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Abstract

Accurate intrinsic calibration is essential for camera-
based 3D perception, yet, it typically requires targets of
well-known geometry. Here, we propose a camera self-
calibration approach that infers camera intrinsics during
application, from monocular videos in the wild. We pro-
pose to explicitly model projection functions and multi-
view geometry, while leveraging the capabilities of deep
neural networks for feature extraction and matching. To
achieve this, we build upon recent research on integrating
bundle adjustment into deep learning models, and intro-
duce a self-calibrating bundle adjustment layer. The self-
calibrating bundle adjustment layer optimizes camera in-
trinsics through classical Gauß-Newton steps and can be
adapted to different camera models without re-training. As
a specific realization, we implemented this layer within the
deep visual SLAM system DROID-SLAM, and show that
the resulting model, DroidCalib, yields state-of-the-art cal-
ibration accuracy across multiple public datasets. Our re-
sults suggest that the model generalizes to unseen environ-
ments and different camera models, including significant
lens distortion. Thereby, the approach enables perform-
ing 3D perception tasks without prior knowledge about the
camera. Code is available at https://github.com/
boschresearch/droidcalib.

1. Introduction
Inferring 3D structure and camera motion from a se-

quence of images typically requires knowledge about the
camera. Specifically, the camera’s mapping of 3D points to
the 2D image, characterized by the intrinsic camera param-
eters, must be known (Fig. 1). Intrinsic camera parameters
are commonly obtained in a calibration process in which
well-known calibration targets are moved in front of the
camera [53, 46]. As the 3D structure of these calibration
targets is precisely known, images of the target give 3D-2D
correspondences that can be used to infer intrinsic camera
parameters. However, this is a time-consuming process and
does not allow for continuous re-calibration.
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Figure 1. The proposed self-calibration infers the intrinsic cam-
era parameters θ that define a camera’s projection function (top)
without relying on calibration targets. A deep neural network N
predicts weighted correspondences (flow fij , confidence weights
wij), while the self-calibrating bundle adjustment (SC-BA) layer
estimates the intrinsics through differentiable Gauß Newton steps
(bottom).

Camera self-calibration aims at inferring camera intrin-
sics based on arbitrary images or image sequences, without
the need for a calibration target [14]. Yet, achieving ac-
curacy and robustness comparable to target-based calibra-
tion remains challenging. Single-image self-calibration ap-
proaches (e.g. [52, 51, 22, 19]) have proven effective for
image undistortion and for cases in which only a single im-
age is available, however, they have to rely on known or
learned properties of the environment (e.g. the existence of
straight lines) which limits their ability to generalize, and
they are typically limited to a subset of the intrinsics.

Multi-view approaches, on the other hand, use a se-
quence of images and exploit the consistency of the scene
structure over time to estimate camera intrinsics (e.g. [24,
33, 25]). The most common approach is to use a classi-
cal Structure-from-Motion (SfM) pipeline, and to refine in-
trinsics jointly with camera motion and 3D structure [33].
While classical SfM pipelines generalize well to unseen
environments, they typically rely on handcrafted features
and thus do not leverage the capabilities of learned fea-
tures which have proven effective across a variety of 3D
computer vision tasks [43, 40, 48, 32]. Deep learning ap-
proaches, on the other hand, replace the SfM pipeline by a
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deep learning pipeline and either implement the intrinsics as
learned parameters of the model [9, 47, 8], or they regress
the intrinsics from input sequences at inference time [9, 5].
While learning the intrinsics can achieve comparatively ac-
curate results, it requires training a model specifically for
every camera [9, 47, 8]. Regressing the intrinsics, on the
other hand, can potentially generalize to different cameras,
but the accuracy of existing models was shown to be lim-
ited [9] and generalization to different cameras will require
a balanced training dataset that contains sequences taken by
a large variety of cameras.

We argue that camera self-calibration should leverage
the capabilities of deep neural networks, but to enable gen-
eralization across cameras, we propose to complement the
learned part with explicit modeling of projection functions
and multi-view geometry. Thereby, the model does not
have to learn the underlying multi-view geometry from
scratch, and it is not tied to one specific projection model,
such as pinhole or fisheye model. To achieve this, we
build upon recent research on integrating bundle adjustment
into deep learning models [39, 42, 44], and introduce a
self-calibrating bundle adjustment layer to optimize cam-
era intrinsics classically within an end-to-end deep learning
model (Fig. 1). After introducing the general idea, we pro-
pose to integrate this layer within the deep visual SLAM
system DROID-SLAM [44], resulting in a system that in-
fers camera intrinsics from monocular video during appli-
cation. Our contributions are the following:

1. We propose an intrinsic camera self-calibration ap-
proach that leverages deep learning while explicitly
modeling projections and multi-view geometry.

2. To this end, we introduce a differentiable self-
calibrating bundle adjustment (SC-BA) layer that en-
ables estimating camera intrinsics within a deep learn-
ing model.

3. We integrate the SC-BA layer into the DROID-
SLAM [44] architecture, giving a system that infers
camera intrinsics from monocular video, and show that
it yields consistently higher calibration accuracy than
baseline methods on three public datasets.

