This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Neglected Free Lunch — Learning Image Classifiers Using Annotation Byproducts

Dongyoon Han* Junsuk Choe* Seonghyeok Chun John Joon Young Chung
NAVER AI Lab Sogang University Dante Company University of Michigan
Minsuk Chang' Sangdoo Yun Jean Y. Song Seong Joon Oh
NAVER AI Lab NAVER AI Lab DGIST University of Tiibingen
Abstract

Supervised learning of image classifiers distills human
knowledge into a parametric model fqy through pairs of im-
ages and corresponding labels {(X;,Y;)} ;. We argue that
this simple and widely used representation of human knowl-
edge neglects rich auxiliary information from the annotation
procedure, such as the time-series of mouse traces and clicks
left after image selection. Our insight is that such anno-
tation byproducts Z provide approximate human attention
that weakly guides the model to focus on the foreground
cues, reducing spurious correlations and discouraging short-
cut learning. To verify this, we create ImageNet-AB and
COCO-AB. They are ImageNet and COCO training sets en-
riched with sample-wise annotation byproducts, collected
by replicating the respective original annotation tasks. We
refer to the new paradigm of training models with annota-
tion byproducts as learning using annotation byproducts
(LUAB). We show that a simple multitask loss for regressing
Z together with'Y already improves the generalisability and
robustness of the learned models. Compared to the original
supervised learning, LUAB does not require extra annotation
costs. ImageNet-AB and COCO-AB are at github.com/naver-
ai/NeglectedFreeLunch.

1. Introduction

Supervised learning of image classifiers requires the trans-
fer of human intelligence to a parametric model fy. The
transfer consists of two phases. First, human annotators
execute human computation tasks [99] to put labels Y on
each image X . The resulting labeled dataset {(X®, Y*)} ¥
contains the gist of human knowledge about the visual task
in a computation-friendly format. In the second phase, the
model is trained to predict the labels Y for each input X.

In this work, we question the practice of collecting and
utilising only the labels Y for each image X for training
the models. In fact, common practise simply forgoes a large
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Figure 1: Annotation byproducts from ImageNet. Annotators
leave traces like click locations as they select images with “Border
Collie”. We argue that such byproducts contain signals that may

improve model generalisation and robustness.
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Figure 2: Learning using Annotation Byproducts (LUAB).
LUAB exploits annotation byproducts Z that are unintentionally
generated during the human intelligence tasks for annotation.
amount of additional signals from human annotators other

than mere labels. When humans interact with computers
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through the graphical user interface, they leave various forms
of unintentional traces. Input devices like the computer
mouse produce time-series data in which information about
what (e.g., mouse action type) and where (e.g., Xx-y coordi-
nates in the monitor) are logged with timestamps. We refer
to such auxiliary signals as annotation byproducts Z. See
Figure | for an ImageNet annotation example [74, 68]. As
annotators browse and click on images containing the class
of interest, various byproducts are generated, e.g., images
over which were hovered during selection, mouse move-
ment speed between images, pixels on which were clicked in
an image, images that were deselected due to mistake, and
latency between image selections, etc.

We introduce the new learning paradigm, learning using
annotation byproducts (LUAB), as a promising alternative
to the usual supervised learning (Figure 2). We propose
to use the annotation byproducts in the training phase, for
further enhancing a model. This is a special case of learning
using privileged information (LUPI) [98], where additional
information Z other than input X and target Y is available
during training but is not given at inference. LUAB is an
attractive instance of LUPI, as it does not incur additional
annotation costs for privileged information.

We demonstrate the strength of the LUAB framework by
contributing datasets ImageNet-AB and COCO-AB, where
the original ImageNet and COCO classification training sets
are enriched with the annotation byproducts. We show that
annotation byproducts from image-category labelling inter-
faces contain weak information about the foreground object
locations. We show that performing LUAB with such infor-
mation improves not only generalisability but also robustness
by reducing spurious correlations with background features,
a critical issue of model reliability these days [84, 51, 27].

Our contributions are (1) acknowledge a neglected in-
formation source available without additional costs during
image labelling: annotation byproducts (§3); (2) LUAB
as a new learning paradigm that makes use of annota-
tion byproducts without extra annotation costs compared
to the usual supervised learning (§4); (3) empirical findings
that LUAB with byproducts weakly encoding object loca-
tions improves model generalisability and reduces spurious
correlations with the background (§5); and (4) release of
ImageNet-AB and COCO-AB dataset for future research
(github.com/naver-ai/NeglectedFreeLunch).

2. Related work

We collect the annotation byproducts of the annotation
process and exploit them for training models. We discuss
three related fields of machine learning.

