
Vision HGNN: An Image is More than a Graph of Nodes

Yan Han1, Peihao Wang1, Souvik Kundu2, Ying Ding1, Zhangyang Wang1

1University of Texas at Austin, 2Intel Labs
{yh9442,peihaowang,atlaswang}@utexas.edu

ying.ding@ischool.utexas.edu souvikk.kundu@intel.com

Abstract

The realm of graph-based modeling has proven its
adaptability across diverse real-world data types. How-
ever, its applicability to general computer vision tasks had
been limited until the introduction of the Vision Graph Neu-
ral Network (ViG). ViG divides input images into patches,
conceptualized as nodes, constructing a graph through con-
nections to nearest neighbors. Nonetheless, this method of
graph construction confines itself to simple pairwise rela-
tionships, leading to surplus edges and unwarranted mem-
ory and computation expenses. In this paper, we enhance
ViG by transcending conventional “pairwise” linkages and
harnessing the power of the hypergraph to encapsulate im-
age information. Our objective is to encompass more in-
tricate inter-patch associations. In both training and in-
ference phases, we adeptly establish and update the hy-
pergraph structure using the Fuzzy C-Means method, en-
suring minimal computational burden. This augmentation
yields the Vision HyperGraph Neural Network (ViHGNN).
The model’s efficacy is empirically substantiated through
its state-of-the-art performance on both image classifica-
tion and object detection tasks, courtesy of the hypergraph
structure learning module that uncovers higher-order rela-
tionships. Our code is available at: https://github.
com/VITA-Group/ViHGNN.

1. Introduction
The rapid strides made in deep learning have ushered

in remarkable successes across diverse computer vision
models. These encompass Convolutional Neural Networks
(CNNs)[35, 33, 22], Vision Transformers (ViTs)[11, 2], and
MLP-based vision models [54, 55]. In these networks, input
images find representation either as a regular grid of pixels
in the Euclidean space or as sequences of patches.

Nonetheless, the potential for more versatile image pro-
cessing through a graph structure remains untapped. A
recent development, ViG [18], has ingeniously harnessed
Graph Neural Networks (GNNs) for substantial advance-

(a) CNN (b) ViT (c) ViG (d) ViHGNN

Figure 1. The illustration of image topologies modeled in differ-
ence visual backbones. (a) CNNs treat images as regular grids, (b)
ViT parses images as full-connected graphs, (c) ViGs process im-
ages as sparse graphs with pairwise edges, while (d) our ViHGNN
models images as a hypergraph, a “more universal” structure.

ments in large-scale visual tasks. To mitigate excessive
node proliferation, ViG borrows the partitioning concept
from ViT, segmenting the image into smaller patches and
designating each patch as a node. Consequently, the ViG
framework forges connections between nodes and their
closest neighbors, constructing an adaptable graph. Fur-
thermore, the graph itself emerges as a generalized data
structure, encompassing grids and sequences as distinct in-
stances within its broader graph context.

While the success of ViG has effectively showcased the
advantages of treating an image as a graph in terms of en-
hancing flexibility and effectiveness in visual perception,
there exist limitations to using a graph as the optimal data
structure for image representation. These limitations are
rooted in two primary reasons:

• Complexity of Relationships: A fundamental con-
straint of a simple graph lies in its ability to exclu-
sively connect two nodes, thereby solely accommo-
dating pairwise relationships. This inadequacy is ev-
ident when it comes to modeling high-order relations
inherent in images. Consider the task of object recog-
nition in computer vision, where an image is typically
divided into patches, each representing a segment of
the object. This division introduces intricate inter- and
intra-object dependencies that a straightforward graph
struggles to capture. This complexity arises from the
interplay of patches belonging to the same or distinct
objects. Consequently, a conventional graph structure

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

19878

finds it challenging to effectively model such multi-
faceted relationships between patches.

• Redundancy in Edge Generation: Another drawback
tied to simple graph representations pertains to the
generation of redundant edges during image portrayal.
ViG constructs its graph by identifying the nearest
neighbors for each patch node and subsequently form-
ing edges between these node pairs. During this pro-
cess, all image patches are transformed into feature
vectors, and feature distances are computed to de-
termine nearest neighbors. This approach becomes
problematic when considering that an object within an
image is often an amalgamation of multiple patches,
yielding similar feature vectors for patches belong-
ing to the same object. Consequently, the graph con-
struction method can inadvertently give rise to extra-
neous edges. In a worst-case scenario, an image with
n patches could potentially generate n2 edges, leading
to quadratic complexity.

The aforementioned considerations underscore the lim-
itations inherent in relying on a simple graph as the fun-
damental data structure for image representation. Conse-
quently, it is imperative to explore alternative methodolo-
gies that effectively address these concerns, thus enhanc-
ing the refinement of visual perception models. In light of
this, we propose a robust evolution of ViG, where the hy-
pergraph assumes the role of image representation. This
innovative framework, named Vision HyperGraph Neural
Network (ViHGNN), introduces a dynamic approach to im-
age representation. Specifically, a hypergraph serves as a
generalized extension of a graph, characterized by a collec-
tion of nodes and hyperedges. In contrast to the pairwise
connections in a simple graph, hyperedges within a hyper-
graph can link any number of nodes. Essentially, a graph
can be viewed as a specialized form of a hypergraph, only
accounting for pairwise connections between data points.
Distinctively, hypergraphs exhibit superior aptitude in cap-
turing the intricate correlations existing within images, tran-
scending the limitations of pairwise relations. For tangible
illustrations, please refer to Figure 1.

