
ClusT3: Information Invariant Test-Time Training

Gustavo A. Vargas Hakim* , David Osowiechi*,
Mehrdad Noori , Milad Cheraghalikhani , Ali Bahri , Ismail Ben Ayed , and Christian Desrosiers

ÉTS Montreal, Canada

Abstract

Deep Learning models have shown remarkable perfor-
mance in a broad range of vision tasks. However, they
are often vulnerable to domain shifts at test-time. Test-
time training (TTT) methods have been developed in an at-
tempt to mitigate these vulnerabilities, where a secondary
task is solved at training time, simultaneously with the
main task, to be later used as an self-supervised proxy task
at test-time. In this work, we propose a novel unsuper-
vised TTT technique based on the maximization of Mutual
Information between multi-scale feature maps and a dis-
crete latent representation, which can be integrated to the
standard training as an auxiliary clustering task. Exper-
imental results demonstrate competitive classification per-
formance on different popular test-time adaptation bench-
marks. The code can be found at: https://github.
com/dosowiechi/ClusT3.git

1. Introduction

The domain invariance hypothesis has been key to the
success of deep learning methods for computer vision. In
this hypothesis, the training and testing data are both as-
sumed to be drawn from the same distribution, which rarely
holds in practical settings. Moreover, it has been shown in
numerous studies that the performance in classification and
segmentation can drop significantly when domain shifts are
present [26, 24]. In response, Domain Adaptation (DA)
studies the adaptation of learning algorithms to new do-
mains, when different types of domain shifts are present
in the test data. From this field, two promising direc-
tions have emerged: Domain Generalization and Test-Time
Adaptation. On the one hand, Domain Generalization (DG)
[30, 25, 33, 14, 32] assumes a model is trained on a large
source dataset composed of different domains, and evalu-

*Equal contribution. Correspondence to gustavo-adolfo.vargas-
hakim.1@ens.etsmtl.ca, david.osowiechi.1@ens.etsmtl.ca

ates the performances on new domains at test-time. On
the other hand, Test-Time Adaptation (TTA) [31, 18, 13, 1]
adapts the model to test data on the fly, typically adjusting
to subsets of the new domain (e.g., mini-batches) each time.
In TTA, there is no supervision from the testing samples nor
access to the source domain, which makes it a challenging,
yet realistic problem. The main limitation of DG is the re-
quirement of a large amount of training data from different
domains, without the guarantee that the model generalizes
well to the (virtually unlimited) possible new domains it
may encounter. TTA methods do not have this issue. How-
ever, they are highly sensitive to the choice of the unsu-
pervised loss functions deployed at test-time, which may
severely hurt the performances.

Test-Time Training (TTT) [28, 19, 7, 23] is an attrac-
tive variant of TTA, where an auxiliary task is learned from
the training data (source domain) and later used at test-
time to update a model. Typically, unsupervised and self-
supervised tasks are chosen, as they allow for an adaptation
process that does not require any label. Moreover, the joint,
two-task training protocol for the source domain provides
momentum at test-time, enabling the use of a loss function
that is not completely foreign to the model.

Inspired by the recent success of Mutual-Information
(MI) maximization in several learning tasks, such as repre-
sentation learning [12, 10, 22, 29], deep clustering [11] and
few-shot learning [2], we propose an information invariant
TTT method called ClusT3. Our method maximizes the MI
between the feature maps at different scales and discrete
latent representations related to clustering. The main idea
is that the amount of information between the features and
their corresponding discrete encoding should remain con-
stant in both the source and target domains (see Fig. 1). To-
ward this goal, we introduce an auxiliary task that performs
information-maximization clustering while training on the
source examples. At test time, we use the MI between the
features and cluster assignments as a measure of representa-
tion quality, and maximize the MI as objective for test-time
adaptation. Unlike previous TTT approaches, which rely

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

6136

(a) Source DS and Target DT distributions (b) Cumulative density function of DS (c) Cumulative density function of DT

Figure 1. Illustration of our Information Invariant TTT method on a 1D feature space. (a) The clustering of source features x (blue)
into K=10 regions, maximizing the entropy of the cluster marginal distribution H(Z), is such that regions have the same probability mass
in the source distribution. At test-time, the probability density function of the target domain (red) is shifted, which results in a different
clustering of features. (b) The optimal clustering corresponds to dividing the cumulative density function (CDF) in even steps, giving a
cluster marginal entropy of H(Z)=log2(K)≈3.332. (c) Since the CDF of the target is not divided in even steps, the mutual information
between features x and clusters z is no longer maximized. Note: we assume that cluster assignments are confident, i.e., H(Z|X)≈0 and
thus I(Z;X) = H(Z)−H(Z|X) ≈ H(Z).

on problem-specific, self-supervised learning strategies, our
auxiliary clustering task is problem-agnostic and could be
added on top of any model via a low-dimensional linear
projection. Test-time adaptation could also be done using
only the test samples, without any type of distilled informa-
tion from the source domain. On the technical side, mini-
mal architectural changes are needed, and the joint training
approach is more efficient than proceeding with multiple,
complex and time-consuming steps.

Our contributions could be summarized as follows:

• We propose a novel Test-Time Training approach
based on maximizing the MI between feature maps
and discrete representations learned in training. At
test time, adaptation is achieved based on the principle
that information between the features and their discrete
representation should remain constant across domains.

• ClusT3 is evaluated across a series of challenging TTA
scenarios, with different types of domain shifts, ob-
taining competitive performance compared to previous
methods.

• To the best of our knowledge, this is the first Unsuper-
vised Test-Time Training approach using a joint train-
ing based on the MI and linear projectors. Our ap-
proach is lightweight and more general than its previ-
ous self-supervised counterparts.

The rest of this paper is organized as follows. Section 2
presents previous work in both TTA and TTT. Section 3 in-
troduces the ClusT3 method with the experimental setting
to evaluate it in Section 4. Experimental results and discus-
sions are provided in Section 5, and the closing conclusions
are given in Section 6.

2. Related Work

Test-Time Adaptation. The goal of TTA is to adapt a pre-
trained model to a target dataset on the fly, i.e., as batches
of data appear. Additional challenges include (1) the in-
accessibility of source samples, which makes direct do-
main alignment impossible, (2) the lack of label supervi-
sion, which makes using unsupervised losses necessary, and
(3) the fact that there is no access to all the target distribu-
tion, as the data come in the form of batches and not as a
whole dataset. Adaptation can then be performed on differ-
ent components of a network, such as the feature extractor,
the classifier, or even the whole network.