2.1. Privileged learning

Privileged learning [96, 97, 98] refers to a machine learn-
ing scenario where the model is supervised not only with the

directly task-relevant information (e.g. image label Y) but
also with auxiliary information called privileged informa-
tion (PI) that is not available at inference.

Learning using privileged information (LUPI) was first
studied in the context of classical machine learning algo-
rithms such as support vector machines (SVM) [98, 81, 104,
12,25, 82]. LUPI has since been successfully applied to deep
models with multitask learning framework where the PI is
plugged in as auxiliary supervision [40, 105, 86]. PI may
also be used as a representational bottleneck that regularises
the cues for recognition [13, 50, 49]. “Learning with ratio-
nale” is an instance of LUPI actively being studied in natural
language processing (NLP) domain [10, 43, 32, 106] with
recent applications in computer vision problems [88, 35].

Our learning setup, learning using annotation byprod-
ucts (LUAB), is an instance of privileged learning with the
annotation byproducts as the PI. We hope that LUAB ex-
tends the LUPI paradigm by inviting creative methods for
utilising the costless annotation byproducts.

2.2. Collecting auxiliary signals from annotators

It has been widely observed in the field of human-
computer interaction that online annotators leave traces
and logs that contain noisy yet important information
[42, 75, 94]. There have been attempts in crowdsourcing
image categories to record human gaze during task execu-
tion [107, 63, 90, 89, 44, 72, 87, 45]. Since gaze recording
devices are costly and intrusive, proxy measurements such
as mouse clicks and tracks [5, 66, 6, 59] and partially vis-
ible images [17, 48, 47, 53, 54, 23] have also been consid-
ered. Other works measure the annotators’ response time
as a proxy for the sample difficulty [93, 61, 21]. Others
have treated the degree of annotator disagreement as the
level of difficulty or uncertainty for the sample [80, 64].
Finally, there exist research topics on estimating the anno-
tators’ skills and expertise to reflect them in the training
phase [8, 83, 77, 55, 91]. In our work, we collect similar
signals from annotators, such as mouse signals and inter-
actions with various front-end components. However, our
work is the first attempt to collect them at a million scale
(e.g. ImageNet) that are freely available as byproducts from
the original annotation task.

One of the byproducts we collect, namely the click loca-
tions during ImageNet annotations, is similar to the “point
supervision” considered in some previous work in weakly-
supervised computer vision tasks[5, 71, 6]. While the data
format (a single coordinate on an image) is similar, those
works are not directly comparable. Our click locations are
cost-free byproducts of the original ImageNet annotation pro-
cedure that arises inevitably from the annotators’ selection
of images, while the point supervision requires a dedicated
annotation procedure and incurs extra annotation costs.

20201



2.3. Robustness to spurious correlations

Many datasets used for training machine learning mod-
els are reported to contain spurious correlations that let the
model solve the problem in unintended ways [84, 51, 9, 3,
27, 16, 102]. The presence of such shortcuts is measured
through “stress tests” [16]: the model is evaluated against a
data distribution where the spurious correlations have been
altered or eliminated. We take this approach in §5 to measure
improvements in robustness due to LUAB.

Prior approaches to enhance the robustness to spurious
correlations have utilised additional human supervision to
further specify the “correct” correlations models must ex-
ploit. For example, [73, 85, 11, 26, 65, 62, 67] regularise
the attention maps of image classifiers with respect to var-
ious forms of human guidance, such as bounding boxes,
segmentation masks, human gaze, and language, to let the
classifiers focus on the actual object regions. In this work,
we use signals that are unintentionally generated by humans
during widely-used image annotation procedures to enhance
the robustness to spurious correlations. Those signals are
available at no extra cost during the annotation.

3. Collecting annotation byproducts

To construct a comprehensive package of annotation
byproducts, we replicate the annotation procedure for two
representative image classification datasets, ImageNet [74],
and COCO [52]. Resulting datasets with annotation byprod-
ucts, ImageNet-AB and COCO-AB, will be published.

3.1. Browsing versus tagging interfaces

There are two widely-used interfaces for annotating im-
age labels: browsing (e.g., ImageNet) and tagging (e.g.,
COCO). A browsing interface presents a single concept
along with a set of candidate images arranged in a grid and
asks the annotator to select the images correctly depicting
the concept. A tagging interface presents a single image at a
time and asks the annotator to choose one or more objects
and concept labels as necessary (survey of interfaces in [76]).

