
Fast Globally Optimal Surface Normal from an Affine Correspondence

Levente Hajder, Lajos Lóczi
Geometric Computer Vision Group

Eötvös Loránd University, Budapest, Hungary
{hajder,lloczi}@inf.elte.hu

Daniel Barath
Computer Vision and Geometry Group

ETH Zurich, Switzerland
dbarath@inf.ethz.ch

Abstract

We present a new solver for estimating a surface normal
from a single affine correspondence in two calibrated views.
The proposed approach provides a new globally optimal
solution for this over-determined problem and proves that
it reduces to a linear system that can be solved extremely
efficiently. This allows for performing significantly faster
than other recent methods, solving the same problem and
obtaining the same globally optimal solution. We demon-
strate on 15k image pairs from standard benchmarks that
the proposed approach leads to the same results as other op-
timal algorithms while being, on average, five times faster
than the fastest alternative. Besides its theoretical value,
we demonstrate that such an approach has clear benefits,
e.g., in image-based visual localization, due to not requir-
ing a dense point cloud to recover the surface normal. We
show on the Cambridge Landmarks dataset that leveraging
the proposed surface normal estimation further improves
localization accuracy. Matlab and C++ implementations
are also published in the supplementary material.

1. Introduction
Acquiring oriented point clouds is a fundamental prob-

lem both in computer vision and in robotics with a number

of important real-world applications benefiting from the ex-

tra information it provides. Such applications include 3D

reconstruction [1, 8, 31, 62, 72, 65, 56] and simultaneous

localization and mapping [19, 23, 50], where the 3D point

orientations provide useful information about the underly-

ing structure. Image-based visual localization approaches

[43, 53, 60, 61] can also benefit from known surface nor-

mals [68]. The widely used Poisson reconstruction [37, 38]

is based on both the point coordinates and their orientations.

The visual odometry [51, 52] of an autonomous vehicle can

also benefit from understanding surface orientation to, e.g.,

segment ground or facades. Also, having an oriented point

cloud greatly simplifies geometric model and multi-model

estimation [32, 4, 5] due to allowing to design solvers that

Figure 1. Geometric configuration: oriented 3D point P ∈ E
3

with normal n ∈ E
3 projected to image Π1 as p1 ∈ E

2 and to

Π2 as p2 ∈ E
2. The local patch centered at points p1 and p2 are

related by the local affine transformation A ∈ R
2×2.

require fewer data points than their point-based counter-

parts [64]. Moreover, normals can also be leveraged in the

numerical refinement of the reconstructed oriented 3D point

cloud [27]. In this paper, we focus on a practical problem,

i.e., estimating the normal at corresponding features in two

images in a solely photometric manner. This can provide a

lightweight approach of obtaining surface normals without

requiring a dense point cloud to be known. Next, we will

discuss ways of obtaining oriented points.

Normals from Point Clouds. After applying state-of-the-

art sparse (e.g., COLMAP [63]) or dense [36, 16] recon-

struction pipelines, the resulting point cloud can be straight-

forwardly equipped with point orientations. In this case,

typically, the normals are fitted per-point, applying the

widely used Principal Component Analysis (PCA) [35] to

estimate tangent planes or higher-order surfaces [14, 33]

from the local neighborhood centered at the current point.

This procedure, while being frequently used, has two ma-

jor drawbacks. First, the setting of the neighborhood size

greatly affects the accuracy and is often unclear without

having a metric reconstruction. Instead, using the k-nearest-

neighbors [17] algorithm to find local neighborhoods is a

viable solution, but the estimation becomes largely affected

by the sparsity of the point cloud. Second, fitting local sur-

faces, independently, to the neighborhood of each 3D point

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3390

in the reconstruction is an extremely expensive operation.

Normals from Homographies. Another method for esti-

mating surface normals from images, without requiring the

underlying 3D structure to be known, is via homographies.

Homographies are projective transformations between im-

ages of co-planar 3D points that depends on the intrinsic

and extrinsic camera parameters and the parameters of the

underlying 3D plane [24]. A homography can be estimated

from a minimum of four point correspondences in two im-

ages [30]. While this method allows the estimation of dom-

inant planes supported by a number of correspondences in

the images, it does not provide means for normal estimation

for each local feature correspondence independently.

Normals from Local Mappings. In recent years, affine

correspondences (AC) have emerged as a popular topic in

computer vision, offering a valuable source of information

about the underlying 3D geometry of the surrounding envi-

ronment. An AC consists of a corresponding pair of points

in two images and a linear transformation that maps the in-

finitesimal region around the point in the first image to the

point in the second one. They have been used to solve vari-

ous geometric problems, including relative pose estimation

in the general case [15, 55, 3, 22, 10], for known vertical

direction [25], planar motion [25, 26], or known feature

depths [21] and homography estimation [2].

Traditionally, finding affine features involve four main

steps: (scale-covariant) keypoint detection, orientation and

affine shape estimation, and descriptor extraction. Under

such paradigm, keypoint detection is typically performed

on the scale pyramid with the help of a handcrafted re-

sponse function, such as Hessian [13, 45], Harris [28, 45],

Difference of Gaussians (DoG [42]), or learned ones like

FAST [57] or Key.Net [11]. Keypoint detection obtains a

triplet (x, y, scale) which defines a square or circular image

patch. Then the patch orientation is estimated with the help

of handcrafted – dominant gradient orientation [42], center

of the mass [58] – or learned methods [71, 48, 41]. Next,

the affine-covariant shape [12, 48] is estimated. Finally, the

patch is geometrically rectified and fed into a local patch de-

scriptor, such as SIFT, HardNet [47], SOSNet [66], or oth-

ers. In summary, all feature detectors, even recent learning-

based ones like SuperPoint [20], can be made affine covari-

ant by applying, e.g., AffNet [48] as a post-processing step

on the found features.

The problem of surface normal estimation from ACs

has been addressed in several works. The first algorithm

for normal estimation from ACs was proposed by Kevin

Koeser [40] assuming that the camera location is known

with respect to the observed 3D point. Megyesi et al. [44]

proposed a special surface normal estimator for standard

(rectified) stereo, where the degree of freedom of the affine

transformations decreases to two. In 2014, Molnár and

Chetverikov [49] derived a formula connecting the surface

normals, camera parameters, affine transformations, and

patch locations into a single expression for arbitrary projec-

tive functions, like the catadioptric camera model. Barath

et al. [9] proposed a globally optimal estimator in the least

squares sense as the solution of a quartic polynomial. Re-

cently, Le Minh and Hajder [46] improved on this by reduc-

ing the degree and showed that the optimal solution can be

found as a real root of a cubic polynomial.