2. Related Work
Classical self-calibration from video Classical ap-

proaches to intrinsic camera self-calibration rely on geo-
metric multi-view constraints to estimate camera parame-
ters from a sequence of images. The first approach to cam-
era self-calibration used the Kruppa equations to estimate
pinhole intrinsics based on three views [24] and the idea
has been adapted and improved in various works which are
summarized in [14]. More recent works typically make use
of a Structure-from-Motion (SfM) pipeline [45, 33], where

camera intrinsics can be refined jointly with 3D structure
and poses during bundle adjustment (Fig. 2). However, al-
though the SfM-based approach is widely used in practice,
there are few works investigating the accuracy of intrinsics
estimation explicitly. Similarly, intrinsics can be estimated
in a classical visual SLAM system [6, 18], however, most
works assume prior target-based calibration and refine, if at
all, extrinsic parameters [38, 15, 16, 27, 4]. Finally, a vari-
ety of works proposed to make use of additional constraints,
such as pre-built 3D maps [20], planes [41] or special types
of motion [13] for intrinsic camera calibration. This can
lead to better conditioned optimization problems, but re-
duces the ability to generalize to arbitrary environments.

Deep learning for self-calibration Deep learning ap-
proaches to camera self-calibration can be divided into
single-image approaches and video-based approaches.
Single-image approaches include models for image undis-
tortion [52, 51], but also models that regress focal length, ra-
dial distortion and horizon line [19, 2, 22, 54]. However, by
construction, these approaches have to rely on assumptions
about the content of the image (e.g. the existence of straight
lines [51]) which limits their ability to generalize. Further-
more, single image approaches are typically limited to sub-
sets of parameters, and have to make assumptions on others
(e.g. fixing the principal point at the image center [22]).
Video-based approaches were initially developed to enable
depth estimation [9, 5], or the training of NeRFs [17] based
on videos with unknown cameras. Existing models simul-
taneously regress pixel-wise depth, camera motion and in-
trinsics (Fig. 2) and are trained in a self-supervised man-
ner [9, 5, 17, 8]. However, despite enabling depth esti-
mation from videos in the wild, the accuracy of predicted
intrinsics was shown to be comparatively low [9]. As an
alternative, it was proposed to implement the intrinsics as
model parameters that are learned during training, rather
than predicted at inference time (Fig. 2) [9, 8, 47]. It has
been shown that the intrinsics of the training data can in-
deed be learned [9, 8, 47], yet, it requires a training for every
individual camera.

Combining deep learning with classical bundle ad-
justment Several recent works have proposed to combine
deep learning with classical bundle adjustment. Classi-
cal keypoint extraction and matching has been replaced
by deep-learning-based approaches [7, 31, 29], improv-
ing the robustness and accuracy of SfM. Furthermore,
learned feature maps have been used to refine keypoints
for SfM [21]. BA-Net [39] first proposed to bring a dif-
ferentiable variant of the classical bundle adjustment into
a deep learning pipeline. Focusing on camera poses only,
end-to-end training was achieved by formulating the Gauß-
Newton steps in a differentiable way so that backpropa-
gation could be performed through the bundle adjustment
layer. DeepSFM [50], DeepV2D [42], DRO [11] built
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Figure 2. Different approaches to intrinsic camera self-calibration from video, including classical SfM (e.g. COLMAP [33]), pure deep
learning based approaches (e.g. [9, 8]), and the proposed model. For simplicity, only a single pair of images (Ii, Ij) is shown, although the
reconstruction in (a) and the SC-BA layer in (c) includes all image pairs of a given sequence.

upon this idea in different variations, extending the opti-
mization to pose and depth [50], proposing to optimize
a geometric reprojection error rather than a photometric
error [42], and proposing a recurrent architecture [11].
DROID-SLAM [44] extended this line of research to de-
vise a deep visual SLAM system that infers camera poses
and depth of an incoming video. Yet, all of the approaches
focus on pose or depth estimation, assuming known intrin-
sics. We go one step further and expand this line of research
to the problem of camera self-calibration.

3. Method

The self-calibration approach introduced in the follow-
ing infers a camera’s intrinsics θ from monocular video,
by exploiting the consistency of the scene structure over
time. In the following, we first describe the general idea
behind the approach and introduce its main component,
the self-calibrating bundle adjustment (SC-BA) layer. In
Sec. 3.3, a specific realization of the approach within
DROID-SLAM [44] is described.

3.1. Projection

We write a camera’s mapping from 3D to 2D as a func-
tion π : R3 → R2, x 7→ u. The mapping depends on the
camera’s intrinsics θ and the choice of the camera model.
The inverse projection is denoted by π−1 : R2 × R → R3,
(u, z) 7→ x and additionally depends on the depth z. In the
following, we use two different camera models, the pinhole
model and the unified camera model [26].

Pinhole model The pinhole model describes a
distortion-free central projection that is characterized
by the focal lengths fx, fy and the principal point (cx, cy):

π(x,θ) =

[
fx

x
z + cx

fy
y
z + cy

]
, π−1(u, z,θ) = z


px−cx

fx
py−cy

fy

1

 .

