughly 80% of the candidate
images. For the remaining stages, we move from quick fil-
tering to a focus on precision.

Stage 2: Annotating Bounding Boxes Annotators are
tasked with drawing bounding boxes around each person
in the image that matches any of the target 52 categories.

For each bounding box, annotators mark a primary class, as
well as a secondary class if necessary. The primary and sec-
ondary class structure alleviates potential overlap between
categories. For example, a person playing the guitar and
singing can match the category labels guitarist and
singer. Furthermore, allowing two classes permits for
representation of visually ambiguous classes, e.g. a person
in scrubs who could be a doctor or nurse.

Stage 3: Annotating perceived skin tone We assign per-
ceived skin tone annotations to its own step separate from
other attributes to allow us to aggregate annotations from
multiple raters. We choose to aggregate as one’s own skin
tone can affect the perceived skin tone of others [46, 28].
In this stage, annotators label the perceived skin tone of a
specified person using the Monk Skin Tone Scale [70] (see
Figure 3). We ask annotators to select at least 2 adjacent
values and aggregate the results across three annotators. We
report the number of times each skin tone was chosen.

Stage 4: Annotating Remaining Attributes In the final
stage, annotators label the remaining attributes (see Section
4.2) for each person in the bounding boxes from Stage 2.

Stage 5: Annotating SA-1BMasks As FACET images
come from SA-1B, which has images and masks, we label a
subset of masks as person, clothing, hair. We do
not collect exhaustive annotations for person-related masks
in FACET ; we focus on annotating masks for people who
are fully visible, with an attempt to balance demographic
attributes. More details are given in Appendix A.2.1.

5.3. Annotator Diversity
We prioritized having a geographically diverse set of an-

notators following [56, 17] and sourced raters from varying
regions to increase the diversity of annotations. Our annota-
tors come from six different geographic regions to increase
the diversity of the annotations, with one country per re-
gion. These regions (with country in parenthesis) include
North America (United States), Latin American (Colom-
bia), Middle East (Egypt), Africa (Kenya), Southeast Asia
(Philippines) and East Asia (Taiwan). We show a more fine-
grained breakdowns of annotators per region in Figure 4.
We aimed for a roughly balanced number of raters per re-
gion but had disproportionate pass-rates of training across
the various regions. We further describe our annotation pro-
cess and annotators sourced in Appendix A.3, and answer
the questions posed by CrowdWorkSheets [21] in Appendix
C.

5.4. FACET Statistics
In this section we summarize the attribute and image

breakdown of FACET. Table 3 shows the three demographic
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Egypt (14)
8.5%

Philippines (40)

24.2%

United States (51)
30.9%

Kenya (20)

12.1%

Spain (15)

9.1%
Taiwan (4)

2.4%
Colombia (21)

12.7%

Figure 4: Breakdown of raters who passing training by per-
centage and by raw number, shown in parentheses.

Perceived or
Apparent Attributes

#/
pe

op
le

%

#/
im

ag
es

%

gender presentation
– more stereotypically F 10k 21% 8k 26%
– more stereotypically M 33k 67% 23k 72%
– non-binary 95 <1% 95 <1%
– unknown 6k 11% 5k 5%

Monk Skin Tone
– 1 ⌅ 5k 10% 4k 13%
– 2 ⌅ 20k 41% 15k 48%

– 3 ⌅ 26k 53% 19k 61%
– 4 ⌅ 27k 54% 20k 63%
– 5 ⌅ 22k 44% 17k 54%
– 6 ⌅ 16k 33% 13k 40%
– 7 ⌅ 9k 18% 7k 23%
– 8 ⌅ 5k 10% 4k 13%
– 9 ⌅ 3k 6% 2k 7%
– 10 ⌅ 1k 3% 1k 3%
– unknown 18k 37% 13k 42%

age
– younger 9k 18% 7k 23%
– middle 27k 55% 20k 64%
– older 3k 5% 2k 8%
– unknown 10k 21% 9k 27%