The main goal of this paper is to propose a rapid normal

estimator based on affine correspondences. Our algorithm

can be inserted into a 3D reconstruction system, such as

Structure-from-Motion [27] (SfM) or Simultaneous Local-

ization and Mapping (SLAM), where the normal estimation

is performed many times, therefore its running time influ-

ences the time demand of the whole 3D pipeline.

Contribution. In this paper, we propose a new linear
and globally optimal solution for surface normal estima-

tion from a single affine correspondence. The proposed

solver requires only the four basic arithmetic operations

and contains 19 parameters, consisting of the coordinates of

the five input vectors and the four affine parameters. This

approach completely avoids root extractions, solving high-

degree polynomial equations, or employing numerical or it-

erative methods, resulting in a particularly fast algorithm

that runs for only 0.6μs in our experiments. The solver is

five times faster than the cubic solver from [46]. Addition-

ally, we propose a way of exploiting AC-wise normals in

image-based visual localization pipelines. The algorithms

are tested on 15k image pairs from standard benchmarks,

and our results show superior accuracy and faster wall-clock

times compared to the baselines.

2. Proposed Method
The setting is visualized in Fig 1. We are given two im-

ages, denoted by Π1 and Π2. The 2D and 3D point loca-

tions are visualized as black dots. For standard PC-based

stereo vision, the 3D location can be obtained by the so-

called triangulation method. The local affine transforma-

tion, denoted by A ∈ R
2×2, is defined as the first-order

Taylor-approximation of the imaging function at points p1

and p2. It maps the infinitesimal patch around the observed

points from the first to the second image. If A is known, the

surface normal n can be directly estimated without knowing

the actual 3D structure of the underlying scene [49].

Parameterization. A surface normal n ∈ R
3 is a 3D

direction, therefore it can be represented by two param-

eters. Usually, it is parameterized by three coordinates

n = [nx, ny, nz]
� and its length being set to 1. However,

as it turns out below, some other scaling will be more con-

venient in the present situation.

Problem Statement. Let us assume that we are given

a general camera that projects the spatial location P =
[X,Y, Z]� to image (pixel) coordinates [u v]�, and let us

3391

denote the projective coordinate functions by Πu : E3 → R

and Πv : E3 → R. Function Πu calculates coordinate u
of the projected point, and Πv calculates v. As Molnár and

Chetverikov showed [49], the affine transformation can be

defined via the spatial gradients of the projective coordinate

functions Πu and Πv .

An affine correspondence is represented by 2D image

coordinates [u1 v1]
�

and [u2 v2]
�

in the stereo image

pair, in conjunction with the affine transformation A that

maps the surrounding area of the locations from first image

to the second one. The spatial location of the correspond-

ing spatial point is also required. It can be estimated from

the image coordinates and camera parameters by standard

triangulation techniques [29].

The normal estimation problem is written [9] as an argu-

ment minimization to determine the optimal n∗ such that

n∗ = argmin
n

f(n),

with

f(n) :=

2∑
i=1

2∑
j=1

(
n�wij

n�wc
− aij

)2

. (1)

Here, the affine transformation yields the four affine param-

eters aij (i, j ∈ [1, 2]) according to

A =

[
a11 a12
a21 a22

]
,

and the vectors wij and wc are obtained as cross products

of the spatial gradient vectors as follows:

w11 = ∇Π1
v ×∇Π2

u, w12 = ∇Π2
u ×∇Π1

u,
w21 = ∇Π1

v ×∇Π2
v, w22 = ∇Π2

v ×∇Π1
u,

wc = ∇Π1
u ×∇Π1

v,

where the superscripts refer to the corresponding image in-

dex. The coordinates of these vectors will be denoted by

wij,x,wij,y,wij,z (i, j ∈ {1, 2}) and wc,x,wc,y,wc,z .

Pin-hole (perspective) projection model. For a pin-hole

camera, the projection model is as follows:

⎡
⎣ u

v
1

⎤
⎦ ∼

⎡
⎣ P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

⎤
⎦
⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ ,

where ∼ denotes the equality up to scale operation. There-

fore, image coordinates u and v are obtained as

Πu =
P11X + P12Y + P13Z + P14

P31X + P32Y + P33Z + P34
,

Πv =
P21X + P22Y + P23Z + P24

P31X + P32Y + P33Z + P34
.

Spatial gradients, that are ∇Π =
[

∂Π
∂X

∂Π
∂Y

∂Π
∂Z

]�
, can

be written for the pin-hole model in compact forms as

∇Πu = 1
s

⎡
⎣ P11

P12

P13

⎤
⎦
�

− u
s

⎡
⎣ P31

P32

P33

⎤
⎦
�

,

∇Πv = 1
s

⎡
⎣ P21

P22

P23

⎤
⎦
�

− v
s

⎡
⎣ P31

P32

P33

⎤
⎦
�

,

where s = P31X + P32Y + P33Z + P34 is the projective

depth.

Solution. For the problem to be meaningful, we can assume

that wc �= 0. Let us set

I := inf
‖n‖=1, n�wc �=0

f(n),

where ‖n‖ :=
√
n�n denotes the standard Euclidean norm.

Clearly, f ≥ 0 is undefined along the ”equator” of the unit

sphere ‖n‖ = 1 with n�wc = 0. Let us consider two cases.

If all wij and wc are equal, then trivially f(n) =∑2
i,j=1(aij − 1)2 is a constant function.

Otherwise, at least one of the expressions
n�wij

n�wc
be-

comes arbitrarily large in modulus when n is chosen such

that n�wc gets sufficiently close to 0; that is, |f(n)| →
+∞ as n�wc → 0 with ‖n‖ = 1. Therefore, by taking into

account the continuity of f as well, the infimum I is in fact

a minimum, and an optimal unit vector n∗ with f(n∗) = I
exists. In what follows, we will explicitly determine such

an n∗ as a function of the 19 parameters 1 by using only the

four basic arithmetic operations.

A key observation is that f(λn) = f(n) for any λ �=
0, so (after a possible rescaling) we can assume that the

last component of n is either 1 or 0. These cases, Cases A

and B, respectively, will be discussed separately below. To

simplify the notation, let us define two auxiliary functions

g(nx, ny) := f(nx, ny, 1) (2)

and

h(nx, ny) := f(nx, ny, 0). (3)

For the objective function g, we will obtain a unique can-

didate extremum n∗
g ∈ R

2; whereas for the function h, a

one-parameter family of candidate extrema n∗
h ∈ R

2 will

be found but with the same function value h(n∗
h). The opti-

mal n∗ is then

n∗ =

{
[n∗

g, 1]
�, if g(n∗

g) ≤ h(n∗
h),

[n∗
h, 0]

�, if g(n∗
g) > h(n∗

h).
(4)

1They are the four affine parameters aij , and the 15 components of the

vectors wij and wc.