(1)

Unified camera model The unified camera model [26]
introduces a parameter α which allows modeling cameras

from distortion free pinhole-like cameras to ultra-wide an-
gle, fisheye, cameras. The projection is given by

π(x,θ) =

[
fx

x
z+α||x|| + cx

fy
y

z+α||x|| + cy

]
, (2)

where ||x|| =
√
x2 + y2 + z2. Unlike polynomial radial

distortion models, the unified camera model can be inverted
analytically and both directions are differentiable.

Multi-view constraint Given two images i and j taken
by the same camera with intermediate motion Gij ∈
SE(3), the relation between a point uiℓ in image i and its
corresponding point ujℓ in image j is given by

ujℓ = π(Gij ◦ π−1(uiℓ, ziℓ,θ),θ), (3)

where ziℓ denotes the depth of the 3D point xℓ w.r.t. camera
pose i, and θ denotes the camera’s intrinsics.

3.2. Intrinsic self-calibration

Notation In the following, we denote a sequence of
images by I = {Ii}Ni=1, with image height H0 and width
W0. We define the poses w.r.t. the first image as {Gi}Ni=1

where Gi ∈ SE(3). The relative pose between two images
is given by Gij = Gj ◦G−1

i . For each image Ii, we denote
the pixel-wise depth as zi ∈ RH0×W0 . In the following,
we further define the grid of all pixel coordinates in source
view i by ui ∈ RH0×W0×2. The corresponding points in
image Ij are denoted by uij ∈ RH0×W0×2 where the index
highlights the dependence on the source view i.

Model overview The input to the model is a set of im-
age pairs P = {(Ii, Ij)|Ii, Ij ∈ I ∧ Ii, Ij overlap} with
overlapping field-of-view (Fig. 2). Assume that for all pix-
els ui in image Ii, a deep neural network N predicts the
corresponding image points in image Ij , which we will re-
fer to as measured correspondences u∗

ij . We here stick to
an abstract description of N , as the task can be achieved
through different network architectures [31, 36, 43, 37, 44].
Assume that N further predicts confidence weights wij as-
sociated with each correspondence which determine each
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correspondence’s influence on the subsequent estimation of
intrinsics.

In the SC-BA layer, the weighted correspondences of
all image pairs P are used to estimate the camera’s intrin-
sics through weighted nonlinear least squares optimization.
Following classical dense bundle adjustment, we define the
cost function in terms of the reprojection error,

E(G, z,θ) =
∑

(i,j)∈P

||u∗
ij − π(Gij ◦ π−1(ui, zi,θ),θ)︸ ︷︷ ︸

rij

||2Σij
,

(4)

i.e. the sum of weighted reprojection errors across all image
pairs P . Here Σij = diag(wij)

−1 contains the confidence
weights predicted by N and the vectors G = (G1, ...GN )T

and z = (z1, ...zN )T contain the pose and depth estimates
of all images in I. The intrinsics θ are optimized jointly
with poses G and depths z through minimization of (4):

(Ĝ, θ̂, ẑ) = argmin
G,z,θ

E(G, z,θ). (5)

To train N to predict correspondences and confidence
weights that are specifically suited for the subsequent
optimization (5), training is performed end-to-end, using
a loss function L(θ̂) that quantifies the deviation of the
estimated intrinsics θ̂ from the camera’s true intrinsics
θ̄ (see Fig. 2). A specific training setup is discussed in
Sec. 3.3.

Gauß Newton update including intrinsics To enable
end-to-end training, optimization (5) is formulated in a dif-
ferentiable and efficient manner. We use classical Gauß-
Newton steps,

JTWJ∆ξ = JTW r, (6)

where ∆ξ = (∆G,∆θ,∆z)T denotes the parameter up-
dates of poses, intrinsics and depth, r is a vector contain-
ing all optimization residuals from (4), J is the Jacobian of
the residuals w.r.t. all parameters, and W is the diagonal
weight matrix containing to confidence weights wij of all
image pairs. The Jacobian is derived analytically which has
been demonstrated for poses and depth in [44]. For self-
calibration, one additionally needs the Jacobian w.r.t. the
intrinsics which we derive in Suppl. Sec. A. The product
H = JTWJ denotes the approximated Hessian which has
to be inverted during optimization. We can exploit its sparse
structure by dividing it into blocks, corresponding to the dif-
ferent types of parameters. Let r̃ = JTW r, then we can
write the Gauß-Newton step as HG HG,θ HG,z

HG,θ
T Hθ Hθ,z

HG,z
T Hθ,z

T Hz

∆G
∆θ
∆z

 =

r̃Gr̃θ
r̃z

 , (7)

where the indices indicate the parameters affected by the
different blocks. Since the matrix Hz has a pure diagonal
form, we combine pose parameters and intrinsics to form a
joint block which enables a solution via the Schur comple-
ment. Let ∆ξG,θ = (∆G,∆θ)T, and r̃G,θ = (r̃G, r̃θ)

T,
then the Gauß-Newton update can be written as[

A B
BT Hz

] [
∆ξG,θ

∆z

]
=

[
r̃G,θ

r̃z

]
. (8)

To improve robustness and convergence, the Hessian is su-
perimposed with a diagonal matrix containing a damping
term λ (Levenberg Marquardt augmentation). As the classi-
cal heuristics for choosing λ are non-differentiable, it must
be pre-defined, learned or predicted by the network N as an
additional output [39]. Finally, the parameter updates can
be computed via the Schur complement

∆ξG,θ = [A−BHz
−1BT]−1(r̃G,θ −BHz

−1r̃z), (9)

∆z = Hz
−1(r̃z −BT∆ξG,θ). (10)

For the optimization to be differentiable, a fixed number of
Gauß Netwon steps is performed, rather than using typical
convergence criteria [39].

