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[Automatically Generated Transcript] it's only a matter of time before someone else sees this investment 
we have that how do you know the bonds are worthless aren't they filled with thousands I read them you …

[Converted Video-based Dialog; 18M dialogs]

2. Converter turns noisy transcript to dialog format

1. Extracting & filtering videos

[Understanding Social Interaction]
Is the Person B positive?

No, the person is NOT positive.

[Visually-grounded Dialog]
What would Person B say next?

“No one reads them, only the lawyers 
who put them together read them.”

Learns about real-world 
conversations from 

18M video-based dialogs

20M videos

It's only a matter of time before someone 
else sees this investment we have.

How do you know the bonds are worthless? 
Aren't they filled with thousands?

I read them.
You read them?

I read yes.

Figure 1: CHAMPAGNE is a generative model of real-world conversational frames trained on YTD-18M, a dataset
of 18M video-based dialogues. YTD-18M is derived from public videos and their associated transcripts; a language model
automatically grounds the conversation turns to the speakers. CHAMPAGNE attains state-of-the-art results on four competitive
vision-language benchmarks after fine-tuning.

Abstract

Visual information is central to conversation: body ges-
tures and physical behaviour, for example, contribute to
meaning that transcends words alone. To date, however,
most neural conversational models are limited to just text.
We introduce CHAMPAGNE, a generative model of con-
versations that can account for visual contexts. To train
CHAMPAGNE, we collect and release YTD-18M, a
large-scale corpus of 18M video-based dialogues. YTD-
18M is constructed from web videos: crucial to our data
collection pipeline is a pretrained language model that con-
verts error-prone automatic transcripts to a cleaner dia-
logue format while maintaining meaning.

Human evaluation reveals that YTD-18M is more sen-
sible and specific than prior resources (MMDialog [17], 1M

dialogues), while maintaining visual-groundedness. Exper-
iments demonstrate that 1) CHAMPAGNE learns to con-
duct conversation from YTD-18M; and 2) when fine-tuned,
it achieves state-of-the-art results on four vision-language
tasks focused on real-world conversations. We release data,
models, and code at https://seungjuhan.me/champagne.

1. Introduction
Conversation often relies on non-verbal cues: visual in-

formation like physical expressions, body gesture, or the
surrounding environment are used by interlocutors to shape
and understand meaning. Figure 1: the two conversation
participants appear stressed (in the first image: one person
strikes the desk with his fists; in the second, the other person
is rubbing his face); but the tension is not apparent simply



Are Interlocutors involved in a conversation visible in the images?

Yes (62%) No (38%)

(a) YTD-18M (b) MMDialog; 1M examples

Derived from Social Media
The interlocutors of dialog 
are visible for only 12%

A: And if you take another step, you will never 
ever be able to call yourself a Sinclair again. 

B: This is why everybody calls you the creepy 
uncle, lurking around the forest with what is that? 

A: Luxbane has been in our family since the first days and tradition 
dictates that each Sinclair should learn the power to wield it.

A: Up okay guys and this is how the car loose the doors elevated. 

B: I wouldn't drive it too much because uh it's only a single arm on the door. 

A: That's the look that we get right here.

A: What are your favorite ProgRock
albums? LetÕs say from 1966 
through the present.

B: Pink FloydÕs ÒThe Dark Side Of 
the MoonÓ ! " #

A: DarkSideOfTheMoon is absolutely 
essential ProgRock from PinkFloyd!

Figure 2: Sample dialogues from two different datasets: (a) YTD-18M, and (b) the example from MMDialog presented in their paper [17].
According to the human evaluation results, our YTD-18M dataset has a good balance of both social interactions (left; 62%) and visually-
grounded dialogue (right; 38%), in contrast, MMDialog only has 12% social interactions. In addition, MMDialog is derived from social
media, resulting in examples that contain emojis or other social media-specific elements, while YTD-18M is derived from videos and thus
genuinely capture real-life communications.

from the transcript, which refers mostly to financial topics.
Other visual information suggests a broader context as well:
that the conversation is taking place over the phone, that
one person is older, and that one person is more formally
dressed are all potentially important factors for understand-
ing the conversation’s meaning, yet none are reflected in the
transcript. Indeed, visual perception provides information
that can help machines understand the world in ways that
text alone cannot [6, 28, 11].

In this paper, we propose CHAMPAGNE1, a genera-
tive model of conversations that learns from a large-scale
video corpus. CHAMPAGNE takes in video frames, a video
title, and a dialogue context as input and returns a dialogue
response as output. The model learns from videos about
two conversational frames: 1) Social Interaction, where
the conversation is observed from a 3rd-person perspec-
tive (e.g. movies or interviews; Figure 2, (a)-left); and 2)
Visually-grounded Dialogue, where the conversation is ob-
served from an embodied, first-person perspective (e.g. ego-
centric videos or chit-chatting through messenger applica-
tions; Figure 2, (a)-right)).