Prediction Time Batch Normalization (PTBN) [21] pro-
poses to use the feature mean and variance from the batch
of test samples as statistics in the batch norm layers. TENT
[31] instead focuses its adaptation on the affine parameters
of the batch normalization layers only, based on the con-
ditional entropy loss of the predictions. By updating linear
parameters, the model can be more easily optimized and the
source knowledge is preserved. SHOT [18] also freezes the
classifier, but adapts the entire feature encoder by minimiz-
ing the uncertainty of predictions (low conditional entropy)
while making them class-balanced (high entropy of class
marginals). To circumvent the problem of erroneous pre-
dictions, the model also uses a pseudo-labeling mechanism
coupled with cross-entropy as part of the final loss. LAME
[1] reduces the adaptation focus even more, by only refining
the classifier’s predictions on the target batches. Given the
fixed, pre-trained features obtained from the source domain,
LAME performs a graph clustering based on optimizing a
pairwise Laplacian term, which encourages nearby samples
in the feature space to have the same cluster assignments.

Test-Time Training. In line with TTA methods, TTT seeks
to update a model at test-time using an auxiliary task that

6137

has been trained along the main classification objective dur-
ing source training. TTT [28], which is among the first
of such techniques, uses a Y-shaped architecture where a
self-supervised rotation prediction network is attached to
an arbitrary layer in the feature extractor of a CNN. A
standard supervised cross-entropy loss (LCE) is optimized
jointly with the auxiliary self-supervised loss Laux of the
secondary branch, as follows:

LTTT = LCE + λLaux (1)

At test-time, only the layers connected to the secondary
branch are updated. The loss in Eq. (1) served as basis
for subsequent TTT methods. TTT++ [19] introduced con-
trastive learning as the secondary task, similarly to TTT.
However, to further improve performance at test-time, the
statistics of source data are computed from a preserved
queue of source feature maps. These statistics are then used
for alignment with target data, thus regularizing the con-
trastive loss. TTT-MAE [7] proposes using Masked Au-
toencoders (MAE) [8] as the second branch for test-time
training. This approach also introduced Vision Transform-
ers [6] in the context of TTA and TTT. Different from stan-
dard TTT methods, TTTFlow [23] first pre-trains the model
with a standard cross-entropy loss and then adds a Normal-
izing Flow (NF) [5, 15] as a secondary task on top of early
encoder layers. The NF is trained on the source data inde-
pendently of the classification task, by maximizing the log
likelihood of source examples mapped to a simple distri-
bution (Gaussian). The same loss function is later used to
adapt the feature extractor to the target data.

3. Method
In this section, we present a formal definition of Test-

Time Training, followed by the description of our ClusT3
method.

3.1. Problem formulation

Let P (Xs,Ys) be the joint distribution that represents
the source domain, where Xs and Ys are the input and label
spaces, respectively. Similarly, P (Xt,Yt) corresponds to
the target domain distribution, with inputs and labels Xt and
Yt. In this work, we consider a likelihood shift [1] between
the source and target datasets, i.e., P (Xs|Ys) ̸= P (Xt|Yt),
with both domain sharing the same label space (Ys = Yt).

A standard TTT-based model is composed of a feature
extractor fθ, a classifier hφ, and an auxiliary module gϕ, all
collected inside the functional F (fθ, hφ, gϕ). During train-
ing, the goal is to learn Fs : Xs → Ys using Eq. (1), where
the unsupervised loss Laux is chosen to be related to the
auxiliary task gϕ. At test-time, only the unsupervised loss
is used to adapt the model, such that we learn an adapted
function Ft : Xt → Yt.

3.2. Proposed method

ClusT3 is built on the formulation of previous work on
TTT, following Eq. (1) and using modules plugged to the
feature extractor. As shown in Fig. 2, we learn a dis-
cretized encoding of feature maps in the encoder using a
clustering strategy based on MI maximization. Denote as
fθ(x) ∈ RN×C the combined features of examples in a
batch of size B, where the first dimension N = B ·W ·H
is obtained by flattening along the batch index and fea-
ture map dimensions. We use a shallow projector gϕ to
map fθ(x) into a set of K-cluster probability distributions
z = gϕ(fθ(x)) ∈ [0, 1]N×K . In its simplest form, this pro-
jector is implemented by a single linear mapping followed
by a softmax. A more complex projector, comprised of ad-
ditional linear layers with ReLU activation can also be em-
ployed. We train the projector by maximizing the MI be-
tween x and its discrete representation z:

LIM = −I(X;Z) = H(Z|X)−H(Z) (2)

= − 1

N

N∑
i=1

K∑
k=1

zik log zik +

K∑
k=1

zk log zk

where zk =
1
N

∑
i zik is the marginal probability of cluster

K. The first term, H(z|x), is the conditional entropy of z
given x. Minimizing this term enforces the model to make
confident assignments of examples to clusters. The second
term, H(z), evaluates the entropy of the cluster marginal
distribution. Maximizing this term encourages the clusters
to be balanced, and avoids the trivial solution of mapping
all the examples to a single cluster.

In connection to information theory, our approach seeks
a compressed encoding Z of features U = f(X), modeled
by a Markov chain X → U → Z, which best preserves
information. Following the data processing inequality, we
necessarily have that I(X;U) ≥ I(X;Z). The clustering
defined by random variable Z divides the feature space in
K regions. To maximize MI, it is known that the cluster-
ing must satisfy two conditions. First, it should divide the
feature space in regions {Rk}Kk=1 of equal probability mass,
i.e.,

∫
Rk

p(u)du =
∫
Rk′

p(u)du, for any k, k′ [20]. Second,
the features falling into each region Rk should be similar,
i.e., the entropy of U given Z should be low. Accordingly,
increasing the number K of clusters leads to a higher MI.
Assuming that the clustering in Z is a good representation
of the distribution of features U , a shift in this distribution
at test-time is likely to decrease MI since the shifted distri-
bution is not well represented by Z.

Multi-scale clustering. In ClusT3, different projectors can
be independently placed on top of different layer blocks of
a CNN (e.g., ResNet). In such case, the output of the ℓ-th
layer is now written as zℓ = gϕ(f