Implementation details To reduce runtime and memory
consumption, we store the Jacobian as well as the Hessian
blocks in a sparse format, and implement the SC-BA
layer as a custom cuda-kernel, as proposed in [44]. Note
that unlike pose and depth parameters, whose influence is
limited to subgroups of images, the intrinsics influence all
images (Fig. 3, right) so that the associated Jacobian and
Hessian blocks are dense.

3.3. Implementation within DROID-SLAM

We implement the SC-BA layer within the deep visual
SLAM system DROID-SLAM [44]. The architecture of
DROID-SLAM is designed to predict flow revisions and
confidence weights in a recurrent manner, and it contains a
dense bundle adjustment (DBA) layer to optimize poses and
depth. By replacing the DBA layer with the SC-BA layer,
we obtain a deep visual SLAM system that infers camera
intrinsics from monocular videos in the wild (Fig. 3). In the
following, we briefly describe the architecture for a single
pair of images (i, j) with overlapping field of view. We
only provide a short overview over the SLAM system and
refer to [44] for details, as the construction of the frame
graph, and all associated hyperparameters stay untouched.

Feature extraction The input to the model is a pair of
images (Ii, Ij). For both images, feature extraction (A)
is performed by a convolutional neural network (CNN),
giving feature maps whose height H and width W are
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Figure 3. Illustration of the self-calibrating bundle adjustment (SC-BA) layer integrated into DROID-SLAM [44]. Two unrolled update
iterations are shown. For each image pair (Ii, Ij) ∈ P , the model predicts flow revisions ∆uij and confidence weights wij in each
iteration k. In the SC-BA layer, these predictions are used to update camera intrinsics θ together with poses G and depth z. The close-up
of the SC-BA layer (right), shows a factor graph representation of the underlying optimization problem. The factors rij represent the error
terms associated with pair (Ii, Ij), while the nodes represent the parameters that are being estimated.

reduced by a factor of 1/8 compared to the original image.
Furthermore, image Ii is passed through a context network,
a second module of convolutional layers (C).

Correlation computation (B) The subsequent correla-
tion layer constructs a four-dimensional correlation volume
Cij ∈ RH×W×H×W which contains the inner product
⟨·, ·⟩ of all pairs of feature vectors. The rationale behind
this layer is that high correlations indicate similar and
thus potentially corresponding image regions. To reduce
memory consumption, the volume is not fully computed
in advance, but the individual entries are computed on
demand using the lookup operator L (see [44] for details).

Iterative updates Based on the outputs of the context
module (C), the correlations (B), and an initial guess for
poses G0, depth z0 and intrinsics θ0, the model iteratively
updates all parameters by performing two steps in every
iteration k: (D) Prediction of flow revisions and (E)
Self-calibrating bundle adjustment (Fig. 3).

Prediction of flow revisions (D) First, the predicted
correspondences ûij are obtained by transforming all pixels
ui to image Ij using Eq. (3) with the current estimates
of pose Ĝk, depth ẑk and intrinsics θ̂k. Based on ûij ,
the correlation volume is indexed, and the correlation
of feature maps in the neighbourhood of ûij is passed
to the convolutional gated recurrent unit (convGRU).
Furthermore, context features and the current flow estimate
f̂ij = ûij − ui are injected into the convGRU. Based
on this information, the convGRU computes an updated
hidden state hk+1

ij which is passed through two additional
convolutional layers to predict a dense flow revision
∆uij ∈ RH×W×2 and associated confidence weights
wij ∈ RH×W×2 (Fig. 4). Furthermore, a pixel-wise
damping factor λ ∈ RH×W is predicted by pooling the
hidden state over all pairs with same source image.

image i
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Figure 4. Exemplary estimated flow fij and confidence weights
wij in x- and y-direction (blue overlay) in the last update iteration
k. Compared to DROID-SLAM (top), DroidCalib (bottom) pre-
dicts higher, less spatially confined confidence weights.

Self-calibrating bundle adjustment layer (E) For
each image pair (Ii, Ij), the flow revision ∆uij is used to
compute measured correspondences u∗

ij = ûij + ∆uij

between the images, where ûij is computed via Eq. (3).
Following Sec. 3.2, these correspondences, together with
the confidence weights wij , are plugged into the cost func-
tion (4). The updated parameters θ̂k+1, Ĝk+1, ẑk+1 are
obtained by minimizing the cost with n = 2 Gauß-Newton
steps in every iteration k, as shown in (9).