To support training CHAMPAGNE, we collect and release
a large-scale dataset, YTD-18M, which is the largest
publicly available dataset for real-world conversation learn-
ing. YTD-18M is constructed from 20M YouTube videos:
we use a language model to convert the noisy transcripts
automatically generated by YouTube into well-formatted
dialogues associated with video frames. Human evalua-
tion shows that YTD-18M covers both social interaction
and visually-grounded dialogue frames in balance, and sur-
passes the prior resource in terms of quality and scale (see
§3.2).

After training, we demonstrate that CHAMPAGNE mod-
els generate high-quality next-turn utterances that account
for visual contexts. Then, we conduct fine-tuning experi-

1ConversAtional Multimodal Prompted GeNErator.

ments, finding that: 1) CHAMPAGNE exhibits strong per-
formance on open-domain text-only conversation bench-
marks (§4.1); 2) CHAMPAGNE outperforms existing SOTA
models on two social interaction understanding bench-
marks: CMU-MOSEI [62] and Visual Comet [38] (§4.2); 3)
CHAMPAGNE outperforms SOTA models on two visually-
grounded dialogue benchmarks: Visual Dialog [12] and
Image Chat [50] (§4.3); and 4) ablations confirm the im-
portance of various components of YTD-18M (§4.4), e.g.
video frames.

In summary, our main contributions are:

1. YTD-18M, a large-scale dataset that contains 18M
video-based dialogue that covers real-world conversa-
tional frames derived from 20M web videos.

2. CHAMPAGNE, a generative model that learns about
real-world conversations from YTD-18M without any
manual annotation.

3. Experiments and ablations that demonstrate learning
from a large-scale video-based dialogue dataset im-
proves model performance on various tasks related to
conversation.

We publicly release code, the YTD-18M dataset, and
CHAMPAGNE model checkpoints to facilitate future re-

search on understanding real-world conversations from a
visually-grounded perspective.

2. Related Work
Although recent language modeling advancements have

enabled machines to engage in conversation and compre-
hend dialogue similar to humans [65, 47, 9, 3, 10, 16, 20],
these efforts have largely been confined to textual contexts.
In our work, we consider three real-world conversational
frames: social interaction, visually-grounded dialogue, and



open-domain text conversation. Social interaction involves
conversations that incorporate visual cues and are observed
from an external viewpoint (i.e., third-person perspective).
Examples of these conversations include speaker sentiment
analysis in videos as proposed by CMU-MOSEI [62], and
human-focused commonsense-based captioning as intro-
duced by Visual Comet [38]. Visually-grounded dialogue,
on the other hand, refers to conversations that involve vi-
sual contexts from the perspective of the agent, i.e., from
the first-person point of view. Visual Dialog [12], which
involves answering questions about an image in a conversa-
tional setting, and Image Chat [50], a chit-chat grounded to
the image, are examples of visually-grounded dialogue. Fi-
nally, open-domain text conversation refers to conversations
that rely solely on textual contexts, and there have been mul-
tiple endeavors to teach machines to engage in natural com-
munication on a wide range of topics [53, 13].

Text-only dialogue models have access to abundant
training resources [25, 55, 16, 52, 5, 15], allowing them to
generate natural responses based on conversational context.
However, despite their striking conversational abilities they
lack the capability to comprehend visual contexts. To ad-
dress this shortcoming, several studies have proposed multi-
modal dialogue models [51, 54]. Few large-scale datasets
such as MMDialog [17] are available for conversations that
are grounded on visual contexts, yet the scale of the dataset
is quite smaller than those of text-only dialogue datasets,
making it difficult to train such models at scale.
Large Vision-Language Models. Recent studies in
vision-language research have shown that scaling the size
of the model in conjunction with the dataset size can sig-
nificantly enhance model performance across a range of
tasks [40, 43]. Several frameworks have been introduced,
including Unified-IO [33] and OFA [58], which propose a
unified sequence-to-sequence model for modeling vision-
language tasks. These frameworks demonstrate that a sin-
gle model trained on a broad range of tasks can perform
well on various tasks. Additionally, BLIP [30] presents a
technique for pretraining models on noisy datasets for both
vision-language understanding and generation tasks. The
Flamingo model [4], trained on a large amount of noisy web
data, demonstrates that it can adapt to tasks with few exam-
ples. While these models provide a general vision-language
model, our research aims to enhance conversation capabil-
ity by focusing on specifically learning about conversations.

3. Approach

3.1. Dataset Collection: YTD-18M

In this section, we describe our pipeline to collect
YTD-18M, which is outlined in Figure 1.
Extracting and Filtering Videos. The data collection
process starts with downloading public YouTube videos.