However, a fundamental challenge persists: determin-
ing the optimal hypergraph structure for image represen-
tation. This encapsulates a compelling “chicken-and-egg”
quandary: the aspiration to utilize the hypergraph for im-
age representation juxtaposed with the absence of a read-
ily available hypergraph structure. Inspired by ViG’s graph
construction approach, we start by utilizing the patch fea-
tures to construct the initial hypergraph. Subsequently,
patch embeddings are generated by the initial hypergraph
structure, and then these embeddings are harnessed for the
construction of a renewed hypergraph structure. Crucially,
both the patch embeddings and the hypergraph structure un-

dergo dynamic updates, culminating in a self-reinforcing
“feedback loop” of learning processes. In our ViHGNN
framework, we choose the Fuzzy C-Means (see Sec. 3.3.)
to construct and update the hypergraph structure, incurring
negligible computational overhead. Our contributions are
summarized as follows:
• We advance beyond the ViG framework by introduc-

ing a novel paradigm termed ViHGNN, which inter-
prets an image as a dynamic hypergraph. Unlike ViG,
ViHGNN not only captures higher-order relationships
within images but also mitigates redundant memory
and computational expenses linked to graph structures.
• To establish a robust hypergraph representation for im-

ages, we seamlessly integrate an adaptive hypergraph
structure learning module within the framework, en-
hancing representation with little incurring overhead.
This hypergraphical portrayal of images yields dis-
cernible advantages for downstream visual tasks.
• We execute comprehensive experiments to underscore

the efficacy of the ViHGNN model across visual tasks,
including image classification and object detection.
Specifically, our ViHGNN model achieves a top-1 ac-
curacy of 83.9% in the ImageNet classification task
and an impressive 43.1% Average Precision (AP) in
the COCO object detection task.

2. Related Work
Network Architectures in Computer Vision. CNNs [35,
33, 22] used to be the de-facto backbone in computer vi-
sion, widely adopted by image classification [35, 33], ob-
ject detection [47], semantic segmentation [43] and more.
With the rapid development over the past decade, the rep-
resentative CNNs include ResNet [22], MobileNet [25] and
NAS-searched networks [73, 84]. Recently, inspired by the
success of Transformer architectures in the NLP field, the
Vision Transformer was introduced for vision tasks [17, 11,
3, 4]. The pioneering work of ViT [11] directly applies a
Transformer architecture on non-overlapping medium-sized
image patches for image classification. Since then, many
variants of ViT have been proposed to improve the perfor-
mance of vision tasks. The major improvements include
pyramid architecture [62, 41], local attention [19, 41] and
position encoding [67]. Besides, MLP architectures are
also explored in computer vision [54, 55, 5, 37, 15, 53], so
are the larger-kernel CNNs [42, 9, 40, 28].

Graph/Hypergraph for Computer Vision. While Graph
Neural Networks (GNNs) traditionally find application in
social networks [16], citation networks [49], and bio-
chemical graphs [59], their adoption has extended to the
realm of computer vision. Notably, GNNs have been ex-
plored for tasks like point cloud classification and segmen-
tation [34, 63], as well as scene graph generation which

19879

…

e1

e2

e3

Hypergraph
Patch

Embeddings
Input Image

H
G

N
N

Split &
Transform

FFN

Updated Patch
Embeddings

Fuzzy C-
Means

Update Hypergraph Structure

ViHGNN Block × 𝐿
O

utput H
ead

…

Figure 2. Overview of our ViHGNN model. HGNN and FNN represent hypergraph neural network and feed-forward network, respectively.

involves combining object detectors and GNNs [69, 72].
Moreover, GNNs prove useful in human action recognition
through joint-connected graphs [31, 71].

Hypergraph neural networks (HGNNs) are a related
paradigm, as hypergraphs encompass graphs [64, 20]. In
computer vision, HGNNs find extensive utility. For in-
stance, in image retrieval, vertices represent images and hy-
peredges are generated based on feature correlations [30].
Similarly, 3D object classification employs vertex repre-
sentations for objects and uses view relationships to cre-
ate hyperedges [29, 14]. Person re-identification leverages
feature correlations for hypergraph construction [80]. Yet,
while GNNs and HGNNs are prominent in various domains,
ViG is among the few methods that directly process image
data [18]. Nonetheless, the integration of hypergraphs for
image representation remains an open challenge.

Graph/Hypergraph Structure Learning. GNNs and
HGNNs are pivotal for analyzing graph and hypergraph
data. Their effectiveness is yet intertwined with the quality
of the given graph and hypergraph structures, respectively.
Recent efforts have thus focused on graph/hypergraph struc-
ture learning [83]. For GNNs, methods like [6, 13] jointly
and iteratively learn graph structure and graph node embed-
ding, under certain assumptions on the graph adjacency ma-
trix such as low-rank, sparsity, or smoothness. Other meth-
ods [45, 81] learn a metric or distribution to determine the
existence of an edge in order to modify the graph structure.

In contrast, hypergraph structure learning is less ex-
plored. DHSL [79, 78] uses dual optimization to simul-
taneously learn the label projection matrix and the hyper-
graph structure. DHGNN [32] employs K-Means and k-
NN to adaptively construct the hypergraph. HERALD [77]
optimizes hypergraph Laplacian matrices. These meth-
ods optimize hypergraph structures but face drawbacks like
non-convexity and high computational cost. Traditional
non-convex optimization in dynamic hypergraph structures
causes convergence issues, while high time complexity,
particularly in DHSL [79, 78], raises concerns over time-

efficient hypergraph updates during iterative optimization.

3. Method: An Image is Worth a Hypergraph
In this section, we first introduce the notations and defi-

nitions used throughout the paper. Then we present the Vi-
sion HyperGraph Neural Network (ViHGNN) framework.
The overall pipeline is depicted in Figure 2.

3.1. Notations and Definitions

Notations. Let I ∈ RH×W×3 denote an image of a size H ×
W, and we uniformly divide each image into N patches.
After transforming each patch into a feature vector xi ∈ R

D,
we obtain a data matrix X = [x1, x2, · · · , xN] where each
column corresponds to the feature vector of a patch, where
D is the feature dimension and i = 1, 2, · · · ,N.