Training The model is trained end-to-end, in a su-
pervised manner, on the synthetic dataset TartanAir [49].
Following [44], short sequences of seven images are
passed through the model during training, and we perform
nk = 14 update iterations for every sequence. DROID-
SLAM uses a combination of flow loss, pose loss and
residual loss. To train for self-calibration, we additionally
add an intrinsics loss, Lθ =

∑nk

k=1 γ
nk−k∥θ̂k − θ̄∥1,

where θ̄ are the ground-truth intrinsics, ∥·∥1 is the L1-norm
and γ = 0.9 introduces a weighting that increases with k.
Furthermore, we replace the ground-truth intrinsics θ̄ in the
flow loss with the current estimate θ̂k. During training, we
expose the model to calibration errors by adding uniformly
distributed random errors δ ∈ [−5%, 5%] to the initial
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Dataset Method ME (pixel) Runtime Memory Failures

TartanAir

COLMAP+NetVLAD 1.45 [0.11, 1349.4] 7 min 1 GB 1 / 16
COLMAP+NetVLAD+Superpoint+Superglue 0.45 [0.19, 10.8] 20 min 2 GB 0 / 16
SelfSup-Calib** 18.3 [5.00 , 60.1] 28 min 11 GB 0 / 16
DroidCalib 0.23 [0.08, 0.79] 7 min 11 GB 0 / 16

EuRoC

COLMAP+NetVLAD 1.77 [0.38, 21.2] 14 min 1 GB 0 / 11
COLMAP+NetVLAD+Superpoint+Superglue 0.71 [0.42, 4.11] 41 min 2 GB 0 / 11
SelfSup-Calib** 27.6 [14.0 , 56.1] 52 min 11 GB 0 / 11
DroidCalib 0.42 [0.16, 0.74] 13 min 12 GB 0 / 11

TUM

COLMAP+NetVLAD 6.54 [2.53, 52.1] 4 min 1 GB 0 / 9
COLMAP+NetVLAD+Superpoint+Superglue 4.10 [1.66, 8.09] 13 min 2 GB 2 / 9
SelfSup-Calib** 29.7 [17.6, 44.5] 25 min 11 GB 0 / 9
DroidCalib 3.09 [1.50, 6.93] 5 min 4 GB 0 / 9

EuRoC raw

COLMAP+NetVLAD* 3.66 [2.03, 31.1] 21 min 1 GB 1 / 11
COLMAP+NetVLAD+Superpoint+Superglue* 3.48 [0.66, 6.14] 1 h 2 min 2 GB 0 / 11
SelfSup-Calib** 10.8 [1.63 , 47.9] 53 min 11 GB 0 / 11
DroidCalib** 0.40 [0.31, 0.80] 14 min 12 GB 0 / 11

Table 1. Comparison with self-calibration baselines on full sequences. Results show median [min, max] of the mapping error (ME) over all
sequences within the respective dataset. We further report the median runtime, the median peak GPU memory consumption and the number
of failed (non-converged) runs. For the raw EuRoC sequences which contain radial distortion, we use the opencv camera model with two
radial distortion parameters (*) or the unified camera model (**). Separate results for all sequences can be found in Suppl. Tab. S5.

intrinsics. We train for 250000 iterations with a learning
rate of 2.5× 10−4. The effect of different training setups is
evaluated in Suppl. Sec. C.

SLAM system During inference, the model operates
on an incoming image stream and dynamically builds
a frame graph to connect images with overlapping field
of view [44]. In the frontend, keyframes are added and
removed incrementally and local bundle adjustments are
performed. In the backend, a global bundle adjustment over
the full history of keyframes is performed. The backend is
employed as the final step of the estimation, after all images
have been registered by the frontend. For further details
on the SLAM system, we refer to [44], as all associated
hyperparameters stay untouched by our extension.

Runtime and memory For training, we used two Nvidia
Titan RTX 24 GB GPUs, where training takes ∼12 days.
For inference, we used a single Nvidia Titan RTX 24 GB
GPU, and runtime and memory consumption depend on
the length of the sequence and the image size (see Suppl.
Sec. D). Tab. 1 contains median memory and runtime for
the full sequences. The frontend of DroidCalib runs at 4 fps
on TartanAir with an image size of 512× 384. For compar-
ison, the plain DROID-SLAM runs at 10 fps on the same
data. The difference arises from the additional dense matrix
blocks required for estimating the intrinsics (Sec. 3.2).

4. Experiments

Datasets We evaluate on the TartanAir [49] monocular
test split from the CVPR 2020 SLAM challenge, the EuRoC
dataset [3], and the Freiburg-1 sequences from the TUM-
RGBD dataset [34]. We only use monocular sequences.
As proposed in [44] we employ DroidCalib and DROID-

SLAM on reduced image sizes (512 × 384 for TartanAir,
512 × 320 for EuRoC, 320 × 240 for TUM), use rectified
images (unless stating ”raw images”), and skip every other
frame in the EuRoC and the TUM sequences. After infer-
ence, intrinsics are rescaled to the original image size.