Each video is associated with a user-provided title, meta-
data, and a transcript generated by the YouTube’s inter-
nal Automatic Speech Recognition system. We then filter
videos by applying several steps using the associated meta-
data, following the strategy from [64, 63]. In particular,
we use Python cld3 library, which uses a neural network
for language identification, to filter out videos whose tran-
scripts have a probability of being English less than 80%.
We also discard videos that do not contain visual variation
(e.g., a video of podcast with a static thumbnail) or those
lacking objects in the thumbnails according to an image
classification model [48]. These steps resulted in the ex-
traction of 20M videos.

We further process these 20M videos to build video seg-
ments. First, we build a list of segments by iterating through
each video with a 60-second sliding window. Second, we
filter out segments which have transcripts containing less
than 30 words: short transcripts are unlikely to contain mul-
tiple conversation turns. Finally, we filter out transcripts
that contain unsafe topics to ensure that the model does not
learn harmful language. We utilize Rewire API [1] to detect
toxic content in the transcripts. At the end of the filtering
stage, we end up with 18M video segments.
Converting Noisy Transcripts into Dialogues. Al-
though each video is equipped with its own transcript, they
are usually not suitable to train a video-based dialogue
model directly. For example, transcripts do not provide any
delimitation between the interlocutors. A naive approach to
address this problem is to use speaker diarization systems to
determine “who spoke when” [56]. However, these systems
suffer from low accuracy [39], thus perform poorly when
turning a sequence of words to a well-structured dialogue.

Instead, we train a converter model to transform noisy
transcripts into structured dialogues. Motivated by the
in-context learning capabilities of GPT-3 models [7], we
prompt GPT-3 with few-shot examples and ask the model to
generate well-formatted dialogues given noisy transcripts.
However, using GPT-3 to process millions of samples is
computationally expensive. Therefore, we train a smaller
model using denoised transcripts sampled from GPT-3.
That is, we collect 40K input-output pairs from GPT-3
where the input is a noisy transcript and the output is the
converted dialogue. Our converter is a Unified-IO [33] Base
(241M params) fine-tuned on the generated pairs. We ex-
clude video segments that have more than 150 words as the
model cannot handle excessively long inputs. The pairs are
divided into train and validation sets at a ratio of 99:1. The
converter achieves a high accuracy of 90.1% on the valida-
tion set when using teacher-forcing to predict tokens, sug-
gesting high-quality dialogue generation given noisy tran-
scripts (e.g., in Figure 1, Step 2).
Converting Videos into Video-based Dialogues. To en-
sure that each utterance in the obtained dialogue matches



Dataset YTD-18M MMDialog

Number of Dialog 18M 1M

Is the interlocutors of dialog visible?
Visible 61.6%! 11.5%

If NOT visible, then
how related the dialog is to the image? 2.589 2.580
how grounded the dialog is to the image? 2.429 2.463

How sensible is the dialog? 2.495 2.479
How specific is the dialog? 2.650! 2.464
Is the data containing explicit content?

Sexually Explicit 0.5%! 1.6%
Hatespeech 0.3%! 2.5%
Others 0.3%! 0.9%

Table 1: Human evaluation results on YTD-18M and MMDia-
log about the visual contexts and the quality of dialogues. YTD-
18M covers more cases of social interactions, and dialogues ex-
hibit better sensibleness and specificity compared to MMDialog.
! denotes statistically significance after independent two-sample
t-test (p < 0.5). Full breakdown of numbers are in Appendix B.

correctly with the corresponding video frames, we employ
Dynamic Time Warping [36] to align the dialogues with the
original noisy transcripts. After the alignment, we use the
timing information in the original noisy transcripts to es-
timate the start time of each dialogue turn, which in turn
helps extract the corresponding video frame and minimize
alignment errors caused by the conversion process. Figure 2
shows some examples from YTD-18M. More details about
collecting dataset can be found in Appendix A.

3.2. Dataset Analysis

To better understand our dataset, we conduct a hu-
man evaluation study comparing YTD-18M with MMDi-
alog [17] — the largest dataset for visually-grounded dia-
logue. MMDialog is a dataset sourced from people’s inter-
action in social media. We randomly sample 500 examples
from each dataset and ask three workers to assess each ex-
ample for several factors. For more information regarding
the human evaluation, please refer to the Appendix B.
Dataset quality. To compare the dialogue quality, we ask
workers to assess examples using two criteria: sensibleness
and specificity [3]. To be sensible, a dialogue should be
reasonable, logical, and not confusing. Specific dialogue is
one that is not dull or generic. Each human annotators rate
the dialogue in specific aspect on a 3-point Likert scale, e.g.
for sensibleness ”1” being ”Not Sensible” and ”3” being
”Sensible”. Evaluation results are shown in Table 1. On av-
erage, YTD-18M received higher scores than MMDialog
across the axes of sensibleness and specificity. We suspect
that MMDialog, which is derived from social media, may
lack a natural conversation flow due to the non-consecutive
nature of social media interactions.
Social Interaction. Given the prevalence of third-person
point of view in web videos, we postulate that a substan-
tial proportion of such videos feature social interactions. To