The two paradigms have different strengths. Browsing is
advantageous for efficient batch processing of images, where
the annotation precision matters less. Tagging is helpful for
careful labelling and supports the annotation of multiple
labels per image. Browsing interfaces have been used for the
ImageNet [74, 68], Places [112], and CUB [100] datasets.
Tagging interfaces have been used for Pascal [22], COCO
[52], LVIS [31], and iNaturalist [95]. As representatives of
each type, we replicate ImageNet [74, 68] and COCO [52].

3.2. ImageNet

ImageNet [74] is a single-label dataset annotated via
browsing. We describe how we replicated the original anno-
tation procedure and present the set of annotation byproducts

collected through the browsing annotation.

3.2.1 Replicating ImageNet annotations

We replicate the annotation process for the training split of
ImageNet1K (1,281,167 images). The original annotation
procedure consists of the following four stages [74, 68].
(1) Construct the list of classes C to annotate. (2) Crawl
candidate images I¢*" for each class ¢ € C from the web.
(3) Crowdsourced annotators select true images I3 of
class c. (4) Expert annotators clean up the dataset.

We replicate only the crowdsourcing stages (2) and (3)
that are directly related to the generation of annotation
byproducts. Our replication is based on the description in the
original ImageNet [74] and ImageNetV2 [68] papers. For
stage (1), we use the 1,000-class subset of the original 21,841
WordNet concepts [60], corresponding to the ILSVRC2012
subset, also known as the ImageNet1K [74].

Preparing candidate images /5" for each class ¢ € C.
The candidate images for the original dataset are crawled
from Google, MSN, Yahoo, and Flickr [68]. The search
keywords are formulated by combining the class names and
their “synsets” in WordNet [60]. The resulting set of im-
ages I becomes the candidate image set for class c. The
annotators later select a subset I5¢°t C 13 o finalise the
set of images that contain the class c. Our aim is to collect
the annotation byproducts for the 1,281,167 original training
images of ImageNet1 K. We thus let the annotators select the
final images from a mixture of the original training images
I and the set of new candidate images from Flickr
Ifekr [1], We set the ratio between the original ImageNet
and Flickr-sourced images as 1:3. Our candidate set for
each class c is [ = ;"% [flickr Then the annotators
select the images containing ¢, I C ¢, where the
hope is that I3 contains many original ImageNet samples
JimaEnet \We report 86.7% of I-"*€™! have been selected as
aresult. A 100% recall is conceptually impossible due to
boundary cases and label noises in Iz 2" [7, 78].
Crowdsourced annotation via browsing interface. Follow-
ing the original procedure, we let the Amazon Mechanical
Turk (MTurk) [2] workers complete the selection process
Ieteet  J¢and for each class c. ImageNet and ImageNetV2
interfaces are shown in Figures 9 and 10 of the ImageNetV?2
paper on arXiv [69], respectively. We closely follow the Ima-
geNetV2 interface because the documentation is richer. Our
interface is shown in Figure 3. Like ImageNetV2, we show
48 candidate images 15 for a single class c for each task.
MTurk annotators click on images containing class ¢ and
submit the selections I3*t, Importantly, we have designed
the front-end and back-end to record and save the annotation
byproducts in the database. The annotation interface and
crowdsourcing details are explained in Appendix §C.1.
Number of annotators per image. The original ImageNet
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French bulldog

Definition: Small stocky version of the bulldog having a sleek coat and square head

lowing images, click the image if it contains at least one object of type French bulldog. Sele|
regardless of occlusions, other objects, or clutter or textin the scene. Cnly select if images
(no drawings or paintings).
Please make accurate selections!
about the object meaning, please cansult the following Wikipadia page(s) or google the ob,
Bulldie Z(open in new tab)
s impossible to complete a HIT due to missing data or other problems, please return the HI

nttps:/fenwikipedia,
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Instruction panel

~

Select images with French Bulldogs

Submit button

Full page view
Figure 3: ImageNet annotation interface. We replicate the in-
terface in [69]. Annotators read the category description in the
instruction panel, select all the images corresponding to “French
bulldog”, and click on the submit button.

"imageID": "n01440764/n01440764_105",
"originalImageHeight": 375,
"originalImageWidth": 500,
"selected": true,
"selectedRecord": [

Original Annotation

{"x": 0.540, "y": 0.473, "time": 1641425052}
1,
"mouseTracking": [
{"x": 0.003, "y": 0.629, "time": 1641425051},
{"x": 0.441, "y": 0.600, "time": 1641425052}

] Annotation Byproducts

Figure 4: Annotation byproducts from ImageNet. See Appendix
Figure A for the full list of byproducts.

annotation procedure presents each image to 10 annotators
for more precise annotations. This would require 240k USD
for the annotation. Given the budget constraint, we have
collected 1 annotation per image, spending 24k USD instead.
The utility of annotation byproducts demonstrated in §5 is
thus a lower bound on the actual utility.