3392

Remark 1 In other words, we will be utilizing the simple
constraints nz = 1 or nz = 0. We have found that other
linear or non-linear constraints, such as ‖n‖ = 1, would
render the symbolic calculations to minimize the objective
function f infeasible.

Case A: nz = 1

We use the standard technique and solve the system{
∂1g(nx, ny) = 0,

∂2g(nx, ny) = 0
(5)

to find the optimal vector n∗
g = [nx, ny]

� as follows.

By computing and putting the partial derivative

∂1g(nx, ny)

over a common denominator, we see that its numerator de-

pends on nx linearly; and it depends on ny quadratically; so

one can easily express nx from the equation ∂1g(nx, ny) =
0 as follows:

nx =
numer1

denom1
, (6)

where we present the expressions for numer1 and denom1

in the supplementary material. Then (6) is substituted into

the other partial derivative ∂2g(nx, ny). The resulting ra-

tional function of ny , also containing the other 19 param-

eters, can be simplified and factorized by Wolfram Math-
ematica’s Factor command 2. In this way, we obtain a

fraction whose structure is the following:

linear1 · linear2

(quadratic)2
, (7)

where the expressions ”linear” and ”quadratic” denote poly-

nomials in ny having the corresponding degrees.

The optimum of g can occur when ny is chosen such that

the fraction (7), that is, its numerator is equal to 0. It can

be shown that the assumption linear1 = 0 leads to a contra-

diction – indeed, by solving linear1 = 0 for ny , the result-

ing formula would make denom1 in (6) identically equal to

0. Hence, we are only left with the equation linear2 = 0,

whose solution is

ny =
numer2

denom2
. (8)

The actual formulas for numer2 and denom2 are found again

in the supplementary material.

Thus, the second component of n∗
g is given by (8) (ex-

pressed in terms of the 19 parameters). Then, by using this

together with (6), we obtain nx, the first component of n∗
g .

2https://www.wolfram.com/mathematica/

Remark 2 The essential feature of these computations is
that the solution of system (5) is given in a fully explicit sym-
bolic form by using only elementary operations. Without the
clever intermediate symbolic simplifications and factoriza-
tions (most notably (7)), one would need to solve a higher-
degree polynomial equation to obtain ny , requiring either
taking roots or using an iterative scheme. For example, if
one starts solving (5) with nx and ny as symbolic param-
eters but all the coefficients of g as floating-point numbers,
then, in general, no intermediate factorizations or simplifi-
cations are possible, so in order to determine ny , one would
need to solve a quintic equation.

Case B: nz = 0

We proceed similarly and solve the system{
∂1h(nx, ny) = 0,

∂2h(nx, ny) = 0.
(9)

By expressing nx from the first equation of (9) and substi-

tuting the resulting expression into the second equation, we

find that this time the second equation is automatically sat-

isfied. Therefore, (9) possesses a one-parameter family of

solutions given by

nx =
numer3

denom3
, (10)

see the supplementary material. By substituting this into h,

the function value h(n∗
h) appearing in (4) is obtained as

h(n∗
h) =

numer4

denom4
. (11)

See the supplementary material for details.

Remark 3 One directly checks that the value h(n∗
h) =

h
(

numer3
denom3

, ny

)
is indeed independent of ny , as claimed.

2.1. Summary of the Algorithm

Given the elements aij ∈ R in the affine transformation

and 3D vectors wij and wc �= 0, let us define the function f
by (1) for n with n�wc �= 0, and also define the functions g
and h by (2)–(3). If w11 = w12 = w21 = w22 = wc, then

any unit vector n∗ can be chosen as optimal normal vector.

Otherwise, we compute n∗
g := [nx, ny]

� from (8) and

(6). Then we compute h(n∗
h) from (11). Finally, the optimal

n∗ is determined by using (4).

3. Experiments
We focus on the accuracy and time demand of the algo-

rithms when testing. Both synthetic testing data, including

configurations for a number of important camera motions,

and standard real-world benchmarks are considered here.

3393

Figure 2. Images and the reference reconstruction used from the

Cambridge Landmarks dataset [39] in localization experiments.

Compared Algorithms. In this section, we discuss the al-

gorithms that can be used to estimate the surface normal

from a single affine correspondence.

1. The provably most accurate algorithms are the ones

that are optimal in the least squares sense. Method

OPTQUARTIC refers to [9] which solves the problem as

a real root of a quartic polynomial equation. The cubic

solution OPTCUBIC is from [46]. The proposed opti-

mal solver, as it is solved via linear equations, is called

OPTLINEAR in the rest of the paper.

2. The simplest and, thus, the fastest method is the Fast

Normal Estimation (FNE) algorithm of [9]. A more

complex variant, when all possible linear equations are

considered, is also constructed here, it is denoted as

FNESUPER. The modified equations can be seen in the

source codes in the supplementary material.

3. Raposo and Barreto [56] proposed a solution that es-

timates the normal via homographies. We have not

found an implementation or an exact definition of the

algorithm, so we implemented it based on the descrip-

tion. The solution is computed via an over-determined

inhomogeneous linear system of equations. The for-

mulas are generated by the MATLAB Symbolic Tool-

box. Details are given in the supplementary material.

The method is called RAPOSO in the charts.

The synthetic tests are performed in MATLAB. In the real-

world experiments, optimized C++ codes run on an Intel(R)

Core(TM) i9-10900K CPU @ 3.70GHz.

3.1. Synthetic Experiments

For the synthetic tests, a spherical object is generated,

thus straightforwardly allowing to sample oriented points

from its surface. Two cameras are randomly generated with

focal lengths from the range [500, 1500] and with image

size 2000×2000. Their intrinsic matrices are K1 and K2.

The 3D point was projected into both cameras. The ground

truth (GT) affine parameters were calculated directly from

the camera parameters and the surface normals as shown

in [9]. Several camera configurations are considered to sim-

ulate various real-world scenarios. They are as follows:

• For general stereo pose, the locations of the cameras

are randomly generated inside a unit-radius sphere.

The camera projection matrices are constructed as

P1 = K1[I | 0] and P2 = K2[R | t].
• For rectified stereo, the cameras are located next to

each other with identical orientation. In this case, the

projection matrices are P1 = K1[I | 0] and P2 =
K2[I | t], where t = [ΔX 0 0]�.

• Planar motion simulates the case when a camera is

mounted on a vehicle that moves on a planar road with

the image plane orthogonal to the ground. Such a mo-

tion can be represented by two angles around the ver-

tical axis, one for the rotation and one for the transla-

tion. In this case, the projection matrices can be writ-

ten as P1 = K1[I | 0] and P2 = K2[RY | t], where

t = ρ[cosβ, 0, sinβ]� and

RY =

⎡
⎣ cosα 0 sinα

0 1 0
− sinα 0 cosα

⎤
⎦ .