ℓ
θ(x)). At training time,

6138

<latexit sha1_base64="edzIk1wHFYNKgIYxvegMg2tkQbo=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJ4Kokoeix68VjBfkAby2a7aZduNnF3Uiihv8OLB0W8+mO8+W/ctD1o64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg4bJk4143UWy1i3Amq4FIrXUaDkrURzGgWSN4Phbe43R1wbEasHHCfcj2hfiVAwilbyw27WwQFHOnn0it1S2a24U5Bl4s1JGeaodUtfnV7M0ogrZJIa0/bcBP2MahRM8kmxkxqeUDakfd62VNGIGz+bHj0hp1bpkTDWthSSqfp7IqORMeMosJ0RxYFZ9HLxP6+dYnjtZ0IlKXLFZovCVBKMSZ4A6QnNGcqxJZRpYW8lbEA1ZWhzykPwFl9eJo3zindZce8vytWbeRwFOIYTOAMPrqAKd1CDOjB4gmd4hTdn5Lw4787HrHXFmc8cwR84nz9Mb5HI</latexit>

f1
✓

<latexit sha1_base64="i1abOQzJvY8LyqwjB2Xm0k+5Z30=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoseiF48V7Ae0sWy2m3bpZhN3J4US+ju8eFDEqz/Gm//GpM1BWx8MPN6bYWaeF0lh0La/rcLa+sbmVnG7tLO7t39QPjxqmTDWjDdZKEPd8ajhUijeRIGSdyLNaeBJ3vbGt5nfnnBtRKgecBpxN6BDJXzBKKaS6/eTHo440tljrdQvV+yqPQdZJU5OKpCj0S9/9QYhiwOukElqTNexI3QTqlEwyWelXmx4RNmYDnk3pYoG3LjJ/OgZOUuVAfFDnZZCMld/TyQ0MGYaeGlnQHFklr1M/M/rxuhfu4lQUYxcscUiP5YEQ5IlQAZCc4ZymhLKtEhvJWxENWWY5pSF4Cy/vEpatapzWbXvLyr1mzyOIpzAKZyDA1dQhztoQBMYPMEzvMKbNbFerHfrY9FasPKZY/gD6/MHTfSRyQ==</latexit>

f2
✓

<latexit sha1_base64="c7g7/KIFyiRT6VNAYBurGvPUMpU=">AAAB9HicbVDJSgNBEO2JW4xb1KOXxiB4CjMu6DHoxWMEs0Ayhp5OTdKkZ7G7JhCGfIcXD4p49WO8+Tf2JHPQxAcFj/eqqKrnxVJotO1vq7Cyura+UdwsbW3v7O6V9w+aOkoUhwaPZKTaHtMgRQgNFCihHStggSeh5Y1uM781BqVFFD7gJAY3YINQ+IIzNJLr99IuDgHZ9PG81CtX7Ko9A10mTk4qJEe9V/7q9iOeBBAil0zrjmPH6KZMoeASpqVuoiFmfMQG0DE0ZAFoN50dPaUnRulTP1KmQqQz9fdEygKtJ4FnOgOGQ73oZeJ/XidB/9pNRRgnCCGfL/ITSTGiWQK0LxRwlBNDGFfC3Er5kCnG0eSUheAsvrxMmmdV57Jq319Uajd5HEVyRI7JKXHIFamRO1InDcLJE3kmr+TNGlsv1rv1MW8tWPnMIfkD6/MHT3mRyg==</latexit>

f3
✓

<latexit sha1_base64="5m9l2bsjP1UPVsPW3zqWchWBF4w=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0sWy2m3bpZhN3J4US+ju8eFDEqz/Gm//GpM1BWx8MPN6bYWaeF0lh0La/rcLa+sbmVnG7tLO7t39QPjxqmTDWjDdZKEPd8ajhUijeRIGSdyLNaeBJ3vbGt5nfnnBtRKgecBpxN6BDJXzBKKaS6/eTHo440tljrdQvV+yqPQdZJU5OKpCj0S9/9QYhiwOukElqTNexI3QTqlEwyWelXmx4RNmYDnk3pYoG3LjJ/OgZOUuVAfFDnZZCMld/TyQ0MGYaeGlnQHFklr1M/M/rxuhfu4lQUYxcscUiP5YEQ5IlQAZCc4ZymhLKtEhvJWxENWWY5pSF4Cy/vEpaF1Xnsmrf1yr1mzyOIpzAKZyDA1dQhztoQBMYPMEzvMKbNbFerHfrY9FasPKZY/gD6/MHUP6Ryw==</latexit>

f4
✓

<latexit sha1_base64="9MD5muy50MWiF+dDQd7oiyMZDJg=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzUHvSybjLk01654lbdOcgq8XJSgRz1Xvmr249ZGqE0TFCtO56bGD+jynAmcFrqphoTykZ0gB1LJY1Q+9n83ik5s0qfhLGyJQ2Zq78nMhppPYkC2xlRM9TL3kz8z+ukJrzxMy6T1KBki0VhKoiJyex50ucKmRETSyhT3N5K2JAqyoyNqGRD8JZfXiXNi6p3VXUfLiu12zyOIpzAKZyDB9dQg3uoQwMYCHiGV3hzxs6L8+58LFoLTj5zDH/gfP4AVcKQKQ==</latexit>g�

<latexit sha1_base64="wubZODOknO6lP1sVJpohLW7RGEA=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSSi6LHoxWMF+wFtKJvtplm62Q27k0IJ/RlePCji1V/jzX/jts1Bqw8GHu/NMDMvTAU36HlfTmltfWNzq7xd2dnd2z+oHh61jco0ZS2qhNLdkBgmuGQt5ChYN9WMJKFgnXB8N/c7E6YNV/IRpykLEjKSPOKUoJV68SDvT4hOYz4bVGte3VvA/Uv8gtSgQHNQ/ewPFc0SJpEKYkzP91IMcqKRU8FmlX5mWEromIxYz1JJEmaCfHHyzD2zytCNlLYl0V2oPydykhgzTULbmRCMzao3F//zehlGN0HOZZohk3S5KMqEi8qd/+8OuWYUxdQSQjW3t7o0JppQtClVbAj+6st/Sfui7l/VvYfLWuO2iKMMJ3AK5+DDNTTgHprQAgoKnuAFXh10np03533ZWnKKmWP4BefjG8Q2kZE=</latexit>

h'

Input Predictions

<latexit sha1_base64="NosxOtmAmAPi5dJq/C6j7YC0MY0=">AAACJnicbVDLSgMxFM3UV62vUZdugkVoF5YZUXRTKLqpoFDBPrAtQybNtKGZzJBkhDLO17jxV9y4qIi481NMH4htPRA4Oede7r3HDRmVyrK+jNTS8srqWno9s7G5tb1j7u7VZBAJTKo4YIFouEgSRjmpKqoYaYSCIN9lpO72r0Z+/ZEISQN+rwYhafuoy6lHMVJacsxiy0eqhxGLbxInHn+EH1/fJgkswl+vnOQenhp5eDwr5R0zaxWsMeAisackC6aoOOaw1Qlw5BOuMENSNm0rVO0YCUUxI0mmFUkSItxHXdLUlCOfyHY8PjOBR1rpQC8Q+nEFx+rfjhj5Ug58V1eOtpTz3kj8z2tGyrtox5SHkSIcTwZ5EYMqgKPMYIcKghUbaIKwoHpXiHtIIKx0shkdgj1/8iKpnRTss4J1d5otXU7jSIMDcAhywAbnoATKoAKqAINn8AqG4N14Md6MD+NzUpoypj37YAbG9w/fLqVV</latexit>