3.2.2 ImageNet byproducts

We show the annotation interface for ImageNet in Fig-
ure 3. In the ImageNet annotation procedure, annota-
tors click on the images containing the concept of in-
terest. In the process, they leave the time-series of
mouse positions (mouseTracking) and mouse click events
(selectedRecord). The original annotation has not
recorded them and only saved whether or not each image

is finally selected. During our replicated annotation, we
saved them in the database. We show the list of annotation
byproducts in Figure 4.

Among 1,281,167 ImageNet1K training images, anno-
tators re-selected 1,110,786 (86.7%) and interacted with
1,272,225 (99.3%) images, leaving annotation byproducts.

3.3. COCO

COCO [52] is a multi-label dataset annotated with a tag-
ging interface. We describe the creation of COCO-AB. We
present and analyse the annotation byproducts for COCO.

3.3.1 Replicating COCO annotations

We replicate annotations for the 82,783 training images of
COCO 2014 to collect the annotation byproducts. The orig-
inal annotation procedure for COCO [52] consists of four
stages. (1) Construct a list of classes to annotate. (2) Crawl
and select candidate images from Flickr with more emphasis
on images with multiple objects in context. (3) For each
image, let crowdsourced annotators put all valid category
labels. (4) Expert annotators do a final check-up.

We only replicate stage (3), which produces direct anno-
tation byproducts, by letting annotators work on the 82,783
training images. Figure 5 shows the COCO annotation inter-
face. We replicate the front-end of the original [52] (Figure
12a). For every image presented, the annotator must identify
as many classes present as possible and place the corre-
sponding class icons on the objects. We have replicated
the superclass-browsing interface in [52] that lets annotators
efficiently search through 80 COCO classes via 11 super-
classes. The icon can be placed only once on an image per
class. That is, even when there are multiple instances of
a class, annotators should choose one of them to place the
icon on. This is the same in the original COCO interface.
Crowdsourcing details are in Appendix §C.2.

3.3.2 COCO Byproducts

COCO interface (Figure 5) has two main components: (1)
the image on which the class icons are placed and (2) the
class browsing tool showing the class icons. The annotation
byproducts come from these two sources. See Figure 6 for
the full list of annotation byproducts.

The actionHistories field describes the actions per-
formed with the mouse cursor on the image. It lists the
sequence of actions with possible types add, move, remove
and the corresponding location, time, and the category label
of the icon. The mouseTracking field records the move-
ment of the mouse cursor over the image.

Annotators have reannotated 82,765 (99.98%) of the
82,783 training images. We found that only 61.9% of the
class occurrences are retrieved on average. This confirms the
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Please drag and drop icons from the bottom panel to matching objects in the image. If and icon matches multiple objects you can drag the
icon onto any of the objects. There area 11 sets of objects to drag onto the image. Use the buttons or arrow keys to cycle through them. There
are total of 20 images to label.
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Figure 5: COCO annotation interface. @ Annotator works on
a single image at a time. @ Find the classes present in the image
by navigating superclasses. ® Drag and drop class icons on the
objects in the image. = When finished, click on the submit button.

"image_id": 459214,
"originalImageHeight": 428,
"originalImageWidth": 640,

"categories": [”car”, “bicycle”], Original Annotation
"actionHistories": [
{"actionType": "add”,
"iconType": "car”,
"pointTo": {"x": 0.583, "y": 0.588},
"timeAt": 16686},
{"actionType": "add”,
"iconType": “bicycle”,
"pointTo": {"x": 0.592, "y": 0.639},

"timeAt": 16723}
1,
"mouseTracking": [
{"x": 0.679, "y": 0.862, "timeAt": 15725},
{"x": 0.717, "y": 0.825, "timeAt": 15731}
1 Annotation Byproducts

Figure 6: Annotation byproducts from COCO. See Appendix
Figure B for the full list of byproducts.

findings in Lin ef al. [52] that the recall rate is low for multi-
label annotation tasks and multiple annotators are necessary
for every image. While desirable, collecting 10 annotations
per image requires 100k USD, beyond our budget. We have
instead assigned one annotator per image, spending 10k
USD. Our setup presents a lower bound on the actual utility
of the original annotation byproducts.