Baselines As baselines for self-calibration (Tab. 1) we
use COLMAP [33] and COLMAP in combination with
Superpoint [7] and Superglue [31], using the hloc tool-
box [30, 31] as an interface. COLMAP is a Structure-from-
Motion pipeline and allows estimating camera intrinsics
from a set of images. In the default setup, features are ex-
tracted using SIFT [23], followed by nearest neighbor fea-
ture matching. COLMAP+Superpoint+Superglue replaces
the classical keypoint extraction with the deep learning ap-
proach Superpoint [7] and the nearest neighbor matching
with Superglue [31]. As exhaustive matching takes up to
several days per sequence, we instead use NetVLAD [1]
to select images for matching. NetVLAD computes image
descriptors that allow to pair an image only with the most
similar other images. Following the SfM pipeline from
hloc [30], we pair each image with their top five images
with most similar NetVLAD image descriptors. We also
tried sequential matching with a window of five images, but
results were inferior (Suppl. Sec. E). We further compare
with the self-supervised learning approach by Fang et al. [8]
which we will refer to as SelfSup-Calib. We used the au-
thor’s implementation and the unified camera model. The
work originally proposed to train jointly on all EuRoC se-
quences. To obtain per-sequence results, we trained on the
individual sequences but left all other hyperparameters un-
touched (see also Suppl. Sec. E for details). As baseline
for motion estimation, we use the original DROID-SLAM,
using the author’s open source implementation [44].

Metrics To assess the accuracy of the calibration, we use
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θ0=(320, 320, 320, 240, 0) θ1=(420, 420, 320, 240, 0) θ2=(520, 520, 370, 190, 0) θ4=(1090, 1090, 320, 240, 1.5)θ3=(580, 580, 320, 240, 0.5)

Figure 5. Evaluation for warped images with different intrinsics θ = (fx, fy, cx, cy, α), including distortion. An exemplary image along
with the associated warped images are shown. We report calibration accuracy in terms of the mapping error (ME) in pixels. Barplot shows
average mapping error and 95% confidence intervals across all TartanAir test sequences.

Figure 6. Comparison with target-based calibration on EuRoC
(top) and TUM (bottom) datasets. T20, T50, T100 denote target-
based calibrations with different numbers of calibration images.
Plots show average mapping error (ME) and 95% confidence in-
tervals across 20 random samples of calibration images.

the mapping error (ME) which quantifies the difference be-
tween two sets of intrinsic parameters in image space [12].
Specifically, we compare the estimated intrinsics against the
ground-truth or reference intrinsics of the respective dataset,
and use the square root of the effective mapping error [12]
to obtain values in units of pixels. We always evaluate the
mapping error on the original image resolution, even if es-
timation was performed on a reduced image dimension. To
assess the accuracy of trajectory estimates, we use the trans-
lation part of the average trajectory error (ATE). We used
the evo toolbox [10] and chose the root mean squared er-
ror. In the following experiments, we either use naive ini-
tial values θ0 for the intrinsics, computed from the image
dimension as f0

x = H0+W0

2 , f0
y = H0+W0

2 , c0x = W0

2 ,
c0y = H0

2 , or we impose uniformly distributed random er-
rors δ ∈ [−∆θ,∆θ] on the initial intrinsics, where the error
bounds ∆θ are specified relative to the respective parame-
ter, ranging from 0% to 25%.

4.1. Accuracy of estimated intrinsics

We evaluate the self-calibration accuracy across all
datasets, using naive initial values θ0 for all intrinsic param-
eters (Tab. 2). For both, TartanAir and EuRoC, estimated
intrinsics are close to their respective ground truth values
provided by the authors of the datasets, with a median map-
ping error below 0.5 pixels. On the TUM dataset, calibra-

fx fy cx cy ME (pixel)

TartanAir
Reference 320.0 320.0 320.0 240.0

MH000 320.2 320.2 320.3 240.0 0.09
MH001 318.7 318.4 320.4 240.4 0.67
MH002 320.2 320.1 320.2 240.2 0.11
MH003 320.3 320.8 319.8 240.1 0.26
MH004 320.5 320.4 320.2 239.4 0.23
MH005 320.0 320.0 320.4 240.2 0.08
MH006 320.1 320.0 320.4 240.7 0.13
MH007 320.4 320.2 320.2 240.1 0.17

Median 0.23

EuRoC
Reference 458.7 457.3 367.2 248.4

MH 01 457.9 457.9 368.0 249.1 0.28
MH 02 457.9 457.1 367.8 248.5 0.25
MH 03 457.9 458.2 368.0 250.2 0.34
MH 04 457.4 457.2 367.7 249.1 0.38
MH 05 458.3 457.8 367.9 248.6 0.16
V1 01 459.1 459.0 368.2 250.0 0.42
V1 02 459.4 459.4 367.9 249.7 0.49
V1 03 459.6 459.5 368.3 249.4 0.55
V2 01 459.2 459.7 368.2 249.7 0.52
V2 02 459.5 459.8 367.8 249.9 0.58
V2 03 460.2 460.1 368.2 249.5 0.74

Median 0.42

TUM
Reference 517.3 516.5 318.6 255.3

360 530.2 529.4 320.4 261.1 3.71
desk 531.7 527.5 321.0 248.4 3.70
desk2 525.6 553.6 317.4 284.0 6.93
floor 530.5 518.4 323.0 240.2 3.09
room 523.2 526.1 320.9 261.8 2.22
xyz 523.4 504.0 325.3 281.2 3.03
rpy 531.2 532.7 323.7 276.2 4.66
plant 525.4 527.3 319.5 254.3 2.58
teddy 523.1 519.6 324.1 249.3 1.50

Median 3.09

Table 2. Accuracy of intrinsics estimated by DroidCalib. Values
show focal lengths fx, fy and principal point cx, cy , and the map-
ping error ME. Due to spatial constraints, we only list the ”hard”
sequences from TartanAir; for all sequences, see Suppl. Tab. S4.