• Moto-motion. This test case simulates a camera that

is mounted on a motorcycle. If the bike leans, another

rotation, the roll is involved in the problem. In this

case, the camera parameters are P1 = K1[I | 0] and

P2 = K2[RYZ | t], where t = ρ[cosβ 0 sinβ]� and

RY Z = RY RZ .

• Drone-motion is another generalization of the planar

motion. A camera mounted on a flying drone. Its lo-

cation is arbitrary, but the orientation is limited to a

vertical rotation. Therefore, P1 = K1[I | 0] and

P2 = K2[RY | t], where t = [X Y Z]�.

Noise. We have added zero-mean Gaussian noise to the

2D coordinates, therefore, the point noise is given in pixels.

The deviation of the noise is the parameter in the charts.

The 2×2 affine transformations are decomposed by SVD

into two 2D rotations and another two scaling parameters.

Then zero-mean Gaussian noise is added to the angle of ro-

tations, in radians, and the scaling parameters. The standard

deviation of the Gaussian noise distribution is equally set

for all the four parameters.

3D Reconstruction Pipeline. In order to simulate real sce-

narios, first, we triangulate each generated noisy point cor-

respondence by the optimal triangulation method proposed

by Hartley and Sturm [29]. The noisy affine parameters are

corrected by the method proposed in [7] to be consistent

with the camera parameters.

3394

-16 -14 -12 -10 -8 -6 -4
log10 avg. error

0

2000

4000

6000

Fr
eq

ue
nc

y
FNE FNESUPER OPTQUARTIC
OPTCUBIC OPTLINEAR RAPOSO

Figure 3. The frequencies (in 10000 runs) of the log10 errors in the

log10 angular errors in degrees in the noise-free case.

Stability test. We generated 10000 random problem in-

stances considering general camera motion and ran the nor-

mal estimators on noiseless affine correspondences. Fig. 3

shows histograms of log10 angular errors in degrees. Note

that for better visualization, we replace the exact zero val-

ues by 10−16 as it is the precision of the floating point num-

bers in MATLAB. The plots show that all our solvers are

very stable – there is no peak close to 100. For all meth-

ods, the majority of the errors are distributed around 10−16

which actually is the precision of MATLAB. This means

that in most of the cases, all methods are particularly sta-

ble returning almost exactly 0 error. A small peak is over

10−6 for all methods similarly. Having 10−6 degree error

is acceptable in most of the scenarios considered in com-

puter vision. There is no peak close to 100 implying that

all solvers are stable. Note that these stability tests usually

are for highlighting potential degeneracies where the error

exceeds 100.

We also conducted tests using single-point precision in

MATLAB. The OPTQUARTIC approach failed entirely under

these conditions. For all other methods, we noticed an in-

crease in error, which suggests that double precision is nec-

essary for reliable normal estimation. Interestingly, our pro-

posed OPTLINEAR method appears to be slightly more sensi-

tive to precision than OPTCUBIC is. This is likely due to the

fact that OPTLINEAR employs more complex formulas and,

consequently, performs more stably with double precision.

Accuracy test. The accuracy of the normals is examined for

all the considered camera poses independently. The results

are shown in Fig 9. The effect of noise in point coordinates

and affine parameters are separately evaluated. Both the

mean and the median of the errors are plotted.

The observations we can make from the plots are as

follows. First, the three optimal methods OPTQUARTIC,

OPTCUBIC and OPTLINEAR always lead exactly to the same

solution, thus their curves coincide in all plots. Second, the

optimal methods always lead to the most accurate results if

the affine parameters are contaminated by noise. This is not

surprising as these methods optimize the normal parameters

such that the implied affine transformation is the closest to

the measured one. In the case of point-noise only, the ac-

curacy of the optimal algorithm is slightly below that of the

competitors. However, it is an unlikely situation in real-

world images to have noisy points but perfect local affine

frames. It is usually the other way around. Third, as the

FNE method uses less information, it is clearly the worst

one in terms of accuracy. FNESUPER performs significantly

better, however, it requires more time as the right singu-

lar vector of a 6 × 3 matrix, corresponding to the small-

est singular value, should be computed. Another benefit

of FNESUPER is, contrary to FNE and Raposo [56], that it

works in all test cases. It can cope with both planar motion

and rectified stereo, similarly to the optimal algorithms.

Problematic methods. Methods FNE and Raposo [56] do

not work if the cameras undergo special translations. FNE

is a special method, several variants can be formed based

on the selection of the affine transformations. For rectified

stereo, the third and fourth elements are fixed [44], they can-

not be used for the estimation.

The Raposo [56] method is the most problematic one as

the homography can be decomposed into the camera rota-

tion, translation and surface normal. If the translation has

zero elements, the retrieved equations are linearly depen-

dent, and the estimation does not yield a correct solution.

Due to this reason, Raposo [56] does not work for rectified

stereo and planar motion. We removed these methods from

the plots of the respective camera configurations.

Combined noise. In the previous experiments, noise is

added either to the point coordinates or affine parameters.

Here, we contaminate both types of input data. The mean

and median errors of the proposed linear method are visu-

alized in Fig. 10. As it is expected, the curves show similar

trends, but the case when both the points and affines are

noisy leads to higher errors.

Interpretable affine noise. In the previous experiments,

the noise is added directly to the elements of the affine ma-

trices. In Fig. 11, we consider a different way of contami-

nating the input to show that the proposed method acts rea-

sonably with different noise models as well. The results of

curves Aff and Comb are obtained by using the noise model

from the previous sections. Comb refers to the case when

both the points and the affine matrices are noisy. For Aff-
Elem and Comb-Elem, we decompose A by SVD into two

orthogonal and a diagonal matrix. Fig. 11 demonstrates that

the noise generation does not strongly influence the results.

4. Real-world Experiments
To test normal estimators, we use the Cambridge Land-

marks [39] and ScanNet datasets [18]. We chose Cam-

bridge Landmarks, see Fig. 2 for example images, since it

provides a large number of images for testing directly the

3395

0 0.01 0.02 0.03 0.04 0.05
Threshold (Noise)

0

10

20

30

40

M
ed

ia
n

A
ng

ul
ar

 E
rr

or
 (
°)

0 0.01 0.02 0.03 0.04 0.05
Threshold (Noise)

0

10

20

30

40

M
ea

n
A

ng
ul

ar
 E

rr
or

 (
°)

0 0.5 1 1.5 2 2.5 3
Threshold (Noise)

0

0.05

0.1

0.15

0.2

0.25

0.3

M
ed

ia
n

A
ng

ul
ar

 E
rr

or
 (
°)

0 0.5 1 1.5 2 2.5 3
Threshold (Noise)

0

0.5

1

1.5

2

M
ea

n
A

ng
ul

ar
 E

rr
or

 (
°)

Figure 4. General Motion.