Finally, we emphasise those localisation byproducts are
indeed general annotation byproducts for class labelling with
a tagging interface. For example, Objects365 classes are
obtained by labelling the 365 classes along with instance
bounding boxes (§3.2.1 in [79]). Class labels in LVIS are
collected along with corresponding positions, as in COCO
(§3.1in [31]). Location marking is often inseparable from
multi-label annotations. Without any indication of where,
subsequent quality control stages are highly inefficient. Sup-
pose an annotator labels “chopsticks” in a cluttered kitchen
photo. It will be challenging to quickly confirm if the label

is correct without knowing where.

4. Learning using annotation byproducts

We introduce the paradigm of learning using annotation
byproducts (LUAB). Compared to conventional supervised
learning, we train models with additional annotation byprod-
ucts that have previously not been utilised in model training.

4.1. LUAB with weak localisation signals

Annotation byproducts contain rich information surround-
ing the input image and the cognitive process of the annotator
executing the task. In this work, we focus on the byproducts
related to object locations, such as the click locations on
images. We expect them to provide the model with a weak
signal on the actual foreground pixels of the objects. Albeit
weak, we expect them to be helpful information for resolving
spurious correlations with background features, a common
phenomenon in vision datasets [103, 84].

Annotation byproducts encoding object locations. We hy-
pothesise that the record of human interaction with the image
annotation interfaces provides weak signals for the object lo-
cations. For ImageNet (§3.2), we consider the final click co-
ordinates for every selected image (selectedRecord). For
COCO (§3.3), we consider the coordinates of the final add
action of a class icon on the image (actionHistories).
We treat them as proxy, cost-free data for object locations
for each image. We note that such points on objects provide
rich information about the foreground locations [5, 6].
Precision of object localisation in annotation byproducts.
We verify the localisation accuracy of the annotation byprod-
ucts mentioned above. For ImageNet, we consider the subset
of training data with both (1) our annotation byproducts
(87%) and (2) ground-truth boxes provided by the original
dataset (42%). We use the boxes to measure click accuracy.
This gives 82.9% accuracy. Qualitative examples are in Fig-
ure 7. For COCO, we use the ground-truth pixel-wise masks
for measuring the precision of icon placements (#correct
placement/#all placements). This gives 92.3% precision.
Therefore, we confirm that the respective annotation byprod-
ucts are fairly precise proxies for the actual foreground pixels.
See Appendix §E for more analysis.

Other annotation byproducts from class labelling. We
conjecture that one may obtain an estimate for the extent
of objects by taking the convex hull of a few mouse tra-
jectory points before and after the click or icon placement.
In addition to localisation, annotation byproducts may pro-
vide proxy signals on sample-wise difficulty through the
completion time [93]. There also exists rich cross-sample
association information: where two samples are annotated
by the same annotator or on the same front-end page. Such
information may help reduce annotator biases [28]. They are
beyond the scope of our paper, but we discuss the possibili-
ties in Appendix §D.1.
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Annotation byproducts beyond class labelling. Polygonal
instance segmentation [52] results in byproducts like the
order of clicks and the history of corrections. In the language
domain, one may not only record human text answers but the
history of corrections in the answer, where we hypothesise
that more corrections signify more ambiguity.

4.2. Multi-task learning baseline for LUAB

The usual ingredients for the supervised learning of image
classifiers are image-label pairs (X,Y"). Our LUAB frame-
work introduces a third ingredient, weak object location Z,
for every image X. For single-class datasets like ImageNet,
the coordinates are given as Z € [0,1] x [0, 1], a relative
position in each image. For multi-class datasets like COCO,
this is given as Z.. € [0,1] x [0, 1] for every class ¢ present
in the image.

We propose a simple baseline based on a multi-task
objective for the classification of Y and the regression of
Z. We expect that learning the localisation would condition
the network to select features more from foreground object
regions [109, 58, 24].

We write the original network architecture as g(f (X)),
where f is a feature extractor, and g is a classifier that maps
intermediate features to R®. The regression objective is
applied to h(f(X)) where h maps the intermediate features
to normalised x-y coordinates in [0, 1] x [0, 1]. For a single-
class classification task (e.g. ImageNet), the objective is

min £ (g(f(X)),Y) + Al[A(f(X)) -

min Zlla, )

where L is the cross-entropy loss and || - || s is the smooth-¢*
loss [29]. A > 0 regulates the weight of the regression term.
The objective is identical for the multi-class classification
(e.g. COCO), except that L is a binary cross-entropy loss
and the regression target is the mean of smooth-£! losses
for every class present in the image. We use the task labels
Y from the original datasets for both ImageNet and COCO
experiments. The regression term is applied only for samples
for which Z is available.