LIM = H(Z|X)�H(Z)

<latexit sha1_base64="EAzkmjqqnMSyGTLI61eqGg5eyiU=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEV2VGFF0W3SgoVLAPaIchk6ZtaJIZkoxQhsGNv+LGhSJu/Qp3/o2Z6Sy09UDg5Jx7ufeeIGJUacf5tkoLi0vLK+XVytr6xuaWvb3TUmEsMWnikIWyEyBFGBWkqalmpBNJgnjASDsYX2Z++4FIRUNxrycR8TgaCjqgGGkj+fZejyM9woglN6mf5B/Jk+vbNPXtqlNzcsB54hakCgo0fPur1w9xzInQmCGluq4TaS9BUlPMSFrpxYpECI/RkHQNFYgT5SX5CSk8NEofDkJpntAwV393JIgrNeGBqcx2VLNeJv7ndWM9OPcSKqJYE4GngwYxgzqEWR6wTyXBmk0MQVhSsyvEIyQR1ia1ignBnT15nrSOa+5pzbk7qdYvijjKYB8cgCPggjNQB1egAZoAg0fwDF7Bm/VkvVjv1se0tGQVPbvgD6zPHyxpl+0=</latexit>

LIM

<latexit sha1_base64="Iq9qoFrLoX76R9vGwzowhZvZ2Bs=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEV2VGFF0Wi+DCRQX7gHYYMmnahiaZIckIZRjc+CtuXCji1q9w59+Ymc5CWw8ETs65l3vvCSJGlXacb6u0tLyyulZer2xsbm3v2Lt7bRXGEpMWDlkouwFShFFBWppqRrqRJIgHjHSCSSPzOw9EKhqKez2NiMfRSNAhxUgbybcP+hzpMUYsuU39JP9InjSu09S3q07NyQEXiVuQKijQ9O2v/iDEMSdCY4aU6rlOpL0ESU0xI2mlHysSITxBI9IzVCBOlJfkJ6Tw2CgDOAyleULDXP3dkSCu1JQHpjLbUc17mfif14v18NJLqIhiTQSeDRrGDOoQZnnAAZUEazY1BGFJza4Qj5FEWJvUKiYEd/7kRdI+rbnnNefurFq/KuIog0NwBE6ACy5AHdyAJmgBDB7BM3gFb9aT9WK9Wx+z0pJV9OyDP7A+fwAXD5ff</latexit>

LCE

Extractor layer Classifier Projector Softmax projections

<latexit sha1_base64="LUJBpTBOGqGoTxgE1kAJiSFbp/A=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIosuiG5cV7APbUjLpnTY0kxmSjFiG/oUbF4q49W/c+Tdm2llo64HA4Zx7ybnHjwXXxnW/ncLK6tr6RnGztLW9s7tX3j9o6ihRDBssEpFq+1Sj4BIbhhuB7VghDX2BLX98k/mtR1SaR/LeTGLshXQoecAZNVZ66IbUjPwgfZr2yxW36s5AlomXkwrkqPfLX91BxJIQpWGCat3x3Nj0UqoMZwKnpW6iMaZsTIfYsVTSEHUvnSWekhOrDEgQKfukITP190ZKQ60noW8ns4R60cvE/7xOYoKrXsplnBiUbP5RkAhiIpKdTwZcITNiYgllitushI2ooszYkkq2BG/x5GXSPKt6F1X37rxSu87rKMIRHMMpeHAJNbiFOjSAgYRneIU3RzsvzrvzMR8tOPnOIfyB8/kD/ouRIA==</latexit>x

Multi-head
clustering

<latexit sha1_base64="LatXhgbEee8v2/AnGpuPrUgvkZs=">AAACEHicbVDLSsNAFJ3UV62vqEs3iUV0ISURRZdFN4IgFewDklgm00k7dDIJMxOhhnyCG3/FjQtF3Lp05984abPQ1gMXDufcy733+DElQlrWt1aam19YXCovV1ZW19Y39M2tlogSjnATRTTiHR8KTAnDTUkkxZ2YYxj6FLf94UXut+8xFyRit3IUYy+EfUYCgqBUUlffd0MoB36QPmSu6RLmmo516Jq2d5deK0GSEAvXvMq6etWqWWMYs8QuSBUUaHT1L7cXoSTETCIKhXBsK5ZeCrkkiOKs4iYCxxANYR87ijKoFnnp+KHM2FNKzwgiropJY6z+nkhhKMQo9FVnfr6Y9nLxP89JZHDmpYTFicQMTRYFCTVkZOTpGD3CMZJ0pAhEnKhbDTSAHCKpMqyoEOzpl2dJ66hmn9Ssm+Nq/byIowx2wC44ADY4BXVwCRqgCRB4BM/gFbxpT9qL9q59TFpLWjGzDf5A+/wBzi2byw==</latexit>

z2 [0,1]N⇥K

Figure 2. The configuration of ClusT3. A projector gϕ is plugged to the output of a feature extractor layer block to compute a set of N ,
K−dimensional latent points z that are clustered through Information Maximization (LIM). The cross-entropy loss (LCE) is used for the
classification component of training.

the model learns with a combined loss

LCT3 = LCE +

J∑
ℓ=j

Lℓ
IM (3)

where j the index of the layer from which the first projector
is connected. At test-time, the classifier hφ and the projec-
tors {gℓϕ}Jℓ=j are frozen, and only the feature extractor fθ
up to layer J is updated based on the IM loss of Eq. (2). It
is worth noting that the gradient flow is going to affect only
the layer blocks connected to the projectors and the ones
before. The hypothesis is that the latent space of the feature
maps should be information invariant across domains, thus
updating the encoder to maintain a high mutual information
should also improve classification accuracy.

Multi-head clustering. As mentioned above, an encoding
that better preserves information can be achieved by using
a larger number of clusters. In practice, doing so might give
poor results since the constraint of having balanced clusters
(low entropy of the marginal) then becomes too restrictive.
As better alternative, we propose a multi-head clustering
strategy where multiple projectors {gℓ,cϕ }Cc=1 are trained for
a given layer ℓ and the loss Lℓ

IM for that layer is the sum of
MI losses for all its projectors. The following lemma relates
this strategy to our previous information theory analysis.

Lemma 3.1. Let Z = {Z1, . . . , ZC} be a set of random
discrete variables representing C cluster assignments of
features X . The MI between X and Z is bounded as fol-
lows

max
c

H(Zc)−
∑
c

H(Zc|X) ≤ I(X;Z) ≤
∑
c

I(X;Zc)

Proof. We start by writing the MI between X and Z as

I(X;Z) = H(Z1, . . . , ZC)−H(Z1, . . . , ZC |X).