tion results are less accurate with a median mapping error of
3.09 pixels. To relate these values to classical target-based
calibration, we used the calibration images from the Eu-
RoC und the TUM dataset and performed classical target-
based calibrations on different subsets of the undistorted
images (Fig. 6, for details on the target-based calibration,
see Suppl. Sec. E). The median mapping error w.r.t. the
reference calibration for common dataset sizes (20 to 100
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MH 01 MH 02 MH 03 MH 04 MH 05 V1 01 V1 02 V1 03 V2 01 V2 02 V2 03 Median

DROID-SLAM 0.011 0.018 0.022 0.043 0.040 0.036 0.012 0.024 0.016 0.009 0.013 0.018
DroidCalib 0.008 0.010 0.020 0.040 0.037 0.035 0.010 0.083 0.014 0.010 0.010 0.014

Table 3. Generalization to the unified camera model. Using the raw images and unknown intrinsics, DroidCalib achieves similar accuracy
as DROID-SLAM using rectified images and reference intrinsics, without need for re-training or finetuning. Values show average trajectory
error (ATE) in meters.

calibration images) is on the same order of magnitude as
the values obtained with DroidCalib (Fig. 6). This shows
that the self-calibration can reach an accuracy on the same
order of magnitude as existing target-based calibrations.

Finally, as the test sequences of TartanAir have the same
intrinsics as the training data, we performed an additional
experiment to ensure that the results on TartanAir don’t re-
flect an overfitting. Through resizing and cropping, we syn-
thetically generated TartanAir images with different intrin-
sics (Fig. 5 (a)). Consistent with the results on EuRoC and
TUM, the intrinsics can be recovered with high accuracy
even if they deviate significantly from the training intrinsics
(Fig. 5 (c)). This suggests that the model does not overfit to
the intrinsics of the training data.

4.2. Comparison with self-calibration baselines

We compare different approaches to intrinsic self-
calibration from video, in terms of calibration accuracy,
runtime, memory consumption1 and number of failures to
converge (Tab. 1). We assess all methods on a single Nvidia
Titan RTX 24 GB GPU, using one run per sequence, and us-
ing naive initial values for all intrinsics. On all four datasets,
the calibration accuracy of DroidCalib is highest among
the different methods. Compared to the respective second-
best approaches, the median mapping error of DroidCalib
is reduced by 49% on TartanAir, 41% on EuRoC, 25% on
TUM, and 89% on EuRoC raw. Furthermore, the computa-
tion time of DroidCalib is among the fastest of the baselines,
however, requiring more memory, especially compared to
the COLMAP-based approaches. We also note that the re-
sults from SelfSup-Calib are less accurate than the other
baseline methods. One explanation is that our comparison is
based on single sequences, rather than a batch of sequences
as proposed by the authors (see Suppl. Sec. E).

4.3. Trajectory estimation with unknown intrinsics

The self-calibrating bundle adjustment layer allows us-
ing the deep visual SLAM system DROID-SLAM with un-
known intrinsics. We therefore assess the accuracy of esti-
mated trajectories for different error bounds ∆θ in the initial
intrinsics (Fig. 7, Suppl. Tab. S3). When using the ground
truth intrinsics (∆θ = 0.0), DroidCalib and DROID-SLAM

1We used nvidia-smi to measure the memory consumption. Values can
be overly pessimistic for pytorch-based implementations (SelfSup-Calib
and DroidCalib), as pytorch uses a caching memory allocator that can re-
serve more memory than it actually uses [28].

EuRoC

TUM

TartanAir

Figure 7. Trajectory estimation with unknown cameras. Left: Ex-
emplary trajectory estimates with ∆θ = 25% initial error in
the intrinsics (sequences desk, MH 01, MH002). Without self-
calibration, this intrinsics error results in significant inaccuracy in
the estimated trajectories (see DROID-SLAM result). Right: Av-
erage trajectory error (ATE) for an increasing error ∆θ . Values
show median and 95% bootstrap confidence intervals across all
sequences in the respective dataset, using three runs per sequence.

yield similar accuracy, which is the intended result. For
an increasing error in the intrinsics, the ATE of DROID-
SLAM increases, while DroidCalib remains low (Fig. 7).
This demonstrates that the SC-BA layer enables accurate
trajectory estimation despite erroneous or unknown intrin-
sics. In Suppl. Sec. B, we further show qualitative results
obtained on YouTube videos with unknown intrinsics.

4.4. Generalization to the unified camera model

For the approach to be applicable to a wide range of cam-
eras, we extended it from a plain pinhole model to the uni-
fied camera model [26]. The projection function and the
Jacobian in the self-calibrating bundle adjustment layer are
adjusted accordingly, while we keep the learned weights of
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the model without any finetuning.
First, we test the model on TartanAir sequences, syn-

thetically warped to exhibit different levels of distortion
(Fig. 5 (b)). We use naive initial intrinsics θ0 and zero ini-
tial distortion α0 = 0. Fig. 5 (c) shows that the calibration
accuracy on distorted images is as high as on the original,
distortion-free images, showing the model’s ability to gen-
eralize. Then, we further test the model on the raw Eu-
RoC sequences which contain significant radial distortion
(see Tab. 3). Specifically, we compare the trajectory esti-
mates of DroidCalib using the raw images against DROID-
SLAM using rectified images and reference intrinsics. Both
approaches yield similar accuracy (Tab. 3), demonstrating
that DroidCalib can be employed to significantly different
lenses without re-training or finetuning.