Discussion. We show the minimal utility of the annotation
byproducts by considering a simple baseline. We note that
one may explore more advanced training schemes like regu-
larising the model’s attribution map with Z [73, 85, 11] or
forcing the model to pool features with attention Z [13]. We
explore the latter method in Appendix §F.

5. Experimental results

We show the empirical efficacy of learning using annota-
tion byproducts (LUAB) that weakly encode object locations.
We verify whether the annotation byproducts improve the
original image classification performance and robustness by
guiding models to focus more on foreground features.
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Figure 7: ImageNet final clicks. We visualise random training
images; points are the final click positions in selectedRecord.

5.1. Results on ImageNet

Implementation details. We use the ImageNet-AB train-
ing set with annotation byproducts to train image classi-
fiers. Considered backbones are ResNets [34] (ResNet18,
ResNet50, ResNet101, and ResNet152), and Vision Trans-
formers (ViT-Ti [92], ViT-S [92], and ViT-B [20]). To ac-
commodate the multi-task objective, we have attached a
separate head for the regression target at the penultimate
layer of each backbone. This head is not used during the
inference. We use the standard 100-epochs setup [34] for
ResNets; the DeiT training setup' [92] is used for ViTs. This
is to verify whether the annotation byproducts work together
with the popular supervised training regimes. We select the
last-epoch models. We further include results following the
primitive setup [20] in Appendix Table D.

Evaluation. Along with the ImageNetlK valida-
tion set (IN-1K), we use many variants: ImageNet-
V2/Real/A/C/O/R/Sketch/ObjNet [68, 7, 38, 37, 101, 36, 4]. In
particular, we focus on the benchmarks designed to measure
spurious correlations with the background cues: SI-Score
[19] and BG Challenge [103]. Both datasets de-correlate
the foreground and background features by constructing
novel images with foreground and background masks cut
and pasted from different images.

Random point baseline. We introduce a baseline trained
with the same objective (Equation 1) but with a uniform-
random point Z for each image. This baseline helps us rule
out possible regularisation effects due to the multi-task learn-
ing itself and focus purely on the information gain from the
weak object locations given by the annotation byproducts.
LUAB trains well. Figure 8 shows the training curves. The
regression loss for Z decreases, and validation localisation
accuracy increases for LUAB over the epochs, while the base-
line random-point supervision yields higher losses and lower
localisation accuracies. The baseline performance is fairly
high because of the object-centric ImageNet data. We con-

I'We train models with the official DeiT codebase [92] with default
settings for RandAug [15], Stochastic Depth [41], Random Erasing [39, 18],
Mixup [110], Cutmix [108], and optimization setups — AdamW [57] and
cosine learning rate scheduling [56], and gradual warmup [30].

20205



Model | Params|IN-1KT IN-V21 IN-Realt|IN-AT IN-CT IN-Ot|Sketcht IN-RT|Cocct ObjNett|SI-sizet SI-loct SI-rotT|BGC-gapl BGC-acct

R18 11.7M| 72.1 599 79.6 | 2.0 374 527 | 22.0 340|419 21.7 | 464 229 321 9.0 221
+LUAB|11.7M| 72.2 599 79.6 19 37.6 53.0| 21.6 343|447 219 | 478 231 32.7 8.6 20.4
R50 |25.6M| 774 652 835 | 5.5 438 56.7| 254 378|537 278 | 539 319 401 6.3 26.7
+LUAB|25.6M| 77.5 652 83.8 | 5.1 44.7 57.0| 257 382|551 285 | 55.6 335 409 5.6 274
R101 |44.5M| 782 66.0 84.1 76 470 60.7 | 265 382|558 294 | 534 331 389 5.6 30.2
+LUAB|44.5M| 786 664 843 | 7.8 479 605 | 27.0 39.0|58.5 30.0 | 544 333 398 5.5 28.2
R152 |60.2M| 79.0 672 845 | 95 495 620 27.6 39.6|58.8 30.5 | 539 333 38.6 6.6 272
+LUAB|60.2M| 79.2 672 848 | 95 499 621 | 27.6 39.7|59.0 313 | 555 342 40.6 5.8 31.6
ViT-Ti | 5.7M| 72.8 60.7 80.7 | 79 48.5 523 | 205 328|638 23.1 | 463 238 339 8.2 13.9
+LUAB| 5.7M| 729 60.8 809 | 84 484 529 | 21.1 338|642 23.7 | 474 254 34.7 7.8 14.4
VIiT-S |22.1M]| 80.3 69.1 86.0 |20.0 603 534 | 294 423|738 312 | 545 320 395 6.4 17.4
+LUAB|22.1M| 80.6 69.7 86.4 |22.8 61.2 551 | 30.0 43.0|741 323 | 551 33.7 39.6 5.9 18.7
ViT-B |86.6M| 81.6 703 86.6 |26.1 64.1 58.0| 330 457|760 31.7 | 566 351 413 6.4 18.1
+LUAB|86.6M| 82.5 719 874 |31.1 66.0 585 | 355 484|775 350 | 571 368 41.6 5.6 23.9