The second term on the right simplifies as

H(Z1, . . . , ZC |X) = −E
[
log p(Z1, . . . , ZC |X)

]
= −E

[∑
c

log p(Zc|X)
]

=
∑
c

H(Zc|X)

where we used the fact that the Zc variables are condition-
ally independent given X . To complete the proof, we use
the following two properties of entropy: H(Z1, . . . , ZC) ≤∑

c H(Zc) and H(Z1, . . . , ZC) ≥ maxc H(Zc).

Note that the upper bound on I(X;Z), which corre-
sponds to our multi-head clustering objective, is tight if the
clustering variables Zc are statistically independent. Al-
though we do not enforce this constraint, since our objec-
tive maximizes H(Zc) for each cluster, the lower bound of
the lemma tells us that we can indirectly maximize mutual
information with the same objective.

4. Experimental Setup
ClusT3 is evaluated on four popular TTA/TTT bench-

marks, comprehending different types of domain shifts. The
first two benchmarks are based on the CIFAR-10 dataset
[16] as the source domain. It contains 50,000 images from
10 different categories.
Common image corruptions. First, we study adaptation
on the CIFAR-10-C [9] dataset, which consists of 15 differ-
ent corruption types (e.g., Gaussian noise, frost, etc.) with
10,000 images, 10 classes, and 5 different severity levels for
each type. This results in 75 evaluation scenarios. We then
extend the evaluation to CIFAR-100-C, scaling the number
of classes to 100.
Natural domain shift. We also evaluate the performance
of our method in a natural domain shift setting, i.e., classi-
fying images that were manually selected to diverge from

6139

those seen in training. The CIFAR-10.1 dataset [27] is used
for this experiment, consisting of 2,000 images strategically
sampled from CIFAR-10 to highly differ from training data.

Sim-to-real domain shift. ClusT3 is finally assessed in the
context of large-scale adaptation from simulation to real im-
ages. The VisDa-C dataset [24] offers a benchmark with a
source dataset based on 3D renderings of 12 different object
categories, accumulating a total of 152,397 images. The test
set comprises 72,372 video frames, corresponding to real
images of the same classes.

4.1. Joint training

For the joint training on the CIFAR-10 dataset [16], we
followed previous research and trained our model for 350
epochs with SGD, using a batch size of 128 images and
an initial learning rate of 0.1 which is reduced by a factor
of 10 at epochs 150 and 250. For VisDA-C, the model is
warm-started with pre-trained weights from ImageNet [4],
according to the protocol in [31, 19, 18], and then trained
for 100 epochs with a batch size of 100, using SGD with a
learning rate of 0.001. The training was executed on four
16 GB NVIDIA V100 GPUs.

4.2. Test-time adaptation

At test-time, projectors are used to detect distribution
shift with the IM loss. For all the experiments with CIFAR-
10-C and CIFAR-10.1, we keep a batch size of 128, and
use the ADAM optimizer with 10−5 as learning rate. For
VisDA-C, we used a batch size of 32 images with the same
aforementioned learning rate. We update the extractor and
the statistics of all the BatchNorm layers. To avoid the er-
ror accumulation associated to optimization, we reset our
weights to the initial source ones after adapting to each
batch. This way, each batch can have different corruptions
as assumed by [28] in their offline mode.

5. Results and discussion

First, we perform a series of ablation experiments on
the CIFAR-10-C dataset, and then compare ClusT3 against
state-of-art approaches. Afterward, we extend our evalua-
tion to natural domain shift using the CIFAR-10.1 dataset
and sim-to-real domain shift with the VisDA-C dataset. For
all methods, we compute the accuracy for 1, 3, 5, 10, 20, 50
and 100 iterations and report the maximum accuracy when
we experiment on CIFAR-10-C and CIFAR-10.1 and do the
same for VisDAC by adapting for 1, 3, 10, 15, and 20 itera-
tions. For all experiments, we report the mean and standard
deviation accuracy obtained over 3 runs with different ran-
dom seeds.

Gaussian Noise Shot Noise Snow

Layer 1 70.72 ±0.22 73.57 ±0.11 80.29 ±0.04

Layer 2 67.48 ±0.09 68.96 ±0.02 78.46 ±0.10

Layer 3 66.57 ±0.06 67.97 ±0.22 78.84 ±0.17

Layer 4 65.75 ±0.12 68.10 ±0.31 79.37 ±0.11

Layers 1-2 71.36 ±0.03 72.93 ±0.34 80.94 ±0.13
Layers 2-3 66.74 ±0.24 68.76 ±0.07 78.21 ±0.12

Layers 3-4 65.21 ±0.32 67.09 ±0.15 78.34 ±0.18

Layers 1-2-3 67.44 ±0.11 68.59 ±0.14 79.27 ±0.05

Layers 1-2-3-4 68.71 ±0.18 71.39 ±0.12 78.38 ±0.14

Table 1. Accuracy (%) with different combinations of projectors
on 3 corruptions of CIFAR-10-C dataset. Layer l means that we
only use the projector after layer l, and Layer l-l means that we
use the sum of the two projectors’ losses of these layers as total
IM loss. The extractor ends at the last named layer.

5.1. Object recognition on corrupted images

First, we evaluate ClusT3 on the CIFAR-10-C dataset
across the 15 different corruptions. For the following ex-
periments, we focus solely on the Level 5, as it is the most
challenging adaptation scenario. Extensive results on all the
severity levels can be found in the supplementary material.

On which layers should projectors be placed? We com-
pare the accuracy of ClusT3 on different combinations of
projectors. The goal is to determine which layers are the
most useful to adapt at test-time. In Table 1, the results
show that only taking the first two encoder layers provides
more effective results. Indeed, as assumed in [28, 19, 23],
the first layers seem to contain the most important domain-
related information. This finding also aligns with empirical
evidence demonstrating that different layers are sensitive to
different types of domain shifts [17]. Hence, in subsequent
experiments, we keep projectors on Layer 1 and Layer 2.

On the number of clusters. As explained in Section 3.2,
the proxy task consists of a projector-based clustering head
made by a linear mapping (implemented with a 1×1 con-
volution) followed by a K-way softmax that projects fea-
tures to a cluster probability map z ∈ [0, 1]BWH×K . In
Table 2, we experiment with different number of clusters.
Results show that having a greater number of clusters, e.g.,
K = 100, can provide a better accuracy. We also notice
that having K=10 (corresponding to the number of classes
in CIFAR-10-C) results in a competitive performance com-
pared to other larger values, such as K=20 or K=50. This
becomes a sensible approach, as projectors can help learn
better class boundaries inside features. In the next experi-
ments, we keep K = 10 for an efficient trade-off between
performance and computational cost.