Hypergraph Definition. A hypergraph is defined as G =
(V,E), whereV is a set of N unique vertices and E is a set
of E hyperedges. Unlike ordinary graphs, each hyperedge
e ∈ E can connect more than two vertices. The hypergraph
can be represented by an incidence matrix H ∈ {0, 1}N×E ,
where Hie = 1 if the hyperedge e ∈ E contains a vertex
vi ∈ V, otherwise Hie = 0. For each vertex and hyperedge,
their degrees Dii and Bee are defined as Dii =

∑E
e=1 Hie and

Bee =
∑N

i=1 = Hie, respectively. Let diagonal matrices D
and B be degree matrices. Dii and Bee are the i-th and e-th
diagonal elements of D and B, respectively. For an image,
we view image patches as a set of unordered nodes and de-
fine the node set V = {v1, v2, · · · , vN}. We convert image
I to a hypergraph G(I) to denote the image’s hypergraph
structure. The hypergraph construction process will be in-
troduced in detail in Sec. 3.3.

Hypergraph Neural Network (HNN). A general hyper-
graph convolutional layer [12, 70, 27, 7, 60] is defined as:

X(l+1) = D−1/2Hσ
(
WB−1HTσ(D−1/2X(l)Θ1)Θ2

)
, (1)

19880

Nodes NodesHyperedge Nodes Nodes

(a) Hypergraph neural networks (b) Graph neural networks

Figure 3. The comparison of message passing mechanisms in (a)
HGNNs and (b) GNNs.

where W is the hyperedge weight matrix, Θ1 and Θ2 are
the learnable parameter of the HGNN layer, σ is an acti-
vation function, Xl and Xl+1 denote the input and output
node embeddings, respectively. The hypergraph convolu-
tion can be viewed as a two-stage message passing, flowing
information in a “node-hyperedge-node” manner. The mul-
tiplication of HT achieves the information aggregation from
the nodes to the hyperedges. Multiplying H can be viewed
as information aggregation from hyperedges to nodes. In
between, D and B conduct normalization.

The difference in message passing between vanilla
GNNs and HGNNs is illustrated in Figure 3. At first glance,
Equation 1 just runs a simple GNN on the clique expansion
of the hypergraph. However, messages in HGNN will be re-
ceived and transformed on both node and hyperedge sides,
which cannot be implemented by clique expansion [7].

3.2. Overview: ViHGNN Framework

The overall framework of ViHGNN is shown in Figure 2.
Note that, the components that are re-used from the origi-
nal ViG are omitted. For details about other components,
please refer to ViG [18]. Here we focus on describing the
two essential improvements of ViHGNN compared with the
original ViG: 1) hypergraph structure representation of an
image, 2) hypergraph structure learning.

During one iteration, the input image I is first divided
into N patches, and these patches are transformed into a
set of feature vectors, shown as patch embeddings in the
Figure 2. Then these patches are clustered via Fuzzy C-
Means [1] to construct the hypergraph G(I). Then a hy-
pergraph convolutional layer can exchange information be-
tween nodes via a two-stage node-hyperedge-node mes-
sage passing scheme. We apply a feed-forward network
(FFN) after the hypergraph convolutional layer to project
the node features into the same domain and increase the
feature diversity. The FFN layers further encourage the fea-
ture transformation capacity and relieve the over-smoothing
phenomenon [10, 61, 50]. The output updated patch embed-
dings are fed into the Fuzzy C-Means in turn, to update the
hypergraph G(I). Sec. 3.4 details the rationale behind this
proposed back-and-forth process. The ViHGNN iterates the

above task by progressively updating the hypergraph and
evaluating hypergraph structured feature representation. We
append a pooling and MLP block at the end to regress the
output logits following [18]. We provide various architec-
ture configurations of ViHGNN, listed in Table 2.

3.3. Hypergraph Structure of Image

We next explain how to construct the hypergraph G(I)
for an image I. From the aforementioned, an image can be
regarded as a set of unordered nodes V = {v1, v2, · · · , vN},
and associated features X = [x1, x2, · · · , xN]. We construct
a hypergraph to infer patch topology, drawing inspiration
from ViG’s graph construction approach. Similar to ViG’s
distance-based strategy, we utilize node feature distances
for hypergraph construction. However, we deviate by em-
ploying the Fuzzy C-Means method to generate node clus-
ters. These overlapping clusters represent image patch sets,
akin to hyperedges. This configuration transforms the hy-
pergraph into an ensemble of distinct node clusters. Impor-
tantly, in contrast to K-Means, Fuzzy C-Means allows clus-
ters to have non-empty intersections. Consequently, nodes
may feature in multiple hyperedges, facilitating intricate
and varied inter-object relationships among image patches.

We restate the advantages of graph representation of the
image including: 1) hypergraph is a generalized data struc-
ture where a grid, sequence and even graph can be viewed
as a special case of hypergraph; 2) hypergraph is more flex-
ible than graph to model the complex high-order relations
in the image; 3) the advanced research on HGNN may be
leveraged in efficient graph representation of visual tasks.

3.4. Adaptive Hypergraph Structure Learning

The hypergraph structure, while powerful for modeling
intricate correlations among image patches, relies on the
assumption that nodes connected by the same hyperedge
possess similar representations. However, constructing this
structure is challenging as it hinges on meaningful and ro-
bust patch embeddings, which aren’t available before the
learning process. Furthermore, noisy information in the hy-
pergraph could integrate into learned node representations,
potentially degrading the ViHGNN model’s performance.
This could lead to shared hyperedges among different ob-
jects, reducing image discrimination and impairing classifi-
cation and object detection tasks.