*Images can have multiple labels for each attribute, which is why num-
bers may not sum to 100%. F=femaleness; M=maleness

Table 3: Breakdown of representation of the demographic
groups in the evaluation set.

groups and their corresponding number of occurrences in
the evaluation set. The majority of perceived gender presen-
tation annotations are people perceived to have more stereo-
typically male attributes, followed by people perceived as
having more stereotypically female attributes. Perceived
skin tone annotations essentially follow a normal distribu-
tion; the majority of annotations are in the range of skin
tones 3-6. Appendix A.4 details more statistics about the
FACET benchmark including the number of people per
class and demographic attribute along with the frequency
of additional attributes. Figure 5 shows an approximate

Figure 5: Approximate geographic distribution of the im-
ages in FACET.

geographic breakdown of the images in FACET. The geo-
graphic information was inferred from locations mentioned
in the captions, so the distribution is approximate.

6. Fairness Evaluations using FACET
We use FACET to evaluate fairness by measuring perfor-

mance disparities across different attributes for a selection
of state-of-the-art vision models. Given a model f , a perfor-
mance metric recall, a set of concepts C, an attribute label l
and a set of images IC

l , we compute:

disparity = recall(f(l1, IC
l1 , C))

� recall(f(l2, IC
l2 , C))

(1)

As a concrete example, we can compute the disparity be-
tween people perceived as younger (l1) versus people per-
ceived as older (l2) for the concept teacher (C = {teacher}).
Images IC

l1
and IC

l2
are images of teacher who are perceived

to be younger and images of teachers who are perceived to
be older, respectively. Disparity > 1 indicates the model
performs better for images with label l1 and disparity < 1
indicates the model performs better for label l2. A perfectly
fair model evaluated with FACET would have a disparity of
0, meaning it has the same performance across all images
regardless of the associated attributes.

FACET is unique for two key reasons:
1. Exhaustive attribute and class level evaluation:

FACET’s annotations are exhaustive, meaning every
person who matches a class in every image is anno-
tated across all attributes through a rigorous annotation
process. Datasets that include only the person class
label and/or very sparse attribute labels risk bias leak-
age from the unlabeled people or difficulty performing
a deep analysis due to the lack of exhaustive labels.
These are not concerns with FACET.

2. Annotations for multiple vision tasks: Because every
image is annotated with bounding boxes and person-
related classes, multiple vision tasks can be evaluated
and analyzed alongside the exhaustively annotated per-
son attributes.
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Difference in Average Recalls
Person Class M � F
gardener 16.4
craftsman 13.6
laborer 10.3
skateboarder 8.8
prayer 8.8
waiter 8.3
speaker 5.4
guitarist 4.0
singer 1.6
lawman 1.4

Person Class F � M
dancer 21.7
retailer 17.0
reporter 16.0
nurse 12.9
student 12.8
gymnast 8.5
painter 6.1
hairdresser 5.2
climber 5.1
horseman 4.5

Table 4: CLIP’s performance disparity for the classes with
the largest disparity across perceived gender presentation.
The classes on the left indicate better performance for im-
ages with people who are perceived as having more stereo-
typically male attributes; results on the right indicate bet-
ter performance for those perceived as having more stereo-
typically female attributes.

6.1. Classification
Are models better at classifying people as skateboarder
when their perceived gender presentation has more
stereotypically male attributes? To help answer this ques-
tion and others like it, we evaluate standard image classi-
fication models with the FACET class labels. For classi-
fication evaluation, we only evaluate images with a single
person. For images where a single person is labeled with
multiple person classes, we treat both classes as valid la-
bels. We evaluate classification using CLIP ViT-B/32 [77]
in a zero-shot setting. The largest discrepancies for CLIP
on the perceived gender presentation axis are shown in Ta-
ble 4. Some of these classes parallel societal, gender-related
biases (e.g. careers like nurses and hairdresser for those who
are perceived with more femaleness [35, 71]). We show fur-
ther analysis of CLIP across other demographic groups in
Appendix A.5. We also show how we can use the FACET
IN21k class overlap to evaluate an ImageNet21k pre-trained
ViT [26].