4.5. Limitations

On the TUM dataset we find that the intrinsics cannot be
recovered as accurately as for the other datasets (Tab. 2).
These sequences were taken with a hand-held rolling-
shutter camera and exhibit significant motion blur. Al-
though the accuracy of DroidCalib remains superior to the
baselines (Tab. 1), such challenging sequences reveal limi-
tations. Another limitation are critical types of motion from
which camera intrinsics are not observable [35]. These criti-
cal types of motion affect any monocular self-calibration al-
gorithm that is based on multi-view constraints, and include
orbital motion, pure translation and planar motion [35].
Therefore, methods that build purely on the consistency of
the scene structure over time and do not impose prior know-
ledge on the camera or the scene require diverse, uncon-
strained camera motion.

5. Conclusion
We proposed a novel approach to intrinsic camera

self-calibration that leverages the capabilities of deep
learning while explicitly modeling projection functions and
multi-view geometry. Experiments show that it enables
recovering camera intrinsics from monocular video with
high accuracy, setting a new state-of-the-art for intrinsic
self-calibration on three public datasets. Unlike pure deep
learning approaches to camera calibration, it does not
require a training dataset consisting of a large variety of
cameras, but directly generalizes to different cameras and
projection functions. Thereby, camera self-calibration can
particularly benefit from combining deep learning with
explicit modeling of projections and multi-view geometry.
Future work may extend the self-calibration with uncer-
tainty estimation, in order to detect challenging sequences
and critical motion. Furthermore, using a sparse rather
than a dense system would be an interesting direction, as it
could significantly reduce memory consumption. Overall,
the approach is a step towards accurate calibration without

targets, enabling 3D perception without any knowledge
about the camera.
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[25] Jérôme Maye, Paul Furgale, and Roland Siegwart. Self-
supervised calibration for robotic systems. In 2013 IEEE
Intelligent Vehicles Symposium (IV), pages 473–480. IEEE,
2013. 1

[26] Christopher Mei and Patrick Rives. Single view point om-
nidirectional camera calibration from planar grids. In Pro-
ceedings 2007 IEEE International Conference on Robotics
and Automation, pages 3945–3950. IEEE, 2007. 3, 8

[27] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D
Tardos. Orb-slam: a versatile and accurate monocular slam
system. IEEE transactions on robotics, 31(5):1147–1163,
2015. 2

[28] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
8

[29] Ignacio Rocco, Relja Arandjelovic, and Josef Sivic. Convo-
lutional neural network architecture for geometric matching.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 6148–6157, 2017. 2

[30] Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and
Marcin Dymczyk. From coarse to fine: Robust hierarchical
localization at large scale. In CVPR, 2019. 6

[31] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. Superglue: Learning feature
matching with graph neural networks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 4938–4947, 2020. 2, 3, 6

[32] Paul-Edouard Sarlin, Ajaykumar Unagar, Mans Larsson,
Hugo Germain, Carl Toft, Viktor Larsson, Marc Pollefeys,
Vincent Lepetit, Lars Hammarstrand, Fredrik Kahl, et al.
Back to the feature: Learning robust camera localization
from pixels to pose. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
3247–3257, 2021. 1

[33] Johannes L Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
4104–4113, 2016. 1, 2, 3, 6

[34] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram
Burgard, and Daniel Cremers. A benchmark for the evalua-
tion of rgb-d slam systems. In 2012 IEEE/RSJ international
conference on intelligent robots and systems, pages 573–580.
IEEE, 2012. 6

[35] Peter Sturm. Critical motion sequences for monocular self-
calibration and uncalibrated euclidean reconstruction. In
Proceedings of IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, pages 1100–1105.
IEEE, 1997. 9

[36] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
Pwc-net: Cnns for optical flow using pyramid, warping, and
cost volume. In Proceedings of the IEEE conference on

3447



computer vision and pattern recognition, pages 8934–8943,
2018. 3

[37] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and
Xiaowei Zhou. Loftr: Detector-free local feature matching
with transformers. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
8922–8931, 2021. 3

[38] Takafumi Taketomi, Hideaki Uchiyama, and Sei Ikeda. Vi-
sual slam algorithms: A survey from 2010 to 2016. IPSJ
Transactions on Computer Vision and Applications, 9(1):1–
11, 2017. 2

[39] Chengzhou Tang and Ping Tan. Ba-net: Dense bundle ad-
justment network. arXiv preprint arXiv:1806.04807, 2018.
2, 4

[40] Vladimir Tankovich, Christian Hane, Yinda Zhang, Adarsh
Kowdle, Sean Fanello, and Sofien Bouaziz. Hitnet: Hierar-
chical iterative tile refinement network for real-time stereo
matching. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14362–
14372, 2021. 1

[41] Jean-Philippe Tardif, Peter Sturm, and Sébastien Roy. Plane-
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