To address this, optimizing the hypergraph structure
becomes crucial. Eliminating or reducing task-irrelevant
connections while enhancing influential ones is essential.
Achieving an accurate and complete representation of high-
order correlations in patches is the goal. However, this
poses a “chicken-and-egg” problem: generating a robust
hypergraph depends on patch embeddings, while mean-
ingful patch embeddings depend on the hypergraph struc-
ture. To overcome this, we establish a “feedback loop”

19881

Table 1. Detailed settings of Isotropic ViHGNN series. D: feature dimension, h: hidden dimension ratio in FFN, E: number of hyperedges
in HGNN, H ×W: input image size. ‘Ti’ denotes tiny, ‘S’ denotes small, ‘M’ denotes medium, and ‘B’ denotes base.

Model Depth Dimension D Hyperedges (E) Parameters (M) FLOPs (B)

Isotropic ViHGNN-Ti 12 192 50 8.2 1.8
Isotropic ViHGNN-S 16 320 50 23.2 5.6
Isotropic ViHGNN-B 16 640 50 88.1 19.4

Table 2. Detailed settings of Pyramid ViHGNN series. D: feature dimension, h: hidden dimension ratio in FFN, E: number of hyperedges
in HGNN, H ×W: input image size. ‘Ti’ denotes tiny, ‘S’ denotes small, ‘M’ denotes medium, and ‘B’ denotes base.

Stage Output size Pyramid ViHGNN-Ti Pyramid ViHGNN-S Pyramid ViHGNN-M Pyramid ViHGNN-B
Stem H

4 ×
W
4 Conv×3 Conv×3 Conv×3 Conv×3

Stage 1 H
4 ×

W
4


D = 48
h = 4

E = 50

×2


D = 80
h = 4

E = 50

×2


D = 96
h = 4

E = 50

×2


D = 128

h = 4
E = 50

×2

Downsample H
8 ×

W
8 Conv Conv Conv Conv

Stage 2 H
8 ×

W
8


D = 96
h = 4

E = 50

×2


D = 160

h = 4
E = 50

×2


D = 192

h = 4
E = 50

×2


D = 256

h = 4
E = 50

×2

Downsample H
16 ×

W
16 Conv Conv Conv Conv

Stage 3 H
16 ×

W
16


D = 240

h = 4
E = 50

×6


D = 400

h = 4
E = 50

×6


D = 384

h = 4
E = 50

×16


D = 512

h = 4
E = 50

×18

Downsample H
32 ×

W
32 Conv Conv Conv Conv

Stage 4 H
32 ×

W
32


D = 384

h = 4
E = 50

×2


D = 640

h = 4
E = 50

×2


D = 768

h = 4
E = 50

×2


D = 1024

h = 4
E = 50

×2

Head 1 × 1 Pooling & MLP Pooling & MLP Pooling & MLP Pooling & MLP
Parameters (M) 12.3 28.5 52.4 94.4

FLOPs (B) 2.3 6.3 10.7 18.1

where patch embeddings and the hypergraph reinforce each
other. Dynamic updates alternate between the two, enhanc-
ing structure-aware image representations. Introducing a
fixed number of hyperedges as a regularizer further prevents
trivial structures in the hypergraph, enhancing its effective-
ness. This iterative process ensures mutual improvement of
patch embeddings and hypergraph structure, despite their
interdependence.

3.5. End-to-End Optimization

In ViHGNN, the adaptive hypergraph structure updates
are dependent on learned patch embeddings. During train-
ing and inference in each ViHGNN block, these embed-
dings shape the hypergraph structure. At inference, fixed
model weights lead to a stable hypergraph structure. This
process operates independently of gradient calculation and
does not impact backpropagation.

We perform an end-to-end optimization process for Vi-
HGNN, with task-specific objectives like cross-entropy loss
for image classification and localization loss for object de-
tection. The computational bottleneck, the Fuzzy C-Means,
carries a time complexity of O(|V|DE2T). This complex-

ity is largely determined by the number of hyperedges. We
pragmatically set this number to a small value of 50 to man-
age computation (Table 2).

4. Experiments

4.1. Experimental Settings

Datasets. In the image classification task, the widely used
benchmark ImageNet ILSVRC 2012 [48] is used in the fol-
lowing experiments. ImageNet has 120M training images
and 50K validation images, which belong to 1000 cate-
gories. For the license of ImageNet dataset, please refer
to http://www.image-net.org/download. For object
detection, we use COCO 2017 [39] dataset with 80 object
categories. COCO 2017 contains 118K training images and
5K validation images. For the licenses of these datasets,
please refer to https://cocodataset.org/#home.

Baselines. To establish our baselines, we have opted to
follow the choices made in the original ViG [18]. In the
field of computer vision, there are generally two types of
network architecture: isotropic and pyramid. The isotropic

19882

Table 3. Training hyper-parameters for ImageNet.

ViHGNN Ti S M B
Epochs 300
Optimizer AdamW [44]
Batch size 1024
Start learning rate (LR) 2e-3
Learning rate schedule Cosine
Warmup epochs 20
Weight decay 0.05
Label smoothing [52] 0.1
Stochastic path [26] 0.1 0.1 0.1 0.3
Repeated augment [24] ✓
RandAugment [8] ✓
Mixup prob. [76] 0.8
Cutmix prob. [75] 1.0
Random erasing prob. [82] 0.25
Exponential moving average 0.99996

architecture maintains the feature size throughout the net-
work’s computational core, which allows for easy scal-
ing and hardware acceleration. This architecture is widely
used in transformer models for natural language processing
(NLP) [58], as well as recent neural networks in vision, such
as ConvMixer[54], ViT [11], DeiT [56], and ResMLP [55].
Therefore, we compare our isotropic ViHGNN against
the aforementioned isotropic models. On the other hand,
pyramid neural networks gradually reduce the spatial size
of feature maps as the network deepens, leveraging the
scale-invariant property of images to produce multi-scale
features. There are numerous advanced networks with
pyramid architecture, including ResNet [22, 65], BoT-
Net [51], PVT [62], CVT [66], Swin-Transformer [41], Cy-
cleMLP [5], and Poolformer [74]. In this work, we compare
our pyramid ViHGNN against these models. Table 1 and
Table 2 provide detailed settings for the isotropic and pyra-
mid ViHGNN architectures used in our study, respectively.