Woman speaking

Mechanic

Cooking

Landscapes

Figure 3: Visual feature distributions of YTD-18M and other
visually-grounded dialogue datasets. Our YTD-18M includes
a wide range of visual contexts, with a particular emphasis on
frames in which a person is speaking, in contrast to the other
datasets (shown in the upper left cluster).

investigate this claim, we enlisted the aid of workers to de-
termine whether the conversation’s interlocutors were visi-
ble in the image frames and, if so, whether their body lan-
guage was present. Our findings, presented in Table 1, in-
dicate that our video-based dialogue dataset has a consider-
ably higher proportion of visible interlocutors (61.6%) than
MMDialog (11.5%). This discrepancy can be explained by
the fact that it is uncommon for interlocutors in social me-
dia interactions to reveal their identities through images.
Moreover, when interlocutors are visible, workers accu-
rately identified facial expressions in 83.6% of cases, and
tagged body posture in 64.7% of them. These results sug-
gest that our dataset presents a valuable resource for explor-
ing body language in communication.
Visual Grounding. Real-life conversations do not always
have a direct relationship or grounding to images. There-
fore, a higher degree of relevance between dialogues and
images does not necessarily imply a higher quality dataset,
although it offers more visual grounding opportunities for
models to learn from. We ask workers to assess the de-
gree of grounding between conversations and images on a 3-
point Likert scale when interlocutors were not visible in the
images. According to Table 1, YTD-18M exhibits ground-
ing scores that are comparable to those of MMDialog, im-
plying that models can acquire visual grounding knowledge
from YTD-18M.
Distribution of Visual Contexts. In order to gain a bet-
ter understanding of the visual representations encoded in
YTD-18M from videos, we examine the distributions of
visual features across three distinct datasets: Image Chat,
MMDialog, and YTD-18M, that are grounded in dialogue.
Similar to [32], we use CLIP ViT-L14 [40] trained on
LAION-2B [49].2We utilize this model to extract embed-
dings, and the embeddings are then projected into a 2D fea-

2[32] conducted a similar study, but using ResNet50 ImageNet features.



Figure 4: Training CHAMPAGNE on YTD-18M. The model
takes a video title, a dialogue context, and image frames as an input
and learns to predict the response.

ture space by way of UMAP [35]. In order to conduct our
analysis, we randomly sample 1K images from each of the
aforementioned datasets.

Figure 3 illustrates the results, indicating that the datasets
share some similarities but differ in certain aspects. No-
tably, YTD-18M has a distinct distribution pattern from
Image Chat and MMDialog, with a higher proportion of
images featuring a person speaking, which is consistent
with the previous discovery that YTD-18M emphasizes so-
cial interactions. Additionally, YTD-18M encompasses a
broad range of diverse and specific topics, such as cooking
or mechanics. Further information regarding the analysis of
visual contexts can be found in the Appendix C.
Content Safety. We ask workers to identify whether the
dialogues or images contain any potentially unsafe content,
like sexually explicit material or hatespeech. As indicated
in Table 1, our YTD-18M has fewer occurrences of sex-
ually explicit content and hate speech when compared to
MMDialog. We suspect that this discrepancy is due to the
inclusion of safety filtering step in the data collection pro-
cess for YTD-18M.
Video Title as an Additional Feature. We further ask the
workers to rate the relevance of the video title to the dia-
logue on a 3-point Likert scale, ranging from 1 (Not Re-
lated) to 3 (Related). The results show that 65% of the
videos have a title that is relevant to the dialogues, and 21%
have titles that were somewhat related. This led us to utilize
the video titles as prompts when training our model. Our
qualitative findings (§4.1) suggest that CHAMPAGNE can be
conditioned effectively by such prompts.

3.3. Model: CHAMPAGNE

CHAMPAGNE is a multimodal conversational agent that
takes image frames, a prompt, and a dialogue context as an
input and generates a response. The overview of training
process is described in Figure 4. The collected YouTube
titles for each video serve as prompts and are denoted as
P . Finally, the vision-based dialogue is denoted as D =
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Figure 5: Validation perplexities during the training process of
CHAMPAGNE models on YTD-18M.