On the number of projectors per layer. In the previous
experiments, only one projector per layer was used. Here,
we evaluate whether having more projectors per layer can

6140

Gaussian Shot Snow Avg∗

K=2 71.58±0.12 73.41±0.09 82.98±0.10 80.39
K=5 71.10±0.09 72.89±0.15 83.76±0.09 80.40
K=10 72.96±0.13 74.55±0.12 83.61±0.09 80.94
K=20 70.13±0.12 72.35±0.10 83.29±0.09 80.10
K=50 71.54±0.18 74.15±0.07 83.39±0.12 80.70
K=100 68.47±0.11 70.82±0.11 82.51±0.08 79.77
∗: Average over the 15 corruption types

Table 2. Accuracy (%) with different number of clusters on 3 cor-
ruptions of CIFAR-10-C dataset.

further improve performance. It has been found that in-
creasing the number of projectors per layer increases ac-
curacy compared to using a single projector per layer (Ta-
ble 3). However, each corruption in CIFAR-10-C can be
benefited differently from different configurations. On the
average, using 15 projectors on layers 1 and 2 results corre-
sponds to the best option. In the following experiments, we
compare this architecture (called ClusT3-H15) to the lead-
ing Test-Time Adaptation methods.

Comparison of the number of iterations. As shown in
Fig 3, in most cases, the best accuracy is obtained after 10
or 20 iterations, depending on the corruption. Most impor-
tantly, accuracy remains constant even after 20 iterations.
Furthermore, we observe that adaptation to strong corrup-
tions (e.g., contrast) can also be done at a fast rate.

Comparison with main TTA methods. Several state-
of-the-art TTA/TTT techniques were chosen for compar-
ison: TTA methods include TENT[31], LAME[1], and
PTBN[21]. TTT[28] and TTT++[19] are chosen for Test-
Time Training. As shown in Table 4, the overall perfor-
mance of ClusT3-H15 on all the corruptions outperforms
ResNet50 with a gain of 28.26% as well as all the differ-
ent TTA methods. Moreover, there is a considerably large
improvement on all the individual corruptions with respect
to the same baseline. A significant increase in accuracy can
also be observed in most corruptions compared to previous
methods, with some exceptions (e.g., Defocus blur against
TTT++[19] or Contrast against TTT[28]). It is however im-
portant to mention that ClusT3 differs from previous TTT
methods whose self-supervised secondary task requires a
higher computational overhead. TTT++, which improves
considerably with respect to its predecessor TTT on Level
5, also requires preserving a queue of source feature maps
to compare statistics at test-time. In comparison, ClusT3 is
self-sufficient and less costly in both computation and mem-
ory. A more detailed comparison on all the corruption levels
of CIFAR-10-C can be found in the supplementary material.

Table 5 shows the overall performance of ClusT3 on
CIFAR-100-C, in an effort to demonstrate the scalable ca-
pabilities of the method on a larger set of classes. ClusT3
mitigates the natural degradation of the ResNet50 baseline,
while also outperforming state-of-the-art methods by an

Iterations

A
cc

ur
ac

y
(%

)

0

25

50

75

100

0 10 20 30 40 50

Gaussian Noise Shot Noise Impulse Noise Defocus Blur Glass Blur
Motion Blur Zoom Blur Snow Frost Fog Brightness

Contrast Elastic Transform Pixelate JPEG Compression

Figure 3. Evolution of accuracy for all corruptions in CIFAR-10-
C.

important margin.

Visualization of adaptation. To visualize the effect of
ClusT3 during adaptation, Figure 4 displays the t-SNE plots
of the target feature maps before and after the adaptation
with the corresponding model prediction. The projector in-
duces the model to make better predictions by improving
the clustering of the different samples’ classes in the target
dataset.

5.2. Object recognition on natural domain shift

The best configuration of ClusT3 (i.e., with 5 in that case
or 15 projectors on Layer 1 and 2) is evaluated on CIFAR-
10.1, which contains a more natural domain shift. A com-
parison is made against previous TTA methods, and as re-
ported in Table 6, ClusT3 achieves a competitive accuracy
despite the baseline (ResNet50) being the most accurate in
this scenario. The gain of TTT++ [19] comes from a better
pre-trained encoder thanks to the influence of contrastive
learning [3]. This limitation can be explained by the fact
that CIFAR-10 and CIFAR-10.1 are similar, thus having a
smaller domain shift [23].

5.3. Object recognition on sim-to-real domain shift

We use the VisDA-C dataset to test ClusT3 on the sim-to-
real domain shift. To account for the challenge of this sce-
nario, a slightly different projector is proposed: using two
linear (1×1 convolutional) layers with a ReLU activation in
between. The output number of channels of the first layer is
set to half the input feature maps’ number of channels. This
setting is named Large projector. The best configuration
(i.e., type of projector, number of projectors, and combina-
tion of layers) was found based on a hyperparameter study
that can be found in the supplementary material. The result-
ing best approach consisted in using one large projector on
Layer 2 (ClusT3-H1*).

Comparison with other methods. Our method is com-
pared against the previously presented, popular TTT/TTA

6141

Head = 1 Heads = 5 Heads = 10 Heads = 15 Heads = 20

Gaussian Noise 71.40 ±0.26 72.72 ±0.08 75.24 ±0.02 76.01 ±0.19 76.04 ±0.20
Shot noise 72.79 ±0.04 74.84 ±0.14 76.77 ±0.04 77.67 ±0.17 78.00 ±0.05
Impulse Noise 65.96 ±0.12 67.78 ±0.06 68.62 ±0.07 69.76 ±0.15 68.80 ±0.23

Defocus blur 82.77 ±0.09 87.83 ±0.09 87.91 ±0.14 87.85 ±0.11 87.86 ±0.19

Glass blur 69.65 ±0.14 65.85 ±0.04 71.70 ±0.12 71.34 ±0.15 67.26 ±0.07

Motion blur 82.03 ±0.17 86.58 ±0.07 86.44 ±0.03 86.10 ±0.11 86.91 ±0.06
Zoom blur 83.88 ±0.09 86.83 ±0.06 87.21 ±0.09 86.68 ±0.05 87.57 ±0.06

Snow 80.87 ±0.04 82.68 ±0.13 83.41 ±0.06 83.71 ±0.09 83.17 ±0.06

Frost 79.04 ±0.07 81.38 ±0.14 83.39 ±0.03 83.69 ±0.03 82.45 ±0.11

Fog 76.32 ±0.09 84.40 ±0.05 84.47 ±0.14 85.12 ±0.13 83.98 ±0.04

Brightness 89.16 ±0.10 92.29 ±0.11 91.91 ±0.03 91.52 ±0.02 91.81 ±0.02

Contrast 74.57 ±0.25 85.28 ±0.09 84.37 ±0.07 84.40 ±0.11 85.67 ±0.08
Elastic transform 80.16 ±0.16 80.07 ±0.13 82.33 ±0.04 82.04 ±0.17 82.02 ±0.09

Pixelate 80.09 ±0.02 79.94 ±0.04 82.75 ±0.06 82.03 ±0.09 82.00 ±0.07

JPEG compression 80.90 ±0.01 79.86 ±0.08 83.01 ±0.08 83.24 ±0.10 82.38 ±0.07

Average 77.97 80.56 81.97 82.08 81.73
Table 3. Accuracy (%) with different number of projectors per layer on Layer 1 and 2 with K=10 on the CIFAR-10-C dataset.