Hyper-parameters Settings. For all the ViHGNN mod-
els, we utilize dilated aggregation [36] in HyperGrapher
module and set the dilated rate as ⌈l/4⌉ for the l-th layer.
GELU [23] is used as the nonlinear activation function.
For ImageNet classification, we use the commonly-used
training strategy proposed in DeiT [56] for fair compari-
son. The data augmentation includes RandAugment [8],
Mixup [76], Cutmix [75], random erasing [82] and repeated
augment [24]. The details are shown in Table 3. For
COCO detection task, we take RetinaNet [38] and Mask
R-CNN [21] as the detection frameworks and use our Pyra-
mid ViHGNN as our backbone. All the models are trained
on COCO 2017 training set on a “1×” schedule and eval-
uated on validation set. We implement the networks using
PyTroch [46] and train all our models on 8 NVIDIA V100
GPUs of a single AWS EC2 instance.

Table 4. Results of ViHGNN and other isotropic networks on Im-
ageNet. ♠ CNN, r Transformer, ♣MLP, ♦ GNN, ■ HGNN.

Model Resolution Params (M) FLOPs (B) Top-1 Top-5

♠ ResMLP-S12 conv3x3 [55] 224×224 16.7 3.2 77.0 -
♠ ConvMixer-768/32 [57] 224×224 21.1 20.9 80.2 -
♠ ConvMixer-1536/20 [57] 224×224 51.6 51.4 81.4 -

r ViT-B/16 [11] 384×384 86.4 55.5 77.9 -
r DeiT-Ti [56] 224×224 5.7 1.3 72.2 91.1
r DeiT-S [56] 224×224 22.1 4.6 79.8 95.0
r DeiT-B [56] 224×224 86.4 17.6 81.8 95.7

♣ ResMLP-S24 [55] 224×224 30 6.0 79.4 94.5
♣ ResMLP-B24 [55] 224×224 116 23.0 81.0 95.0
♣Mixer-B/16 [54] 224×224 59 11.7 76.4 -

♦ Isotropic ViG-Ti 224×224 7.1 1.3 73.9 92.0
♦ Isotropic ViG-S 224×224 22.7 4.5 80.4 95.2
♦ Isotropic ViG-B 224×224 86.8 17.7 82.3 95.9

■ ViHGNN-Ti (ours) 224×224 8.2 1.8 74.3 92.5
■ ViHGNN-S (ours) 224×224 23.2 5.6 81.5 95.7
■ ViHGNN-B (ours) 224×224 88.1 19.4 82.9 96.2

4.2. Image Classification

As shown in Table 4, ViHGNN surpasses other isotropic
networks. Notably, our isotropic ViHGNN-S achieves an
81.5% top-1 accuracy, outperforming DeiT-Ti by 1.1%
while maintaining comparable computational costs. More-
over, isotropic ViHGNN consistently outperforms ViG with
similar model size and computational costs, highlighting
the benefits of hypergraph image representation. Moving
to pyramid networks (Table 5), our pyramid ViHGNN series
matches or outperforms state-of-the-art models, particularly
the pyramid ViG family. This underscores ViHGNN’s supe-
riority, attributed to hypergraphs capturing latent high-order
patch relations. Overall, our results indicate hypergraph
neural networks’ effectiveness for visual tasks, positioning
them as promising components in computer vision systems.

Table 5. Results of Pyramid ViHGNN and other pyramid networks
on ImageNet. ♠ CNN, r Transformer, ♣MLP, ♦ GNN, ■ HGNN.

Model Resolution Params (M) FLOPs (B) Top-1 Top-5

♠ ResNet-18 [22, 65] 224×224 12 1.8 70.6 89.7
♠ ResNet-50 [22, 65] 224×224 25.6 4.1 79.8 95.0
♠ ResNet-152 [22, 65] 224×224 60.2 11.5 81.8 95.9
♠ BoTNet-T3 [51] 224×224 33.5 7.3 81.7 -
♠ BoTNet-T3 [51] 224×224 54.7 10.9 82.8 -
♠ BoTNet-T3 [51] 256×256 75.1 19.3 83.5 -

r PVT-Tiny [62] 224×224 13.2 1.9 75.1 -
r PVT-Small [62] 224×224 24.5 3.8 79.8 -
r PVT-Medium [62] 224×224 44.2 6.7 81.2 -
r PVT-Large [62] 224×224 61.4 9.8 81.7 -
r CvT-13 [66] 224×224 20 4.5 81.6 -
r CvT-21 [66] 224×224 32 7.1 82.5 -
r CvT-21 [66] 384×384 32 24.9 83.3 -
r Swin-T [41] 224×224 29 4.5 81.3 95.5
r Swin-S [41] 224×224 50 8.7 83.0 96.2
r Swin-B [41] 224×224 88 15.4 83.5 96.5

♣ CycleMLP-B2 [5] 224×224 27 3.9 81.6 -
♣ CycleMLP-B3 [5] 224×224 38 6.9 82.4 -
♣ CycleMLP-B4 [5] 224×224 52 10.1 83.0 -
♣ Poolformer-S12 [74] 224×224 12 2.0 77.2 93.5
♣ Poolformer-S36 [74] 224×224 31 5.2 81.4 95.5
♣ Poolformer-M48 [74] 224×224 73 11.9 82.5 96.0