6.2. Person Detection & Segmentation
6.2.1 Person Detection

We evaluate a Faster R-CNN model with a ResNet-50-FPN
backbone [78] pretrained on COCO. During evaluation, we
only keep the predicted boxes corresponding to the COCO
person class. We treat the remaining boxes as class-
agnostic, and we compute the average recall (AR) and mAR
(mean average recall) metrics proposed in [50] with all pre-
dicted boxes and measure performance across the demo-
graphic attributes. For person detection, we focus on evalu-
ating perceived skin tone and how model performance par-
allel societal biases [22, 60].

Monk Skin Tone (MST) mAR AR0.5 AR0.75

– 1 ⌅ 75.5 98.4 85.0
– 2 ⌅ 75.0 98.3 84.0
– 3 ⌅ 74.7 98.3 83.5
– 4 ⌅ 74.4 98.1 83.0
– 5 ⌅ 74.1 98.2 82.6
– 6 ⌅ 73.9 98.3 82.5
– 7 ⌅ 73.7 98.2 82.2
– 8 ⌅ 73.7 98.0 82.5
– 9 ⌅ 73.3 97.3 81.1
– 10 ⌅ 72.6 96.5 80.4

Average Recall (AR), with IoU values as subscripts. mAR is
averaged across IoUs from 0.5 to 0.95, in increments of 0.05.

Table 5: Average recall (AR) on FACET for a ResNet-50
Faster R-CNN. The model has the best performance for
MST=1, which is the lightest skin tone, and the lowest per-
formance for MST=9 and 10, are the darkest skin tones. The
largest disparity is for AR0.75.

Do standard detection models struggle to detect people
whose skin appears darker? We compute the AR across
the predicted bounding boxes for perceived skin tone , as
shown in Table 5. At every IoU for the ARs, the dark-
est perceived skin tone has the lowest performance. The
gap between the highest and lowest performance is over 4
points at AR0.75, which suggests Faster R-CNN does strug-
gle more on precisely detecting those perceived with darker
skin tones.

Does this problem magnify when, for instance, the per-
son has coily compared to straight hair? We dig deeper
into the previous results to investigate intersections of at-
tributes. In Table 6 we measure mAR per hair type for
people with the three lightest perceived skin tone versus
the three darkest perceived skin tone. This unearths sev-
eral concerning findings: for 456 hair types performance is
higher for the lighter skin tones than the darker skin tones.
These are fairly significant gaps; we over a 10 point dif-
ferent for hair type dreads at AR0.75, for instance. This
is a particularly interesting finding for two reasons. First,
we see a 50x increase in the disparity for dreads across per-
ceived skin tone from AR0.5 to AR0.75. This suggests Faster
R-CNN can detect people with dreadlocks, but struggles to
perform accurate localization as shown by the larger gap as
the IoU threshold for AR increases. Second, dreadlocks are
often associated with darker skin and a plethora of associ-
ated stereotypes [24, 9, 75, 4]). This means the likely asso-
ciation because dreads and darker skin tones in the training
data interestingly combat this performance disparity.
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lighter = {1 ⌅, 2 ⌅, 3 ⌅ } darker = {8 ⌅, 9 ⌅, 10 ⌅ }

Hair #
Skin !

mAR AR0.5 AR0.75

lighter darker lighter darker lighter darker
coily 76.7 73.4 98.2 98.5 87.3 80.9
dreads 77.1 74.7 97.9 98.1 94.8 85.7
bald 78.1 71.5 99.0 96.7 87.8 77.5
straight 75.6 76.1 98.4 99.1 84.8 85.6
curly 75.0 74.8 98.5 99.2 84.7 83.7
wavy 76.1 75.8 98.6 99.1 85.5 84.8

Average Recall (AR), with IoU values as subscripts. mAR is av-
eraged across IoUs from 0.5 to 0.95, in increments of 0.05.