ResNet50 LAME [1] PTBN [21] TENT [31] TTT [28] TTT++ [19] ClusT3-H15 (Ours)

Gaussian Noise 21.01 22.90 57.23 ±0.13 57.15 ±0.19 66.14 ±0.12 75.87 ±5.05 76.01 ±0.19
Shot noise 25.77 27.24 61.18 ±0.03 61.08 ±0.18 68.93 ±0.06 77.18 ±1.36 77.67 ±0.17
Impulse Noise 14.02 30.99 54.74 ±0.13 54.63 ±0.15 56.65 ±0.03 70.47 ±2.18 69.76 ±0.15

Defocus blur 51.59 45.38 81.61 ±0.07 81.39 ±0.22 88.11 ±0.08 86.02 ±1.35 87.85 ±0.11

Glass blur 47.96 36.66 53.43 ±0.11 53.36 ±0.14 60.67 ±0.06 69.98 ±1.62 71.34 ±0.15
Motion blur 62.30 55.29 78.20 ±0.28 78.04 ±0.17 83.52 ±0.03 85.93 ±0.24 86.10 ±0.11
Zoom blur 59.49 51.40 80.29 ±0.13 80.26 ±0.22 87.25 ±0.03 88.88 ±0.95 86.68 ±0.05

Snow 75.41 66.17 71.59 ±0.21 71.59 ±0.04 79.29 ±0.05 82.24 ±1.69 83.71 ±0.09
Frost 63.14 49.98 68.77 ±0.25 68.52 ±0.20 79.84 ±0.11 82.74 ±1.63 83.69 ±0.03
Fog 69.63 64.49 75.79 ±0.05 75.73 ±0.10 84.46 ±0.09 84.16 ±0.28 85.12 ±0.13
Brightness 90.53 84.26 84.97 ±0.05 84.77 ±0.13 91.23 ±0.08 89.07 ±1.20 91.52 ±0.02
Contrast 33.88 31.50 80.81 ±0.15 80.70 ±0.15 88.58 ±0.09 86.60 ±1.39 84.40 ±0.11

Elastic transform 74.51 64.16 67.14 ±0.17 67.13 ±0.10 75.69 ±0.10 78.46 ±1.83 82.04 ±0.17
Pixelate 44.43 39.34 69.17 ±0.31 68.70 ±0.29 76.35 ±0.19 82.53 ±2.01 82.03 ±0.09

JPEG compression 73.61 66.05 65.86 ±0.05 65.83 ±0.07 73.10 ±0.19 81.76 ±1.58 83.24 ±0.10

Average 53.82 49.05 70.05 69.93 77.32 81.46 82.08
Table 4. Accuracy (%) on CIFAR-10-C dataset with Level 5 corruption for ClusT3-15 compared to ResNet50, LAME, PTBN, TENT, TTT,
and TTT++.

Method Acc. (%)

ResNet50 31.37
LAME 29.63
PTBN 54.53
TENT 54.48
TTT 51.43
Ours 56.70

Table 5. Results on the
CIFAR-100-C dataset.

Method Accuracy (%)

ResNet50 88.45
LAME [1] 82.68
PTBN [21] 79.57±0.47
TENT [31] 79.69±0.21
TTT [28] 86.30±0.20
TTT++ [19] 88.03±0.17
ClusT3-H5 (Ours) 87.43±0.02
ClusT3-H15 (Ours) 85.57±0.11

Table 6. Accuracy of compared meth-
ods on the CIFAR-10.1 dataset contain-
ing natural domain shift.

methods. For fairness, we evaluate LAME [1] using the
three proposed affinity matrices in its original publication:

LAME-L (linear affinity), LAME-K (K-NN affinity with 5
neighbors), and LAME-R (RBF affinity with 5 neighbors).
As shown in Table 7, ClusT3 achieves a higher performance
than its competitors in the reproduced experiments. With
respect to the baseline, ClusT3 obtains a gain of around
15.6%.

Computational cost. The nature of the auxiliary tasks
in Test-Time Training methods can importantly impact
the training efficiency. For instance, methods based on
self-supervised learning might require additional forward
passes, or a higher memory input, which ultimately in-
creases the computation time. ClusT3 does not depend on
additional data transformations, hence reducing execution
times. We evaluate the time of one epoch of joint train-

6142

(a) Prediction (before adaptation) (b) Prediction (after adaptation)

(c) Ground truth (before adaptation) (d) Ground truth (after adaptation)

Figure 4. t-SNE plots of gaussian noise for the features at the output of the extractor from ClusT3 with one projector on Layer 1 and 2
each. (a) prediction of the model without adaptation. (b) prediction of the model after 20 iterations of adaptation. (c) ground truth labels
without adaptation. (d) ground truth labels of adapted representations.

ing (without evaluation steps) of ClusT3, utilizing 1 Large
projector on top of all layers, one of the heaviest config-
urations. The average execution time of one epoch was
2.7947 ± 0.0294 minutes, compared to 12.4941 ± 1.3994
minutes for TTT.

Method Accuracy (%)

ResNet50 46.31
LAME-L [1] 22.02 ±0.23

LAME-K [1] 42.89 ±0.14

LAME-R [1] 19.33 ±0.11

PTBN [21] 60.33 ±0.04

TENT [31] 60.34 ±0.05

TTT [28] 40.57 ±0.02

TTT++ [19] 60.42†

ClusT3-H1* (Ours) 61.91 ±0.02

Table 7. Accuracy values of ClusT3 and the state-of-the-art
TTT/TTA methods on the VisDA-C dataset. †: Result of TTT++
obtained from the original paper, were not reproducible.

6. Conclusion
In this work, we proposed ClusT3, a new unsupervised

Test-Time Training framework based on Information Max-
imization of feature latent spaces across domains. This
method allows adapting the model at test-time when there is
a distribution shift between the source and the target date-

sets. By using simple linear projectors and Mutual Infor-
mation in our proxy task, we update the feature extractor to
improve the accuracy at test-time.