♦ Pyramid ViG-Ti [18] 224×224 10.7 1.7 78.2 94.2
♦ Pyramid ViG-S [18] 224×224 27.3 4.6 82.1 96.0
♦ Pyramid ViG-M [18] 224×224 51.7 8.9 83.1 96.4
♦ Pyramid ViG-B [18] 224×224 92.6 16.8 83.7 96.5

■ Pyramid ViHGNN-Ti (ours) 224×224 12.3 2.3 78.9 94.6
■ Pyramid ViHGNN-S (ours) 224×224 28.5 6.3 82.5 96.3
■ Pyramid ViHGNN-M (ours) 224×224 52.4 10.7 83.4 96.5
■ Pyramid ViHGNN-B (ours) 224×224 94.4 18.1 83.9 96.7

19883

4.3. Ablation Study

We conduct ablation study of the proposed method
on ImageNet classification task and use the isotropic
ViHGNN-Ti as the base architecture. And all the results
are given in Table 6, Table 7, Table 8, Table 9 and Table 10.

Table 6. Ablation study on ImageNet for classification task.
Type of G(I) Num. of E HSL module Params (M) FLOPs (B) Top-1 Top-5

k-NN 25 ✗ 7.9 1.5 72.4 89.7
k-NN 25 ✓ 8.2 1.9 72.8 90.2
k-NN 50 ✗ 8.9 2.4 72.5 89.6
k-NN 50 ✓ 9.4 2.9 73.0 90.1

K-Means 25 ✗ 7.3 1.4 72.6 90.1
K-Means 25 ✓ 8.0 2.1 73.1 90.3
K-Means 50 ✗ 8.4 2.5 73.5 91.1
K-Means 50 ✓ 9.2 2.8 73.7 92.3

Fuzzy C-Means 25 ✗ 8.2 2.2 72.9 90.4
Fuzzy C-Means 25 ✓ 8.8 2.9 73.5 90.9
Fuzzy C-Means 50 ✗ 9.1 3.2 74.1 92.2
Fuzzy C-Means 50 ✓ 9.7 3.8 74.9 92.9

Type of hypergraph construction methods. All the
three methods, k-NN, K-Means and Fuzzy C-Means, can be
adopted to construct the hypergraph. To investigate which
method works the best, we evaluate the effects of these con-
struction methods by ablation study. From the Table 6, we
can find that the Fuzzy C-Means achieves the best perfor-
mance with little overhead than the K-Means method. The
results further demonstrate that the GI generated by Fuzzy
C-Means is the most robust.

Actually, there are alternative clustering methods avail-
able for updating the hypergraph structure. In addition,
we explored DBSCAN, Mean Shift Clustering, and Spec-
tral Clustering methods for comparison. As shown in Ta-
ble 7, each method produced different results, with Fuzzy
C-Means demonstrating the best performance. As demon-
strated in the table, Fuzzy C-Means has the highest Top-1
and Top-5 scores compared to the other clustering meth-
ods. One possible reason for its superiority is that Fuzzy C-
Means is more flexible and less sensitive to noise compared
to other alternatives. This flexibility enables it to find bet-
ter hyperedges, which, in turn, improves the alignment of
the hypergraph structure with the patch-distribution. Con-
sequently, Fuzzy C-Means can more effectively capture the
complex relationships within patch embeddings and ulti-
mately provide a more accurate representation of the im-
ages, leading to improved performance in our model.

Table 7. Comparison of various clustering methods with Istropic
ViHGNN-Ti as the backbone model.

Clustering Methods DBSCAN Mean Shift Clustering Spectral Clustering Fuzzy C-Means

Top-1 74.2 74.5 74.7 74.9

Top-5 92.6 92.7 92.8 92.9

The number of update loops. In each ViHGNN block,
the patch embeddings from the previous block are used to
update the hypergraph structure, which is then employed to
generate new patch embeddings for the next block. This re-
sults in L forward passes during the training process. Al-

though it is possible to use multiple loops within a sin-
gle block, the embeddings must be updated to ensure that
the hypergraph update is meaningful. We conducted ad-
ditional experiments with 2 and 3 updated loops for the
Isotropic ViHGNN-Ti model, observing minimal accuracy
differences (Table 8). Given the model depth and number of
patches, we assume that one update loop may be sufficient
for this particular scale, as using more loops would increase
model parameters and FLOPs without significant benefits.

Table 8. Comparison of various update loops with Istropic
ViHGNN-Ti as the backbone model.

Update Loops 1 2 3

Top-1 74.9 75.0 74.4

Top-5 92.9 93.0 92.7

The number of hyperedges (clusters of Fuzzy C-Means).
In Fuzzy C-Means, the cluster count directly influences
the hyperedge quantity, subsequently dictating the hyper-
graph size. An optimal balance is essential; insufficient
hyperedges diminish performance, whereas an excess ele-
vates computational expenses. In our ViHGNN-Ti trials,
segmenting images into 196 patches, we chose hyperedge
counts of 25 or 50. While an uptick in hyperedges typically
boosts performance, it introduces increased overhead.

Contrarily, the proposition “increased hyperedges el-
evate performance” predominantly aligns with isotropic
ViHGNN-Ti. For pyramid ViHGNN-Ti, our detailed ex-
perimentation, presented in Table 9, assesses performance
across varied hyperedge settings. Specifically, the results
for Pyramid ViHGNN-Ti with uniform E values are juxta-
posed against layer-specific E allocations. The ↓ symbol de-
notes a 50% hyperedge reduction at each stage, correlating
with feature size. These outcomes debunk the generalized
“more is better” hyperedge notion, suggesting hyperedges
should correspond to patch node counts.