Table 6: Average recall (AR) on FACET for a ResNet-50
Faster R-CNN. We show performance for the intersection
of hair type and perceived skin tone. Performance is higher
for lighter perceived skin tone for every hair type except
straight and wavy.

6.2.2 Person Instance Segmentation

We evaluate a MaskR-CNN model with a ResNet-50-FPN
backbone [44] pretrained on COCO. In the same pattern as
for person detection, we only keep the predicted masks cor-
responding to the COCO person class, and compute AR
in a class agnostic way. We use the IoU between predicted
and ground truth mask for instance segmentation, opposed
to between boxes used for detection.

Do performance discrepancies differ across the detec-
tion and segmentation task? We compare potential dis-
crepancies across segmentation and detection of people. We
evaluate MaskR-CNN for person detection and person seg-
mentation separately. For consistency, we limit the evalua-
tion for both detection and segmentation to the set of people
who have a mask annotation. We compare the patterns of
discrepancies in AR across perceived gender presentation
for person detection and segmentation, as shown in Table 7.
We notice that for both detection and segmentation, the per-
formance disparities are largest at AR0.75. We also observe
slightly larger gaps in performance for detection compared
to segmentation. In line with prior work [44], we find higher
AR for person detection than instance segmentation. We
describe the experimental setup in more detail in Appendix
A.5.

6.3. Open World Detection & Visual Grounding

6.3.1 Open Vocabulary Detection

Next we evaluate open vocabulary detection using Detic
[102]. We describe the experimental setup in detail in the
Appendix A.5. For Detic, we focus on perceived age group.

mAR AR0.5 AR0.75

perceived gender
presentation bo

x

m
as
k

bo
x

m
as
k

bo
x

m
as
k

– more stereotypically
male attributes 78.3 72.2 99.3 98.1 88.0 84.6

– more stereotypically
female attributes 75.6 70.8 99.0 97.5 84.7 82.9

– outside of gender
binary

77.0 63.0 98.0 92.0 88.0 74.0

Average Recall (AR), with IoU values as subscripts. mAR is
averaged across IoUs from 0.5 to 0.95, in increments of 0.05.

Table 7: We compare the AR on FACET for a ResNet-
50 MaskR-CNN across the person detection and person in-
stance segmentation tasks. The candidates box dictates the
AR for person detection, box proposals, and mask for seg-
mentation, mask proposals.

Are open-vocabulary detection models better at detect-
ing backpackers who are perceived to be younger? To
be illustrative of disparities observed with FACET, we se-
lected the three person related classes with the biggest dis-
parity between groups: trumpeter, backpacker and painter.
Detic exhibits perceived age group-based performance dis-
parities for all 3 categories. The disparities are large, with
an 15 point gap in mAR for the backpacker class. The dis-
parities are also consistent across AR measurements for a
specific class. Unlike for Faster R-CNN with perceived
skin tone, we typically observe larger gaps for AR0.5 than
AR0.75, suggesting that in this case there is perhaps more
of a discrepancy in the classification of an object as in the
scene as there is with the precision of the bounding box. We
show all per-class disparities as well as the mean disparities
across all 52 classes in Table 15 in Appendix A.5.

6.3.2 Visual Grounding

Lastly, we evaluate the visual grounding using OFA [93],
a sequence-to-sequence vision-language model. We eval-
uate perceived age group disparities using the three person
classes with the largest disparities which are nurse, gardener
and guitarist. Results are in Table 15. OFA’s largest dispar-
ity is nearly 27 points, observed in the nurse class. The
disparities are also consistent across all IoU values; for ev-
ery class, the best performing perceived age group label is
consistent across all IoU values. We show the full table
of per-class disparities as well as the disparities averaged
across all classes in Table 15 in Appendix A.5.