0 0.01 0.02 0.03 0.04 0.05
Threshold (Noise)

0

10

20

30

40

M
ed

ia
n

A
ng

ul
ar

 E
rr

or
 (
°)

0 0.01 0.02 0.03 0.04 0.05
Threshold (Noise)

0

10

20

30

40

M
ea

n
A

ng
ul

ar
 E

rr
or

 (
°)

0 0.5 1 1.5 2 2.5 3
Noise (px)

0

0.05

0.1

0.15

0.2

0.25

0.3

M
ed

ia
n

A
ng

ul
ar

 E
rr

or
 (
°)

0 0.5 1 1.5 2 2.5 3
Noise (px)

0

0.5

1

1.5

2

M
ea

n
A

ng
ul

ar
 E

rr
or

 (
°)

Figure 5. Rectified Stereo.

0 0.01 0.02 0.03 0.04 0.05
Threshold (Noise)

0

10

20

30

40

M
ed

ia
n

A
ng

ul
ar

 E
rr

or
 (
°)

0 0.01 0.02 0.03 0.04 0.05
Threshold (Noise)

0

10

20

30

40

M
ea

n
A

ng
ul

ar
 E

rr
or

 (
°)

0 0.5 1 1.5 2 2.5 3
Threshold (Noise)

0

0.05

0.1

0.15

0.2

0.25

0.3

M
ed

ia
n

A
ng

ul
ar

 E
rr

or
 (
°)

0 0.5 1 1.5 2 2.5 3
Threshold (Noise)

0

0.5

1

1.5

2

M
ea

n
A

ng
ul

ar
 E

rr
or

 (
°)

Figure 6. Planar Motion.

0 0.01 0.02 0.03 0.04 0.05
Threshold (Noise)

0

10

20

30

40

M
ed

ia
n

A
ng

ul
ar

 E
rr

or
 (
°)

0 0.01 0.02 0.03 0.04 0.05
Threshold (Noise)

0

10

20

30

40

M
ea

n
A

ng
ul

ar
 E

rr
or

 (
°)

0 0.5 1 1.5 2 2.5 3
Threshold (Noise)

0

0.05

0.1

0.15

0.2

0.25

0.3

M
ed

ia
n

A
ng

ul
ar

 E
rr

or
 (
°)

0 0.5 1 1.5 2 2.5 3
Threshold (Noise)

0

0.5

1

1.5

2
M

ea
n

A
ng

ul
ar

 E
rr

or
 (
°)

Figure 7. Moto Motion.

0 0.01 0.02 0.03 0.04 0.05
Noise (%)

0

10

20

30

40

M
ed

ia
n

A
ng

ul
ar

 E
rr

or
 (
°)

0 0.01 0.02 0.03 0.04 0.05
Noise (%)

0

10

20

30

40

M
ea

n
A

ng
ul

ar
 E

rr
or

 (
°)

0 0.5 1 1.5 2 2.5 3
Noise (px)

0

0.05

0.1

0.15

0.2

0.25

0.3

M
ed

ia
n

A
ng

ul
ar

 E
rr

or
 (
°)

0 0.5 1 1.5 2 2.5 3
Noise (px)

0

0.5

1

1.5

2

M
ea

n
A

ng
ul

ar
 E

rr
or

 (
°)

Figure 8. Drone Motion.

Figure 9. Average and median angular errors (in degrees) of surface normal estimators on synthetic data. Five camera configurations are

considered. From left to right: (1) Median error; noise added to affine parameters. (2) Average error; noise added to affine parameters. (3)

Median error; noise added to point coordinates. (4) Average error; noise added to point coordinates.

normal accuracy and, also, we can evaluate localization as

an application of the proposed procedure. Also, we chose

ScanNet since the reference normals can be calculated di-

rectly from the dense depth maps which provides a comple-

mentary comparison to the tests on Cambridge Landmarks,

where the normals come from a 3D reconstruction.

Cambridge Landmarks consists of five scenes with vary-

ing number of images, ranging from 231 to 3015. The ref-

erence pose of each image was reconstructed using the Vi-

sualSFM structure-from-motion software [70, 69] and the

3396

0 0.5 1 1.5 2 2.5
Threshold (Noise) 10-3

0

2

4

6

8

10

M
ea

n
A

ng
ul

ar
 E

rr
or

 (
°)

Affine
Point
Combined

0 0.5 1 1.5 2 2.5
Threshold (Noise) 10-3

0

0.5

1

1.5

2

M
ed

ia
n

A
ng

ul
ar

 E
rr

or
 (
°) Affine

Point
Combined

Figure 10. Mean and median errors of the proposed OPTLINEAR

normal estimator with noise added to point coordinates (Point),
affine parameters (Affine) or both (Combined).

0 0.5 1 1.5 2 2.5
Threshold (Noise) 10-3

0

2

4

6

8

10

M
ea

n
A

ng
ul

ar
 E

rr
or

 (
°)

Aff
Comb
Aff-Elem
Comb-Elem

0 0.5 1 1.5 2 2.5
Threshold (Noise) 10-3

0

0.5

1

1.5

2

M
ed

ia
n

A
ng

ul
ar

 E
rr

or
 (
°) Aff

Comb
Aff-Elem
Comb-Elem

Figure 11. Mean and median errors of the proposed OPTLINEAR

normal estimator with noise added to only the affine (Aff) elements

and, also, to the point coordinates (Comb). For Aff and Comb,

zero-mean Gaussian noise is added directly to the affine elements.

For Aff-Elem and Comb-Elem, the affine matrix is decomposed by

SVD to two rotations and a diagonal matrix. Zero-mean Gaussian

noise is added to the rotation angles and diagonal elements.

images are divided into training and testing sets. To have

more accurate reference data, we ran COLMAP [63] ob-

taining a dense point cloud. Finally, we applied the normal

estimator implemented in MeshLab3 to obtain an oriented

point cloud to be considered reference. The normals are fit-

ted to the 200 nearest neighbors. For each query image, we

ran DenseVLAD [67] to get 20 potential database images.

In our experiments, the algorithms are tested on each ob-

tained image pair, i.e., 20 pairs for each query image. For

ScanNet, we use the 1500 image pairs used in [59].

On Cambridge Landmarks, we detect affine correspon-

dences by detecting DoG features [42], finding the affine

shape by AffNet [48], and extracting HardNet [47] descrip-

tors. This approach is among the leaders in the IMC 2020

benchmark [34]. On ScanNet, we detect SuperPoint [20]

features, match them by SuperGlue [59], and find the affine

shape by, first, estimating scale and orientation by SelfSca-

leOri [41] and, then, finding the affine shapes by AffNet.

Normal Estimation. To test normal estimators, we ran

all of them on the data described in the previous section.