A complete ablation study helped determine the best hy-
perparameters and to better understand the different possi-
ble configurations of the model. As shown in our experi-
mental results, ClusT3 obtains a highly-competitive perfor-
mance against previous TTT and TTA models. Thus, on
the CIFAR-10-C dataset, ClusT3 outperforms state-of-the-
art. Surprisingly, the baseline defeats all previous meth-
ods on CIFAR-10.1, as the domain shift with respect to the
source dataset is smaller and adaptation causes performance
degradation. Nonetheless, ClusT3 remains competitive and
robust to this scenario.

Future work includes further investigation on different
architectures for the projector. As it has been shown, adding
layers and nonlinearity can further improve performance in
some cases. This could be due to the fact that having more
complex and thus flexible projectors relaxes constraints on
the feature space (e.g., balanced clusters) which can hurt
the learning of a good representation for classification if
too strong. Additionally, a uniform distribution has been
assumed for the cluster marginal distribution. Diverging
from this premise and exploring other distribution priors
also constitutes an interesting line of future research. This
can turn particularly useful in the scenario where adaptation
to a single data sample is required.

6143

References
[1] Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and

Luca Bertinetto. Parameter-free online test-time adaptation.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8344–8353, 2022.

[2] Malik Boudiaf, Imtiaz Masud Ziko, Jérôme Rony, Jose Dolz,
Pablo Piantanida, and Ismail Ben Ayed. Transductive infor-
mation maximization for few-shot learning. In Neural Infor-
mation Processing Systems (NeurIPS), 2020.

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learn-
ing of visual representations. In Hal Daumé III and Aarti
Singh, editors, Proceedings of the 37th International Con-
ference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 1597–1607. PMLR,
13–18 Jul 2020.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[5] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Ben-
gio. Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016.

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[7] Yossi Gandelsman, Yu Sun, Xinlei Chen, and Alexei A
Efros. Test-time training with masked autoencoders. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022.

[8] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16000–
16009, 2022.

[9] Dan Hendrycks and Thomas Dietterich. Benchmarking neu-
ral network robustness to common corruptions and perturba-
tions. 2019.

[10] Weihua Hu, Takeru Miyato, Seiya Tokui, Eiichi Matsumoto,
and Masashi Sugiyama. Learning discrete representations
via information maximizing self-augmented training. In
Doina Precup and Yee Whye Teh, editors, Proceedings of
the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research,
pages 1558–1567. PMLR, 06–11 Aug 2017.

[11] Mohammed Jabi, Marco Pedersoli, Amar Mitiche, and Is-
mail Ben Ayed. Deep clustering: On the link between dis-
criminative models and k-means. IEEE Trans. Pattern Anal.
Mach. Intell., 43(6):1887–1896, 2021.

[12] Xu Ji, Joao F Henriques, and Andrea Vedaldi. Invariant in-
formation clustering for unsupervised image classification
and segmentation. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, pages 9865–9874,
2019.

[13] Ansh Khurana, Sujoy Paul, Piyush Rai, Soma Biswas, and
Gaurav Aggarwal. Sita: single image test-time adaptation.
arXiv:2112.02355 [cs], Dec. 2021. arXiv: 2112.02355.

[14] Donghyun Kim, Kaihong Wang, Stan Sclaroff, and Kate
Saenko. A broad study of pre-training for domain gener-
alization and adaptation. In Shai Avidan, Gabriel Brostow,
Moustapha Cissé, Giovanni Maria Farinella, and Tal Hass-
ner, editors, Computer Vision – ECCV 2022, pages 621–638,
Cham, 2022. Springer Nature Switzerland.

[15] Durk P Kingma and Prafulla Dhariwal. Glow: Generative
flow with invertible 1x1 convolutions. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R.
Garnett, editors, Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018.

[16] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, 2009.

[17] Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Kumar,
Huaxiu Yao, Percy Liang, and Chelsea Finn. Surgical fine-
tuning improves adaptation to distribution shifts. In The
Eleventh International Conference on Learning Representa-
tions, 2023.

[18] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need
to access the source data? source hypothesis transfer for un-
supervised domain adaptation. 2020.

[19] Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste
Bellot-Gurlet, Taylor Mordan, and Alexandre Alahi. Ttt++:
When does self-supervised test-time training fail or thrive?
Neural Information Processing Systems (NeurIPS), 2021.

[20] David JC MacKay and David JC Mac Kay. Information the-
ory, inference and learning algorithms. Cambridge univer-
sity press, 2003.

[21] Zachary Nado, Shreyas Padhy, D. Sculley, Alexander
D’Amour, Balaji Lakshminarayanan, and Jasper Snoek.
Evaluating prediction-time batch normalization for robust-
ness under covariate shift. arXiv:2006.10963 [cs, stat], Jan.
2021. arXiv: 2006.10963.

[22] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018.

[23] D. Osowiechi, G. A. Vargas Hakim, M. Noori, M. Cher-
aghalikhani, I. Ayed, and C. Desrosiers. Tttflow: Unsu-
pervised test-time training with normalizing flow. In 2023
IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), pages 2125–2126, Los Alamitos, CA, USA,
jan 2023. IEEE Computer Society.

[24] Xingchao Peng, Ben Usman, Neela Kaushik, Dequan Wang,
Judy Hoffman, and Kate Saenko. Visda: A synthetic-to-
real benchmark for visual domain adaptation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, June 2018.

[25] Aayush Prakash, Shaad Boochoon, Mark Brophy, David
Acuna, Eric Cameracci, Gavriel State, Omer Shapira, and
Stan Birchfield. Structured domain randomization: Bridging
the reality gap by context-aware synthetic data. In 2019 In-
ternational Conference on Robotics and Automation (ICRA),
pages 7249–7255. IEEE, 2019.

6144

[26] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and
Vaishaal Shankar. Do CIFAR-10 classifiers generalize to
cifar-10? CoRR, abs/1806.00451, 2018.

[27] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and
Vaishaal Shankar. Do ImageNet classifiers generalize to Im-
ageNet? In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 5389–5400. PMLR, 09–15 Jun
2019.

[28] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei A.
Efros, and Moritz Hardt. Test-time training with self-
supervision for generalization under distribution shifts. In In-
ternational Conference on Machine Learning (ICML), 2020.

[29] Michael Tschannen, Josip Djolonga, Paul K Rubenstein,
Sylvain Gelly, and Mario Lucic. On mutual information
maximization for representation learning. In International
Conference on Learning Representations, 2020.

[30] Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C
Duchi, Vittorio Murino, and Silvio Savarese. Generalizing
to unseen domains via adversarial data augmentation. Ad-
vances in neural information processing systems, 31, 2018.

[31] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. 2021.

[32] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang,
Tao Qin, Wang Lu, Yiqiang Chen, Wenjun Zeng, and Philip
Yu. Generalizing to unseen domains: A survey on domain
generalization. IEEE Transactions on Knowledge and Data
Engineering, 2022.

[33] Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Do-
main generalization with mixstyle. In International Confer-
ence on Learning Representations, 2020.

6145