(P, I 1, T1, ..., I n , Tn ), where I i and Ti denote an image
frame and the dialogue turn, respectively.
Architecture. The architecture used in CHAMPAGNE is
based on the Unified-IO model proposed by [33]. This
model is designed for vision-and-language tasks and op-
erates as a sequence-to-sequence model. Although it can
handle image and text inputs together, it is unable to han-
dle multiple images. To address this limitation, we intro-
duce video position embeddings that can be learned and in-
corporated into CHAMPAGNE. Specifically, CHAMPAGNE
converts each frame of the video into a sequence of patch
encodings using a visual encoder. It then adds video posi-
tion embeddings to the patch encodings to capture temporal
information of the video frames. The patch encodings from
multiple image frames are averaged through mean pooling
and fed into a Transformer encoder. Our experiments use
three image frames per dialogue to train CHAMPAGNE.
Training. We initialize CHAMPAGNE training with the
pretrained weight from Unified-IO model that is pretrained
on collection of C4 [41], Wikipedia, ImageNet21K [45],
and YFCC15M [40] with a denoising objective. Unified-IO
model is trained in two stages, pre-training and the multi-
task stage, and the weights from the pre-training stage, re-
ferred to as Unified-IOP T

3, are used to initialize the CHAM-
PAGNE model. We train the model using a next token pre-
diction objective, which aims to maximize the likelihood of
the target response Tk when taking multiple images I i ! k ,
dialogue context Ti<k , and the video title P as an input,
i.e., p! (Tk |I 1, T1, ..., I k " 1, Tk" 1, Tk , P).

We present three versions of the model, BASE (241M),
LARGE (776M), and XL (2.9B). We train models for
3 epochs on YTD-18M, and training CHAMPAGNE-XL
takes approximately 3 days on TPU v3-256 on Google
Cloud Virtual Machines with T5X framework [46]. More
details about hyperparameters are in Appendix D.

4. Experiments
Figure 5 shows the training curves for CHAMPAGNE

models that were trained on YTD-18M. We evaluate the
3We run a pilot study and find that the model initialized from Unified-

IOP T weights perform better on downstream tasks compared to the model
initialized from Unified-IO.



I don't care if your company's got one person 
or half a million they're not popularity contests.

But psychologically is it difficult to just sort of 
step in as a new CEO?

Prediction: Yes, yes. It's difficult to step in and 
be a leader.

Figure 6: CHAMPAGNE-XL predicting next utterance when the visual and dialogue contexts are given from the unseen video.

Dataset BST ConvAI2 ED WOW WOI IC IC First Turn

Metric (on Test Set) PPL Dist-3 PPL Dist-3 PPL Dist-3 PPL Dist-3 PPL Dist-3 PPL Dist-3 PPL Dist-3

Without Fine-tuning
CHAMPAGNE-XL 34.1 0.417 34.2 0.371 32.8 0.544 31.2 0.705 34.8 0.641 50.5 0.213 69.9 0.135

Reddit 2.7B [47] 20.0 0.390 24.2 0.286 14.0 0.418 24.3 0.458 23.5 0.473 40.9 0.152 66.3 0.011

Fine-tuned
Multimodal Blender 2.7B [51] 14.6 0.418 13.8 0.300 11.4 0.306 15.6 0.527 19.8 0.522 24.0 0.200 25.9 0.193
Unified-IOP T BASE 20.4 0.280 16.5 0.199 19.8 0.352 22.6 0.480 26.0 0.449 29.9 0.106 29.6 0.113
Unified-IOP T LARGE 17.7 0.284 15.0 0.176 15.8 0.304 18.6 0.484 21.3 0.436 26.8 0.108 26.7 0.096
Unified-IOP T XL 15.7 0.346 12.9 0.250 14.9 0.393 16.5 0.580 18.9 0.515 20.5 0.182 22.2 0.163

CHAMPAGNE-BASE 19.1 0.395 15.2 0.361 19.0 0.421 21.3 0.651 24.1 0.584 27.2 0.174 27.4 0.220
CHAMPAGNE-LARGE 16.9 0.390 13.6 0.353 18.6 0.454 18.5 0.665 21.7 0.590 22.9 0.205 23.6 0.256
CHAMPAGNE-XL 15.1 0.434 12.3 0.390 16.2 0.499 16.1 0.690 18.5 0.624 19.3 0.247 21.2 0.278

Table 2: Automatic evaluation results on open-domain text conversation benchmarks and Image Chat (IC). For fair comparison, all
perplexities (PPL, ↓) are normalized to be in the space of GPT-2 tokenizer [60]. Dist-3 (↑) is calculated over corpus-level (Inter Dist-3).
IC First Turn indicates the situation in which the model generates the response given image but no textual context from IC, which is to
highlight model’s ability to ground on visual contexts. Note that Multimodal Blender 2.7B is a fine-tuned version of Reddit 2.7B.

sensibleness and specificity of the response generated by
CHAMPAGNE models by computing perplexities [24] on
the validation set of YTD-18M. Perplexity (PPL) has been
shown to be a reliable indicator of these qualities [3]. The
training curves in Figure 5 demonstrate that the models are
capable of learning to generate appropriate next-turn utter-
ances given visual and dialogue contexts, and that they gen-
eralize well to the validation set when trained on YTD-
18M. A qualitative example of this successful generaliza-
tion can be seen in Figure 6.