For each image pair, we iterate through all detected corre-

spondences that are consistent with the camera pose – they

have less than 5 pixels of Sampson distance. For each of

3Meshlab is an open source tool for 3D point cloud processing and

visualization.

0 0.1 0.2 0.3 0.4
Affine error

10

20

30

40

50

A
ng

ul
ar

 e
rr

or
 (°

)

FNE
FNESUPER
OPTQUARTIC
OPTCUBIC
OPTLINEAR
Raposo

0 0.1 0.2 0.3 0.4
Affine error

0

5

10

15

20

25

30

A
U

C
@

10
° s

co
re

Figure 12. The median angular error in degrees (left) and the

AUC@10◦ score (right) of the estimated normals plotted as a func-

tion of the error in the detected affine correspondences on the Cam-

bridge Landmarks dataset.

them, we ran multiple normal estimators, measure their an-

gular error and run-time. To understand how the estima-

tors proceed with respect to the error in the detected affine

transformations A, we calculate the reference transforma-

tion A∗ from the camera parameters and the surface normal

as shown in [9]. We define the affine error as the Frobenius

norm of the difference matrix ||A − A∗||F.

The Area Under the recall Curve (AUC) at 5◦, 10◦ and

20◦, the avg. and med. angular errors with the standard

deviation in degrees and the run-time in nanoseconds on

the Cambridge Landmarks dataset are reported in Table 1.

As expected, the best results are achieved by the optimal

algorithms, all of them leading to exactly the same re-

sults. Our proposed linear solution of the optimal prob-

lem, OPTLINEAR, is five times faster than the cubic solution

OPTCUBIC. While OPTLINEAR is slightly slower than the

fastest FNE method, it is significantly more accurate. Inter-

estingly, while the method of Raposo et al. [56] worked well

in the synthetic experiments, we did not manage to achieve

good accuracy with it in the real-world experiments. Fig-

ure 12 plots the AUC@10◦ score and the median angular

error as a function of the noise in the detected affine param-

eters. As expected, normal estimation is highly sensitive to

the quality of the affine parameters. The optimal algorithms

are the most stable ones.

The results on the ScanNet dataset are reported in Ta-

ble 3. Similarly as on Cambridge Landmarks, all optimal

solvers lead to the same accuracy while the proposed one

being the fastest by a large margin.

Visual Localization. To test the impact of surface normal

estimation on localization, on the Cambridge Landmarks

dataset, we applied the following procedure. We iterate

through all query images, each having 10 database images

retrieved by DenseVLAD. First, we estimate the relative

pose between the query and a random database image by

GC-RANSAC [6] with P3P [54]. Using the obtained pose,

we estimate the surface normal of each inlier affine cor-

respondence in the coordinate system of the query image.

Next, we iterate through all unused database images and use

3397

Estimator AUC@5◦ ↑ @10◦ ↑ @20◦ ↑ Avg. err. (◦) ↓ Med. err. (◦) ↓ Std. dev. (◦) ↓ Time (ns) ↓
FNE [49] 6.0 16.0 33.7 21.0 14.3 21.3 172

FNESUPER 8.9 22.1 42.0 10.9 16.8 15.6 1721

Raposo [56] 0.4 1.5 5.7 38.5 36.5 18.2 883

OPTQUARTIC [9] 11.7 27.3 48.7 8.8 13.6 12.9 2528

OPTCUBIC [46] 11.7 27.3 48.7 8.8 13.6 12.9 2484

Proposed OPTLINEAR 11.7 27.3 48.7 8.8 13.6 12.9 596
Table 1. The AUC score at 5◦, 10◦, and 20◦ of the estimated surface normals, their average and median errors in degrees, the standard

deviation, and the average run-time, in nanoseconds, of a single normal estimation on the Cambridge Landmarks dataset.

Solver
Normal Pose accuracy ↑ Med. rot. Med. pos.

estimator AUC@1◦, 10cm @2.5◦, 25cm @5◦, 50cm err. (◦) ↓ err. (cm) ↓
P3P – 44.3 59.1 67.5 10.1 13.5

P1AC FNESUPER 47.8 62.0 69.7 6.2 12.8

P1AC Proposed OPTLINEAR 48.0 62.3 69.9 5.2 1.8

P1AC GT 48.4 62.9 70.4 4.6 2.1

Table 2. Localization AUC scores at (1◦, 10cm), (2.5◦, 25cm), and (5◦, 50cm), the median rotation (in degrees) and translation errors (in

centimeters) on the Cambridge Landmarks dataset [39] when using either the P3P solver or the normal-based P1AC solver with FNESUPER

or the proposed surface normal estimator OPTLINEAR. We also show the results with the reference normals. The minimal solvers are used

within Graph-Cut RANSAC [6] that takes care of the robust estimation.

AUC@5 ↑ AUC@10 ↑ AUC@20 ↑ Time (ns) ↓
FNE 14.8 15.4 17.0 207

FNESUPER 34.9 35.2 36.6 2142

OPTQUARTIC 35.0 35.5 37.3 18745

OPTCUBIC 35.0 35.5 37.3 3146

OPTLINEAR 35.0 35.5 37.3 747
Table 3. The AUC scores at 5◦, 10◦ and 20◦, and the avg. time (in

nanoseconds) of normal estimators on the ScanNet datasets [18].

the P1AC [68] solver inside GC-RANSAC to estimate the

pose. P1AC requires a single AC and the surface normal.

We only test the proposed solver and FNESUPER. All other

optimal solvers lead exactly to the same accuracy as ours.

FNESUPER is the most accurate sub-optimal algorithm.

The accuracy of the estimated pose for the database im-

ages with respect to their GT pose is reported in Table 2.

All solvers, benefiting from normals and affine correspon-

dences, are more accurate than using P3P. We also report

the accuracy when using the reference normals to see the

upper bound achievable using normals. The proposed op-

timal solver OPTLINEAR is only slightly (i.e. < 1 AUC

point) behind the accuracy of the GT normal, while being

more accurate than the P3P-based solution. The AUC@10◦

scores on each scene are reported in Table 4. The proposed

OPTLINEAR leads to the best accuracy on all but two scenes.

5. Conclusions
In this work, we have presented a novel solver for esti-

mating surface normals from affine correspondences when

having calibrated cameras. The proposed method yields the

P3P
P1AC

GT FNESUPER Prop. OPTLINEAR

St. Mary’s Church 44.2 47.7 46.1 46.5
Old Hospital 44.1 57.4 56.8 57.3

King’s College 52.1 54.2 54.1 54.0

Shop Facade 65.5 65.0 63.8 64.1
Great Court 62.7 63.2 63.0 63.5

Street 17.4 22.8 23.1 23.0

Table 4. The area under the recall curve (AUC) at 1◦ rotation and

10cm position errors on the Cambridge Landmarks dataset. We

combine the P1AC solver with FNESUPER and the proposed normal

estimator. Also, we test it with the reference normals.

optimal solution, in the least squares sense, with respect to

the affine error, and is particularly fast as the optimal normal

is obtained via linear equations. We compared our method

to all existing alternatives that estimate normals from a sin-

gle correspondence on both simulated and real-world data.