Table 1: Performance of LUAB on ImageNet1K. We report in-distribution generalisation metrics (IN-1K/V2/Real) and out-of-distribution
metrics (IN-A/C/O/R/Sketch/Cocc/ObjNet). We also report metrics for detecting spurious correlations with background (SI-Score [19] and
BG-Challenge [103]). LUAB training with annotation byproducts using a simple point regression target improves the overall performances.

LUAB barely introduces any extra annotation or computational cost.
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Figure 8: Training curves for ImageNet. “Rand” refers to the
regression with respect to a randomly generated location Z.

Model | Annot. [IN-1K|ObjNett|SI-size? Sk-loct SI-rott|BGC-gap| BGC-acct

R50 - 774 | 27.8 | 539 31.9 40.1 6.3 26.7
R50 |Rand| 773 | 28.1 | 545 315 39.7| 59 27.6
R50 |LUAB| 77.5| 28.5 | 55.6 33.5 40.9| 5.6 27.4
ViT-Ti| - 71.8 | 20.1 | 40.6 16.5 262 | 12.1 13.6
ViT-Ti|Rand | 72.2 | 22.0 | 42.5 18.1 27.5| 11.0 15.3
ViT-Ti|LUAB| 73.0 | 22.1 | 434 20.0 28.7| 10.9 16.1
VIiT-S| - | 74.11]20.5 |429 187 27.8| 10.5 16.7
ViT-S |[Rand | 74.8 | 22.7 | 44.5 20.6 28.8| 10.5 19.5
ViT-S |LuaB| 75.3 | 23.6 | 47.8 22.6 32.2| 8.7 19.7

Table 2: Comparison with random point regression on Ima-
geNet. We compare the accuracies of supervised learning with-
out additional supervision (*“-”), with random points as guidance
(“Rand”), and with our annotation byproducts (LUAB).

firm that the annotation byproducts contain localisation in-
formation that lets the model predict object locations.

LUAB improves classification performance. See Table 1
for the IN-1K validation accuracies before and after LUAB.
We observe that LUAB introduces gains across the board

Annot. | Loc?t Amnot. | IN-1K?T | Bbox APT | Mask APT
R50 46.8 R50 714 37.0 34.6
+LUAB | 48.4 +LUAB | 775 37.4 34.8

Table 3: WSOL on
ImageNet [14].

Table 4: Fine-tuning ImageNet models
on downstream tasks. Object detection
and instance segmentation.

(e.g. 81.6% to 82.5% for ViT-B). Similar gains are seen for
IN-V2/Real. The LUAB help the models generalise better.
LUAB improves out-of-distribution (OOD) generalisation.
Table 1 shows that LUAB improves the OOD generalisation
(columns for IN-A/C/O/R/Sketch). 30 of the 35 combinations
(5 metrics x 7 models) have seen improvements due to
LUAB. We hypothesise that the focus on foreground features
improves generalisation to novel distributions.

LUAB reduces spurious correlations with the background.
Table 1 also shows the results on metrics detecting spurious
dependence on background features. For SI-Scores [19],
we observe a clear advantage of LUAB, beating the baseline
performance in all considered cases. For BG Challenge
[103], LuaB surpasses the original models for the majority
of cases (12 out of 14). The improvement due to LUAB on
the benchmarks with de-correlated foreground and back-
ground features demonstrates the efficacy of the foreground
guidance from the annotation byproducts.

Improvement is not due to the multi-task objective itself.
Table 2 shows greater improvements due to LUAB compared
to the random point baseline, which merely introduces a
multi-task learning objective without additional location in-
formation. As such, we attribute the improvements to the
weak foreground information in the annotation byproducts.
LUAB lets models focus on foreground features. Class
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activation mapping (CAM) [111] identifies the region-wise
features that an image classifier uses to make the prediction.
By using a weakly-supervised object localisation (WSOL)
evaluation against the ground-truth object locations [14], one
may confirm whether the utilised image features correspond
to the object foreground. We show the results in Table 3. The
1.6%p improvement in WSOL accuracy against the original
shows that LUAB lets the model focus on the foreground.
LUAB improves downstream localisation tasks. We report
the box and mask APs on COCO val2017 after fine-tuning
the baseline ResNet50 and LuaB-trained models for Faster-
RCNN [70] and Mask-RCNN [33], respectively, in Table 4.
LUAB improves the downstream performances.