We next conduct experiments on a range of benchmarks
that assess the model’s performance on real-world conver-
sation tasks. Additional information about the benchmarks
and the evaluation metrics used can be found in Appendix E.

4.1. Open-domain Text Conversation

To investigate whether CHAMPAGNE models are capa-
ble of learning chit-chat skills from YTD-18M, we con-
duct automatic evaluations on open-domain text conversa-
tion benchmarks. These benchmarks assess the model’s
ability to produce appropriate responses given a textual dia-
logue context in a conversational scenario. Specifically, we
evaluate the model’s performance on five text-only bench-
marks: BST [53], ConvAI2 [13], ED [44], WOW [14], and
WOI [27]. We employ two metrics to evaluate the mod-
els: PPL and Dist-3 [29]. Dist-3 is a metric that has been
shown to reflect the diversity and interestingness of the re-

sponse [19]. Results are shown in Table 2 (left).

Prior to fine-tuning, both Unified-IOP T XL and Unified-
IO XL exhibited perplexities over 100, which suggests that
these models generate unintelligible sentences. In contrast,
CHAMPAGNE-XL achieved significantly lower perplexities
on all benchmarks, indicating that the model has effec-
tively learned chit-chatting capabilities from YTD-18M.
Next, we fine-tune both Unified-IOP T and CHAMPAGNE
on a mixture of dialogue benchmarks, with the multi-task
training weight set to BST: ConvAI2: ED: WOW: WOI:
IC = 1 : 3 : 3 : 3 : 3 : 3, following the approach de-
scribed in [47]. After fine-tuning, CHAMPAGNE achieves
significantly higher Dist-3 scores and lower PPL values
than the same-sized Unified-IOP T , indicating that CHAM-
PAGNE has successfully learned about textual conversations
from YTD-18M. Our experimental results further sug-
gest that larger models tend to perform better overall, with
CHAMPAGNE-XL reporting Dist-3 scores that surpassed
those of other baselines on all benchmarks, demonstrat-
ing its ability to generate diverse and interesting responses.
However, in terms of PPL, CHAMPAGNE-XL shows weaker
performance on BST, ED, and WOW compared to the Mul-
timodal Blender 2.7B. We conjecture that this may be due
to the influence of the large text-based dialogue dataset
(the Pushshift dataset [5]), which contains 3B Reddit com-
ments. Indeed, the Reddit 2.7B model, the text-only model
which is trained on the Pushshift dataset, performs better



Metric Acc. (%) (↑) F1 (↑)

UniMSE [22] 85.8 0.858
MAG-BERT [42] 84.7 0.845
Unified-IOP T BASE 70.1 0.780
Unified-IOP T LARGE 72.9 0.812
Unified-IOP T XL 81.5 0.869

CHAMPAGNE-BASE 82.3 0.879
CHAMPAGNE-LARGE 83.9 0.892
CHAMPAGNE-XL 86.1 0.899

Table 3: Evaluation results on test split of CMU-MOSEI senti-
ment analysis task.

Metric CIDEr-D (↑) BLEU-4 (↑)

Split Val Test Val Test

Unified-IO XL 0.212 - 0.073 -
SOTA on Public Leaderboard [2] - 0.184 - 0.041
Unified-IOP T BASE 0.344 - 0.095 -
Unified-IOP T LARGE 0.356 - 0.098 -
Unified-IOP T XL 0.384 - 0.105 -

CHAMPAGNE-BASE 0.351 - 0.097 -
CHAMPAGNE-LARGE 0.369 0.322 0.102 0.080
CHAMPAGNE-XL 0.399 0.354 0.109 0.092

Table 4: Evaluation results on Visual Comet.

than CHAMPAGNE-XL without fine-tuning, suggesting that
the Pushshift dataset has a distribution that is more simi-
lar to those of these benchmarks than YTD-18M. We ex-
pect that further improving the model’s performance on
these benchmarks may require training CHAMPAGNE-XL
on the Pushshift dataset in addition to fine-tuning it on these
benchmarks.

4.2. Understanding Social Interactions

We evaluate the performance of three variants of CHAM-
PAGNE and Unified-IOP T on two benchmarks that measure
social interactions: the sentiment analysis task in CMU-
MOSEI [62] and Visual Comet [38]. Table 3 and Table 4
show the results on CMU-MOSEI and Visual Comet, re-
spectively. Results show that fine-tuning CHAMPAGNE-
XL on these benchmarks leads to the highest accuracy
and F1 score among the baselines, including the state-of-
the-art model (UniMSE) on CMU-MOSEI. Additionally,
our model outperforms the state-of-the-art result on Vi-
sual Comet, both on the validation and test sets. Fur-
thermore, the models fine-tuned from CHAMPAGNE con-
sistently demonstrate significant improvements compared
to the models fine-tuned from same-sized Unified-IOP T

on both CMU-MOSEI and Visual Comet. This indicates
that our model effectively learns meaningful representations
about social interactions from YTD-18M.