Additionally, we provide tests that highlight the benefits of

using surface normals in image-based localization. The pro-

posed estimator has demonstrated superior accuracy com-

pared to the fastest existing method while being the second

fastest overall. Our results suggest that the proposed algo-

rithm is a promising alternative for surface normal estima-

tion in computer vision applications.

Acknowledgement. The authors warmly thank the re-

viewers for their very valuable comments and suggestions.

The work was supported by the ETH Postdoc fellowship.

3398

References
[1] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Si-

mon, Brian Curless, Steven M. Seitz, and Richard Szeliski.

Building rome in a day. Commun. ACM, 54(10), 2011.

[2] Daniel Barath and Levente Hajder. A theory of point-wise

homography estimation. Pattern Recognit. Lett., 94:7–14,

2017.

[3] Daniel Barath and Levente Hajder. Efficient recovery of es-

sential matrix from two affine correspondences. IEEE Trans-
actions on Image Processing, 27(11):5328–5337, 2018.

[4] Daniel Barath and Jiri Matas. Multi-class model fitting by

energy minimization and mode-seeking. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 221–236, 2018.

[5] Daniel Barath and Jiri Matas. Progressive-x: Efficient,

anytime, multi-model fitting algorithm. In Proceedings of
the IEEE/CVF international conference on computer vision,

pages 3780–3788, 2019.

[6] Daniel Barath and Jiri Matas. Graph-cut RANSAC: lo-

cal optimization on spatially coherent structures. IEEE
Transactions on Pattern Analysis and Machine Intelligence,

44(9):4961–4974, 2021.

[7] Daniel Barath, Jiri Matas, and Levente Hajder. Accurate

closed-form estimation of local affine transformations con-

sistent with the epipolar geometry. In BMVC, 2016.

[8] Daniel Barath, Dmytro Mishkin, Ivan Eichhardt, Ilia

Shipachev, and Jiri Matas. Efficient initial pose-graph gen-

eration for global sfm. In CVPR, 2021.

[9] D. Barath, J. Molnar, and L. Hajder. Novel methods for esti-

mating surface normals from affine transformations. In Com-
puter Vision, Imaging and Computer Graphics Theory and
Applications, Selected and Revised Papers, pages 316–337.

Springer International Publishing, 2015.

[10] Daniel Barath, Michal Polic, Wolfgang Förstner, Torsten

Sattler, Tomas Pajdla, and Zuzana Kukelova. Making affine

correspondences work in camera geometry computation. In

European Conference on Computer Vision, pages 723–740.

Springer, 2020.

[11] Axel Barroso-Laguna, Edgar Riba, Daniel Ponsa, and Krys-

tian Mikolajczyk. Key.Net: Keypoint Detection by Hand-

crafted and Learned CNN Filters. In ICCV, 2019.

[12] Adam Baumberg. Reliable feature matching across widely

separated views. In CVPR, pages 1774–1781. IEEE Com-

puter Society, 2000.

[13] P. R. Beaudet. Rotationally invariant image operators. In

Proceedings of the 4th International Joint Conference on
Pattern Recognition, 1978.

[14] Pál Benkö, Géza Kós, Tamás Várady, László Andor, and

Ralph R. Martin. Constrained fitting in reverse engineering.

Comput. Aided Geom. Des., 19(3):173–205, 2002.

[15] Jacob Bentolila and Joseph M Francos. Conic epipolar con-

straints from affine correspondences. Computer Vision and
Image Understanding, 122:105–114, 2014.

[16] Rui Chen, Songfang Han, Jing Xu, and Hao Su. Point-based

multi-view stereo network. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 1538–

1547, 2019.

[17] T. Cover and P. Hart. Nearest neighbor pattern classification.

Information Theory, IEEE Transactions on, 13:21– 27, 1967.

[18] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. Scannet:

Richly-annotated 3d reconstructions of indoor scenes. In

Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5828–5839, 2017.

[19] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-

novich. Toward geometric deep SLAM. CoRR, 2017.

[20] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-

novich. Superpoint: Self-supervised interest point detection

and description. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pages

224–236, 2018.

[21] Ivan Eichhardt and Daniel Barath. Relative pose from deep

learned depth and a single affine correspondence. In Eu-
ropean Conference on Computer Vision, pages 627–644.

Springer, 2020.

[22] Iván Eichhardt and Dmitry Chetverikov. Affine correspon-

dences between central cameras for rapid relative pose esti-

mation. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 482–497, 2018.

[23] Jakob Engel, Thomas Schöps, and Daniel Cremers. LSD-

SLAM: large-scale direct monocular SLAM. In ECCV,

2014.

[24] Olivier D. Faugeras and Francis Lustman. Motion and struc-

ture from motion in a piecewise planar environment. Int. J.
Pattern Recognit. Artif. Intell., 2(3):485–508, 1988.

[25] Banglei Guan, Ji Zhao, Zhang Li, Fang Sun, and Friedrich

Fraundorfer. Minimal solutions for relative pose with a sin-

gle affine correspondence. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 1929–1938, 2020.

[26] Levente Hajder and Daniel Barath. Relative planar motion

for vehicle-mounted cameras from a single affine correspon-

dence. In 2020 IEEE International Conference on Robotics
and Automation (ICRA), pages 8651–8657. IEEE, 2020.

[27] Levente Hajder and Ivan Eichhardt. Computer vision meets

geometric modeling: Multi-view reconstruction of surface

points and normals using affine correspondences. In 2017
IEEE International Conference on Computer Vision Work-
shops (ICCVW), pages 2427–2435, 2017.

[28] C. Harris and M. Stephens. A combined corner and edge

detector. In Proceedings of the 4th Alvey Vision Conference,

pages 147–151, 1988.

[29] R. I. Hartley and P. Sturm. Triangulation. Computer Vision
and Image Understanding: CVIU, 68(2):146–157, 1997.

[30] R. I. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2003.

[31] Jared Heinly, Johannes L. Schönberger, Enrique Dunn, and

Jan-Michael Frahm. Reconstructing the world* in six days.

In CVPR, 2015.

[32] Hossam Isack and Yuri Boykov. Energy-based geometric

multi-model fitting. International journal of computer vi-
sion, 97(2):123–147, 2012.

[33] Xiangmin Jiao and Duo Wang. Reconstructing high-order

surfaces for meshing. Eng. Comput., 28(4):361–373, 2012.