5.2. Results on COCO

Implementation details. We use the COCO-AB training
set with annotation byproducts. Considered backbones are
ResNet18/50/152 [34], and ViT-Ti/S/B [92, 20]. We attach
one regression head per class on the penultimate layer. We
follow the training recipe of the original papers. As in Ima-
geNet, we consider the random point baseline: the localisa-
tion supervision Z, is given as a uniform-random point.
LUAB trains well. Figure 9 shows the training curves for
COCO with LuaB. Compared to the random-point baseline,
LUAB decreases the regression loss and increases the valida-
tion localisation accuracy more quickly. We confirm: LUAB
confers the model information about where the objects are.
LUAB improves classification performance. Table 6 and 7
show that LUAB improves the mean average precision (mAP),
for example from 73.0% to 74.2% for ResNet50.

LUAB reduces spurious correlations with other classes.
We consider metrics for detecting a spurious dependence
on frequently co-occurring objects (e.g. monitor and key-
board). V28 and V™" [84] compute the difference between
the classification scores when class c of interest is removed
and when another class than c are removed. V*'¢ erases a
random class, while V™" erases the worst-case class for each
image. Table 6 and 7 show a consistent decrease in V"¢
and V™" scores after LUAB. This confirms the successful
reduction in spurious background correlations via LUAB.
LUAB lets models focus on foreground features.
As in ImageNet, we measure the CAM per-

formances of the COCO-trained ResNet50 Annot. | mPXAPT

with and without LUAB in Table 5. We com- RS0 20.8
pute CAM for every class and report the *LUAB| 215

class-averaged mPxAP [14]. We verify that Table 5: WSOL

the models attend more to the foreground onCOCO [14].
features after training with LUAB.

6. Conclusion

We propose to log and exploit annotation byproducts
that result from human interaction with input devices and
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Figure 9: Training curves for COCO. “Rand” refers to the regres-
sion with respect to randomly generated locations Z..

Model | R18 Rand LUAB| RS0 Rand LUAB|RI52 Rand LUAB

mAP?T (679 67.8 68.0 [73.0 73.6 742 |733 746 754
ymin 151.8 52.1 51.6 |47.6 47.3 47.0 |474 47.83 47.1
vave| |28.7 287 28.4 |25.0 249 24.5 |24.8 255 24.7

Table 6: COCO Performance with ResNet. We compare super-
vised learning, multi-task learning with random points, and LUAB.

Model‘ViT—Ti Rand LUAB|ViT-S Rand LUAB |ViT-B Rand LUAB

mAPT| 72.6 722 727 |762 769 713|764 745 715
vmin| | 49.1 489 484 |47.1 469 45.8 | 46.6 47.1 45.6
vael | 27.0 269 26.8 |25.7 25.6 24.6 | 25.0 25.1 24.5

Table 7: COCO Performance with ViT. We compare supervised
learning, multi-task learning with random points, and LUAB.

various front-end components. We have created ImageNet-
AB and COCO-AB by replicating the respective annotation
procedures and logging cost-free annotation byproducts. We
have introduced a new learning paradigm: learning using
annotation byproducts (LUAB). As an example, we have
used the final click and icon placement locations as proxies
for the object locations. They let models generalise better
and depend less on spurious background features.
Limitations. We have performed only one annotation pass
through ImageNet and COCO, rather than the 10x repeti-
tions done in the original procedure. We may have seen even
stronger results with LUAB if annotation byproducts were
collected during the original procedure. There are also excit-
ing possibilities for exploiting other types of byproducts; one
may also estimate image difficulty and annotator biases from
the raw annotation byproducts. Finally, we have restricted
our scope to image classifiers. We believe that the LUAB
paradigm will benefit other tasks and domains, such as text,
audio, video, and tabular data.

Take-home messages for dataset building. When building
a dataset, one should consider logging and releasing the an-
notation byproducts, along with the main annotations. They
may improve models’ generalisation and robustness for free.
Ethical concerns. Our data collection for ImageNet-AB and
COCO-AB has obtained an IRB approval from an author’s
institute. We note that there exist potential risks that an-
notation byproducts may contain annotators’ privacy. Data
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collectors may even attempt to leverage more private infor-
mation as byproducts. We urge data collectors not to collect
or exploit private information from annotators. Whenever
appropriate, one must ask for the annotators’ consent.
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