4.3. Visually-grounded Dialogues

We run experiments on two visually-grounded dialogue
benchmarks: Visual Dialog [12] and Image Chat [50]. Ta-

Metric NDCG (×100) (↑)

Zero-shot
Flamingo-80B 52.0
ESPER [61] 22.3
FROMAGe [26] 16.5

CHAMPAGNE-XL 25.5

Fine-tuned
Flamingo-80B 61.8
AlignVD [8] 67.2
Unified-IOP T BASE 58.9
Unified-IOP T LARGE 60.3
Unified-IOP T XL 65.6

CHAMPAGNE-BASE 60.0
CHAMPAGNE-LARGE 62.5
CHAMPAGNE-XL 68.2

Table 5: Evaluation results on Visual Dialog valid set in finetuned
and zero-shot settings. CHAMPAGNE-XL shows the best zero-shot
performance except for Flamingo-80B, which has 30× more pa-
rameters, and CHAMPAGNE-XL achieves the state-of-the-art re-
sult on finetuned setting. For fair comparison, we report baselines
that do not use additional dense annotations to finetune the model.

ble 5 presents the results of models on Visual Dialog in both
zero-shot and fine-tuned settings. Similarly, Table 2 (right)
shows the results of models fine-tuned on combination of
dialogue datasets on Image Chat and Image Chat First Turn.
Fine-tuning CHAMPAGNE on those benchmarks outper-
forms fine-tuning the same sized Unified-IOP T model on
both tasks. This suggests that the model effectively learns
from YTD-18M, and larger models tend to perform better.
For Visual Dialog zero-shot setting, CHAMPAGNE-XL out-
performs ESPER and FROMAGe in terms of NDCG [23].
In the fine-tuned setting, CHAMPAGNE-XL achieves the
highest NDCG compared to Flamingo-80B and the state-
of-the-art model (AlignVD). However, in the zero-shot
setting, Flamingo-80B performs significantly better than
CHAMPAGNE-XL, which might be due to Flamingo’s larger
parameters and training data. Based on our scaling obser-
vations, we suspect that training Flamingo-80B or a simi-
lar sized model on YTD-18M could lead to further perfor-
mance improvements. For Image Chat and Image Chat First
Turn, CHAMPAGNE-XL shows the lowest PPL and highest
Dist-3 scores among the baselines.

We additionally carry out a human evaluation to compare
our best model with the baselines trained on Image Chat.
We randomly choose 100 examples from both Image Chat
and Image Chat First Turn. For each example, we asked
three workers to rate the dialogue responses generated by
the model on four aspects: (1) sensibleness, (2) specificity,
(3) grounding to the image, and (4) relevance to the given
style. The workers were presented with positive/negative
options for each aspect. For instance, for the grounding
aspect, they were asked to choose between ”Yes, the re-
sponse is grounded to the image” or ”No, the response is not
grounded to the image.” Our evaluation results, presented



(a) A conversation with the person
User: Hi, what are you doing now?
Bot: I'm working on my computer. I'm a programmer.
User: Where are you working now?
Bot: I'm working at a restaurant. I'm in the kitchen.
User: Are you alone?
Bot: No, I'm with my girlfriend. We've been together for a while.

(b) A conversation between two people about the picture
User: Hi, what is the man doing in the picture?
Bot: He's typing. He's typing on his laptop.
User: Where is he now?
Bot: He's in his office. He's working on a project.
User: Is he alone?
Bot: No, he's with his wife. They have three kids.

Figure 7: Examples of conversation based on unseen images from COCO [31] and prompts (colored in blue) between person and
CHAMPAGNE-XL finetuned on mixture of dialogue benchmarks. The utterances with the prefix Bot: are generated by the model. (a)
represents a conversational frame of social interaction (bot pretends to be the person in the picture), while (b) represents a conversational
frame of visually-grounded dialogue (bot talks about the person in the picture).

Dataset Image Chat Image Chat First Turn

Metric Sensible Specific Grounding Style Avg. Sensible Specific Grounding Style Avg.