In summary, determining the ideal hyperedge count re-
mains a nuanced challenge. However, two pivotal insights
surface: (i) hyperedges can amplify performance, albeit
with overhead; (ii) hyperedge distribution across layers
should be commensurate with feature dimensions.

Table 9. Effects of E for Pyramid ViHGNN-Ti.

E 50 50 (↓) 100 100 (↓)

Top-1 78.9 79.4 77.6 78.9

Top-5 94.6 95.0 94.2 94.7

Effect of hypergraph structure learning. In order to ver-
ify the effect of the hypergraph structure learning (HSL)
module, we further conduct additional experiments by re-
moving the HSL module. We observe that the HSL can
improve performance with only little overhead in terms of

19884

model size and flops. The results also demonstrate the effec-
tiveness of the simple HSL module used in our framework.

Overhead of hypergraph structure learning. To ana-
lyze the potential overhead of multiple calls to Fuzzy C-
Means, we measured the time costs of training ViHGNN
and ViT. The results are presented in Table 10, where we
observed that clustering had a minimal impact on forward
time and did not affect backward time, which is consistent
with our expectations.

Table 10. Comparison of the mean running time (ms) per sample.

Models Forward Backward Total

ViT-Ti 10.74 19.03 29.77

Istropic ViHGNN-Ti 11.25 18.77 30.02

4.4. Object Detection

Table 11. Object detection and instance segmentation results on
COCO val2017.

Backbone
RetinaNet 1×

Params (M) FLOPs (B) mAP AP50 AP75 APS APM APL

ResNet50 [22] 37.7 239.3 36.3 55.3 38.6 19.3 40.0 48.8
ResNeXt-101-32x4d [68] 56.4 319 39.9 59.6 42.7 22.3 44.2 52.5
PVT-Small [62] 34.2 226.5 40.4 61.3 44.2 25.0 42.9 55.7
CycleMLP-B2 [5] 36.5 230.9 40.6 61.4 43.2 22.9 44.4 54.5
Swin-T [41] 38.5 244.8 41.5 62.1 44.2 25.1 44.9 55.5
Pyramid ViG-S [18] 36.2 240.0 41.8 63.1 44.7 28.5 45.4 53.4
Pyramid ViHGNN-S (ours) 37.9 243.7 42.2 63.8 45.1 29.3 45.9 55.7

Backbone
Mask R-CNN 1×

Param FLOPs APb APb
50 APb

75 APm APm
50 APm

75

ResNet50 [22] 44.2 260.1 38.0 58.6 41.4 34.4 55.1 36.7
PVT-Small [62] 44.1 245.1 40.4 62.9 43.8 37.8 60.1 40.3
CycleMLP-B2 [5] 46.5 249.5 42.1 64.0 45.7 38.9 61.2 41.8
PoolFormer-S24 [74] 41.0 - 40.1 62.2 43.4 37.0 59.1 39.6
Swin-T [41] 47.8 264.0 42.2 64.6 46.2 39.1 61.6 42.0
Pyramid ViG-S [18] 45.8 258.8 42.6 65.2 46.0 39.4 62.4 41.6
Pyramid ViHGNN-S (ours) 47.3 261.4 43.1 66.0 46.5 39.6 63.0 42.3

To evaluate the generalization ability of our ViHGNN
model, we further apply ViHGNN to the object detec-
tion task. For a fair comparison, we utilize the ImageNet
pretrained pyramid ViHGNN-S as the backbone of Reti-
naNet [38] and Mask R-CNN [21] detection frameworks.
The models are trained on the commonly-used “1x” sched-
ule and FLOPs are calculated at a 1280 × 800 input size.
From the results in Table 11, we can see that our pyramid
ViG-S performs better than the representative backbones of
different types, including ResNet [22], CycleMLP [5] and
Swin Transformer [41] on both RetinaNet and Mask R-
CNN. The superior results demonstrate the generalization
ability of the ViHGNN architecture.

4.5. Visualization

To gain insights into the workings of our ViHGNN
model, we visualize the learned hypergraph structure in
ViHGNN-S and compare it with the constructed graph
structure in ViG-S. In Figure 4, the top row presents the
input image, the middle row displays the graph structure of
ViG-S, and the bottom row showcases the learned hyper-
graph structure of ViHGNN-S. Given the numerous edges

Input Image Input Image

Graph structure of ViG Graph structure of ViG

Hypergraph structure of ViHGNN Hypergraph structure of ViHGNN

Figure 4. Visualization of the graph/hypergraph structure of
ViG/ViHGNN. Each color line of the middle row denotes one
edge. Each frame of the top row denotes one hyperedge.

in ViG-S’s graph, we illustrate a central node and its first-
order neighbors for clarity. Similarly, we show a subset
of representative hyperedges for the hypergraph structure,
avoiding clutter.

Observing the visualization, ViG tends to generate re-
dundant edges among patches with similar local features
like color and texture. For instance, regions with similar
patches, such as sand in the left image, result in multiple
edges, despite their limited relevance to downstream tasks.
This redundancy represents an overhead waste, which Vi-
HGNN addresses by using fewer hyperedges to model such
relationships. Moreover, ViG may also introduce noisy
edges connecting object patches to semantically different
patches with similar attributes. In contrast, ViHGNN cap-
tures higher-order patch relations while maintaining robust-
ness against noisy connections.

5. Conclusion & Limitation
In this paper, we present a novel advancement in image

representation through the utilization of hypergraph data en-
coding and hypergraph neural networks tailored for visual
tasks. Our proposed model, ViHGNN, innovatively dissects
images into patches, treating them as nodes, and subse-
quently constructs a hypergraph based on these nodes. This
strategic approach empowers ViHGNN to leverage the hy-
pergraph’s unique capacity to capture intricate high-order

19885

relationships among patches. Thorough experimentation
across image classification and object detection tasks af-
firms ViHGNN’s remarkable capabilities. An identifiable
constraint of ViHGNN pertains to the manual determination
of hypergraph size. Our future endeavors will be directed
towards refining the adaptation of the hypergraph structure
to optimize performance for diverse image categories.