6.4. Limitations
As the development of datasets for fairness analysis be-

comes more common, approaches and recommendations
for how to do so in ethical and safe ways are also being
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Person
Class

Detic (detection) OFA (visual grounding)
mAR AR0.5 AR0.75 mAR AR0.5 AR0.75

backpacker gardener
– young 45.4 55.3 47.4 11.9 32.6 7.0
– middle 42.1 51.7 44.6 18.3 40.1 14.6
– older 29.8 35.3 33.3 27.9 58.1 24.2

trumpeter solider
– young 22.8 26.7 25.6 16.3 9.2 40.0
– middle 29.5 34.8 31.4 16.3 14.5 33.8
– older 38.4 45.5 38.2 1.3 6.3 0.0

drummer guitarist
– young 19.9 24.9 19.7 19.8 38.7 18.5
– middle 26.3 34.7 27.6 19.6 35.5 20.6
– older 34.2 41.8 35.8 32.0 56.7 36.7

Average Recall (AR), with IoU values as subscripts. mAR is
averaged across IoUs from 0.5 to 0.95, in increments of 0.05.

Table 8: Per-class performance for Detic and OFA on a sub-
set of FACET classes. The perceived age group with the
highest performance per class is bolded.

increasingly explored [42, 32, 3, 83]. While we strongly
believe FACET will help practitioners better understand
sources of bias in their model, we note that translating real
world concepts and demographic groups to dataset annota-
tions is inherently imperfect.

First, while self-identification of concept classes and
person-related attributes is preferred [83, 99], our adapta-
tion of an existing dataset requires external annotations. To
reduce these potential biases, we use highly trained anno-
tators and avoid automated labeling methods like adapting
existing captions, alt-text or model classifications [101, 92,
99, 39, 38, 84, 8]. Second, while generating sets of labels
for each attribute, there is a trade-off between having more
labels (wider representation) and opting for fewer, higher
frequency labels (more statistical significance) [38]. This
was extensively considered, and we acknowledge that, as
with any paper using discrete labels, our labels for perceived
gender presentation and perceived age group risk erasure
of genders and ages that are not identifiable in our cate-
gorization [20]. For skin tone, we follow the Monk Scale
[70], which shows better inclusivity of darker skin tones.
For concept classes, we map to ImageNet classes to encour-
age easy adoption and to ensure mutually exclusive classes.
Lastly, FACET and other fairness datasets are representative
of the current time period and organizational infrastructure
within which it was created [18, 32]. To address how this af-
fects annotations and insights when performing evaluations,
we include in Appendix C our responses to the CrowdWork-
Sheets [21] for FACET.

7. Discussion
We have seen rapid growth and impressive performance

gains in computer vision across a number of tasks such as

classification, detection, segmentation and visual ground-
ing. Simultaneously, these models have learned societal bi-
ases and can perpetuate these harmful stereotypes in down-
stream tasks. We present FACET, a vision fairness bench-
mark that contains 32k annotated images of 50k people.
People in the images are exhaustively labeled with demo-
graphic attributes, including perceived gender presentation,
perceived skin tone and perceived age group, and additional
attributes such as hair type and light exposure. Labeling de-
mographic attributes requires thoughtful design, so we hired
expert annotators and prioritized clean annotations. In ad-
dition to these attributes, FACET also has manual annota-
tions for bounding boxes and person-related classes. These
person-related classes, such as hairdresser and farmer, over-
lap with the ImageNet-21K (IN21k) vocabulary, meaning
vision models that can be evaluated on IN21k can also
seamlessly use FACET. We aimed to be extremely con-
scious and respectful with our annotations, while also ac-
knowledging that there are limitations with this and similar
fairness datasets. We are publicly releasing FACET to en-
courage and lower the barrier to entry to evaluating vision
models for potential biases. We propose several ways that
researchers can use FACET to evaluate their models for po-
tential fairness concerns across a variety of common vision
tasks.
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