Multimodal Blender 2.7B 81.3% 66.7% 98.7% 69.0% 78.9% 93.3% 70.0% 85.0% 82.3% 82.6%
Unified-IOP T XL 84.7% 88.3% 98.0% 84.3% 88.8% 92.0% 83.0% 87.7% 82.0% 86.3%

CHAMPAGNE-XL 82.7% 93.7%UM 98.7% 90.0%UM 91.3%UM 92.0% 93.0%UM 90.1%M 88.3%UM 90.8%UM

Table 6: Human evaluation results on Image Chat and Image Chat First Turn. Grounding denotes how well the generated response is
grounded to the image, Style denotes how well the generated response reflects the given style, and Avg. denotes the average percent of
results. We run independent two-sample t-tests, and we denote as M and U when CHAMPAGNE-XL is statistically significant (p < 0.05)
over Multimodal Blender 2.7B and Unified-IOP T XL, respectively.

Dataset CMU-MOSEI IC First Turn

Metric Acc. (%) PPL (↓) Dist-3 (↑)

CHAMPAGNE-LARGE trained on:
YTD-18M 83.9 21.6 0.260
YTD-2M 83.2 28.3 0.190
YTD-2M w/ single video frame 78.9 29.3 0.066
YTD-2M w/o video frames 75.6 29.7 0.073
YTD-2M w/o transcript to dialog 74.9 29.0 0.143

Table 7: Ablation study on the test set of CMU-MOSEI and Im-
age Chat First Turn to validate the effect of YTD-18M.

in Table 6, indicate that our model, CHAMPAGNE-XL, out-
performs the baselines in terms of specificity, grounding,
and style. As for sensibleness, our model shows compara-
ble scores to the best results. More details on the human
evaluation can be found in Appendix B. Lastly, Figure 7
presents some sample conversations between a human and
our model. The figure demonstrates that the model can en-
gage in conversations based on images and can be prompted
to respond accordingly.

4.4. Ablations

To investigate the impact of components in YTD-18M,
we conduct ablation studies on CMU-MOSEI and Image
Chat First Turn. Our evaluation of models on Image Chat
First Turn only involves fine-tuning on Image Chat and ex-
cludes any text-only dialogue datasets.

Number of Examples. The performance drop in both
tasks is evident when reducing the number of examples in
YTD-18M from 18M to 2M, as seen in Table 7. These find-
ings are consistent with previous works [21, 7] and high-
light the benefits of learning from a larger dataset. Notably,
the significance of the performance drop is greater in the
visually-grounded dialogue task of Image Chat, underscor-
ing the crucial role of the number of examples in such tasks.

Video Frames. To validate whether the models learn from
visual contexts, we conduct two experiments. The first ex-
periment involves training the model without video frames,
while the second experiment utilizes only a single video
frame for training. Table 7 presents the results of these ex-
periments, which show a decrease in performance for both
tasks. These findings support the idea that YTD-18M pro-
vides an opportunity for the model to learn visual ground-
ing. Notably, the accuracy drop is more significant for
CMU-MOSEI, where training with a single frame results in
an accuracy drop from 83.2% to 78.9%, and training with-
out video frames results in an even greater accuracy drop to
75.6%. This suggests that relying on visual cues is essential
for understanding sentiment in social interaction. Further-
more, in Image Chat, there is a substantial drop in Dist-3,
indicating that models trained without visual contexts may
generate generic responses that are irrelevant to the images.
Dialogue Format. By comparing the model trained on
the noisy transcript to the model trained on dialogue for-
mat, we aim to demonstrate how the latter can improve the
machine’s ability to learn representations of conversation.
In Table 7, we observe a decrease in performance for both
tasks. Notably, on the CMU-MOSEI dataset, the accuracy
drops from 83.2% to 74.9% without the dialogue conversion
process. We speculate that the conversion process helps
the dataset recover crucial speaker information that is miss-
ing from the noisy transcript. This information could prove
beneficial for learning representations of social interaction.

5. Conclusion
We introduce YTD-18M, a large-scale video-based

dialogue dataset and CHAMPAGNE, a model that learns
about the real-world conversation from YTD-18M. Our ex-
periments show that CHAMPAGNE exhibits strong perfor-



mance in various real-world conversation tasks, indicating
that video-based dialogues can help models to learn about
real-world conversations. We will release our data and
model checkpoints for research purposes. In future work,
we plan to explore the potential of utilizing auditory signals
from videos to further enhance our understanding of real-
world conversations.

6. Ethical Considerations

In this paper, we introduce a large-scale dataset derived
from publicly available YouTube videos. With an empha-
sis on teaching machines about real-world conversation, our
dataset includes frames that present the interlocutors. It
might capture their facial expressions and body cues, how-
ever, may give rise to user privacy concerns. To mitigate this
issue, we release only the video IDs instead of raw videos,
following the prior works [64, 63]. It allows users to delete
their video from YouTube, thereby excluding them from the
dataset. To strengthen user privacy even further, future di-
rections may include works such as anonymizing faces and
speech from the videos, and deidentifying personal infor-
mation from the transcripts.
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