3399

[34] Yuhe Jin, Dmytro Mishkin, Anastasiia Mishchuk, Jiri Matas,

Pascal Fua, Kwang Moo Yi, and Eduard Trulls. Image

matching across wide baselines: From paper to practice. In-
ternational Journal of Computer Vision, 2020.

[35] Ian T. Jolliffe and Jorge Cadima. Principal component analy-

sis: a review and recent developments. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 374, 2016.

[36] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning

a multi-view stereo machine. In NeurIPS, 2017.

[37] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.

Poisson surface reconstruction. In Eurographics, pages 61–

70, 2006.

[38] Michael Kazhdan and Hugues Hoppe. Screened Poisson sur-

face reconstruction. ACM TOG, page 29, 2013.

[39] Alex Kendall, Matthew Grimes, and Roberto Cipolla.

Posenet: A convolutional network for real-time 6-dof cam-

era relocalization. In Proceedings of the IEEE international
conference on computer vision, pages 2938–2946, 2015.

[40] Kevin Köser and Reinhard Koch. Differential Spatial Resec-

tion - Pose Estimation Using a Single Local Image Feature.

In ECCV, pages 312–325, 2008.

[41] Jongmin Lee, Yoonwoo Jeong, and Minsu Cho. Self-

supervised learning of image scale and orientation. In 31st
British Machine Vision Conference 2021, BMVC 2021, Vir-
tual Event, UK. BMVA Press, 2021.

[42] David G. Lowe. Distinctive image features from scale-

invariant keypoints. International Journal of Computer Vi-
sion (IJCV), 60(2):91–110, 2004.

[43] Simon Lynen, Bernhard Zeisl, Dror Aiger, Michael Bosse,

Joel A. Hesch, Marc Pollefeys, Roland Siegwart, and Torsten

Sattler. Large-scale, real-time visual-inertial localization re-

visited. IJRR, 39(9), 2020.

[44] Z. Megyesi, G. Kos, and D. Chetverikov. Dense 3D Recon-

struction from Images by Normal Aided Matching. Machine
Graphics & Vision, 15:3–28, 2006.

[45] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine

invariant interest point detectors. International Journal of
Computer Vision (IJCV), 60(1):63–86, 2004.

[46] Nghia Le Minh and Levente Hajder. Affine transformation

from fundamental matrix and two directions. In VISAPP,

pages 819–826, 2020.

[47] A. Mishchuk, D. Mishkin, F. Radenovic, and J. Matas. Work-

ing Hard to Know Your Neighbor’s Margins: Local Descrip-

tor Learning Loss. In NeurIPS, 2017.

[48] D. Mishkin, F. Radenovic, and J. Matas. Repeatability is

Not Enough: Learning Affine Regions via Discriminability.

In ECCV, 2018.

[49] József Molnár and Dmitry Chetverikov. Quadratic transfor-

mation for planar mapping of implicit surfaces. J. Math.
Imaging Vis., 48(1):176–184, 2014.

[50] Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tardós.

ORB-SLAM: A versatile and accurate monocular SLAM

system. IEEE Trans. Robotics, 31(5), 2015.

[51] David Nistér, Oleg Naroditsky, and James R. Bergen. Visual

odometry. In CVPR, 2004.

[52] David Nistér, Oleg Naroditsky, and James R. Bergen. Visual

odometry for ground vehicle applications. J. Field Robotics,

23(1), 2006.

[53] Vojtech Panek, Zuzana Kukelova, and Torsten Sattler.

Meshloc: Mesh-based visual localization. In ECCV, 2022.

[54] Mikael Persson and Klas Nordberg. Lambda Twist: An ac-

curate fast robust perspective three point (p3p) solver. In

Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 318–332, 2018.

[55] Carolina Raposo and Joao P Barreto. Theory and practice of

structure-from-motion using affine correspondences. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5470–5478, 2016.

[56] Carolina Raposo and João Pedro Barreto. Accurate recon-

struction of oriented 3d points using affine correspondences.

In ECCV, volume 12373, pages 545–560. Springer, 2020.

[57] Edward Rosten and Tom Drummond. Machine learning

for high-speed corner detection. In Proceedings of the
9th European Conference on Computer Vision - Volume
Part I, ECCV’06, pages 430–443, Berlin, Heidelberg, 2006.

Springer-Verlag.

[58] E. Rublee, V. Rabaud, K. Konolidge, and G. Bradski. ORB:

An Efficient Alternative to SIFT or SURF. In ICCV, 2011.

[59] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,

and Andrew Rabinovich. Superglue: Learning feature

matching with graph neural networks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 4938–4947, 2020.

[60] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Improving

image-based localization by active correspondence search.

In ECCV, 2012.

[61] Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii,

Lars Hammarstrand, Erik Stenborg, Daniel Safari, Masatoshi

Okutomi, Marc Pollefeys, Josef Sivic, Fredrik Kahl, and

Tomás Pajdla. Benchmarking 6dof outdoor visual localiza-

tion in changing conditions. In CVPR, 2018.

[62] Johannes L. Schönberger and Jan-Michael Frahm. Structure-

from-motion revisited. In CVPR, 2016.

[63] Johannes L Schonberger and Jan-Michael Frahm. Structure-

from-motion revisited. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages

4104–4113, 2016.

[64] Agnes Seiler, David Großmann, and Bert Jüttler. Spline sur-

face fitting using normal data and norm-like functions. Com-
put. Aided Geom. Des., 64:37–49, 2018.

[65] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Mod-

eling the world from internet photo collections. IJCV, 80(2),

2008.

[66] Yurun Tian, Xin Yu, Bin Fan, Fuchao Wu, Huub Heijnen,

and Vassileios Balntas. Sosnet: Second order similarity reg-

ularization for local descriptor learning. In CVPR, 2019.

[67] Akihiko Torii, Relja Arandjelovic, Josef Sivic, Masatoshi

Okutomi, and Tomas Pajdla. 24/7 place recognition by

view synthesis. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1808–1817,

2015.

3400

[68] Jonathan Ventura. P1ac: Revisiting absolute pose from a sin-

gle affine correspondence. arXiv preprint arXiv:2011.08790,

2020.

[69] Changchang Wu. Towards linear-time incremental struc-

ture from motion. In 2013 International Conference on 3D
Vision-3DV 2013, pages 127–134. IEEE, 2013.

[70] Changchang Wu, Sameer Agarwal, Brian Curless, and

Steven M Seitz. Multicore bundle adjustment. In CVPR
2011, pages 3057–3064. IEEE, 2011.

[71] K. M. Yi, Y. Verdie, P. Fua, and V. Lepetit. Learning to

Assign Orientations to Feature Points. In CVPR, 2016.

[72] Siyu Zhu, Runze Zhang, Lei Zhou, Tianwei Shen, Tian Fang,

Ping Tan, and Long Quan. Very large-scale global sfm by

distributed motion averaging. In CVPR, 2018.

3401