References
[1] James C Bezdek, Robert Ehrlich, and William Full. Fcm:

The fuzzy c-means clustering algorithm. Computers & geo-
sciences, 10(2-3):191–203, 1984. 4

[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV, 2020. 1

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. In ECCV, pages
213–229, 2020. 2

[4] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yip-
ing Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu,
and Wen Gao. Pre-trained image processing transformer. In
CVPR, 2021. 2

[5] Shoufa Chen, Enze Xie, Chongjian Ge, Ding Liang, and Ping
Luo. Cyclemlp: A mlp-like architecture for dense prediction.
In ICLR, 2022. 2, 6, 8

[6] Yu Chen, Lingfei Wu, and Mohammed Zaki. Iterative deep
graph learning for graph neural networks: Better and robust
node embeddings. Advances in neural information process-
ing systems, 33:19314–19326, 2020. 3

[7] Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic.
You are allset: A multiset function framework for hyper-
graph neural networks. In International Conference on
Learning Representations, 2022. 3, 4

[8] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmentation
with a reduced search space. In CVPR Workshops, 2020. 6

[9] Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang
Ding. Scaling up your kernels to 31x31: Revisiting large
kernel design in cnns. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
11963–11975, 2022. 2

[10] Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas.
Attention is not all you need: Pure attention loses rank dou-
bly exponentially with depth. In ICML, pages 2793–2803.
PMLR, 2021. 4

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In ICLR, 2021. 1, 2,
6

[12] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and
Yue Gao. Hypergraph neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33,
pages 3558–3565, 2019. 3

[13] Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and
Xiao He. Learning discrete structures for graph neural net-
works. In International conference on machine learning,
pages 1972–1982. PMLR, 2019. 3

[14] Yue Gao, Meng Wang, Dacheng Tao, Rongrong Ji, and
Qionghai Dai. 3-d object retrieval and recognition with hy-
pergraph analysis. IEEE Transactions on Image Processing,
21(9):4290–4303, 2012. 3

[15] Jianyuan Guo, Yehui Tang, Kai Han, Xinghao Chen, Han
Wu, Chao Xu, Chang Xu, and Yunhe Wang. Hire-mlp: Vi-
sion mlp via hierarchical rearrangement. In CVPR, 2022. 2

[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive
representation learning on large graphs. Advances in neural
information processing systems, 30, 2017. 2

[17] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen,
Jianyuan Guo, Zhenhua Liu, Yehui Tang, An Xiao, Chunjing
Xu, Yixing Xu, et al. A survey on vision transformer. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2022. 2

[18] Kai Han, Yunhe Wang, Jianyuan Guo, Yehui Tang, and En-
hua Wu. Vision gnn: An image is worth graph of nodes.
arXiv preprint arXiv:2206.00272, 2022. 1, 3, 4, 5, 6, 8

[19] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu,
and Yunhe Wang. Transformer in transformer. In NeurIPS,
2021. 2

[20] Yan Han, Edward W Huang, Wenqing Zheng, Nikhil Rao,
Zhangyang Wang, and Karthik Subbian. Search behavior
prediction: A hypergraph perspective. In Proceedings of the
Sixteenth ACM International Conference on Web Search and
Data Mining, pages 697–705, 2023. 3

[21] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, pages 2961–2969, 2017. 6,
8

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 1, 2, 6, 8

[23] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 6

[24] Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten
Hoefler, and Daniel Soudry. Augment your batch: Improving
generalization through instance repetition. In CVPR, 2020.
6

[25] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 2

[26] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q
Weinberger. Deep networks with stochastic depth. In ECCV,
pages 646–661. Springer, 2016. 6

[27] Jing Huang and Jie Yang. Unignn: a unified framework
for graph and hypergraph neural networks. arXiv preprint
arXiv:2105.00956, 2021. 3

[28] Tianjin Huang, Lu Yin, Zhenyu Zhang, Li Shen, Meng Fang,
Mykola Pechenizkiy, Zhangyang Wang, and Shiwei Liu. Are
large kernels better teachers than transformers for convnets?
In ICML, 2023. 2

19886

[29] Yuchi Huang, Qingshan Liu, and Dimitris Metaxas.] video
object segmentation by hypergraph cut. In 2009 IEEE con-
ference on computer vision and pattern recognition, pages
1738–1745. IEEE, 2009. 3

[30] Yuchi Huang, Qingshan Liu, Shaoting Zhang, and Dim-
itris N Metaxas. Image retrieval via probabilistic hyper-
graph ranking. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pages 3376–3383.
IEEE, 2010. 3

[31] Ashesh Jain, Amir R Zamir, Silvio Savarese, and Ashutosh
Saxena. Structural-rnn: Deep learning on spatio-temporal
graphs. In CVPR, pages 5308–5317, 2016. 3

[32] Jianwen Jiang, Yuxuan Wei, Yifan Feng, Jingxuan Cao, and
Yue Gao. Dynamic hypergraph neural networks. In IJCAI,
pages 2635–2641, 2019. 3

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In NeurIPS, pages 1097–1105, 2012. 1, 2

[34] Loic Landrieu and Martin Simonovsky. Large-scale point
cloud semantic segmentation with superpoint graphs. In
CVPR, pages 4558–4567, 2018. 2

[35] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
1, 2

[36] Guohao Li, Matthias Muller, Ali Thabet, and Bernard
Ghanem. Deepgcns: Can gcns go as deep as cnns? In ICCV,
pages 9267–9276, 2019. 6

[37] Dongze Lian, Zehao Yu, Xing Sun, and Shenghua Gao. As-
mlp: An axial shifted mlp architecture for vision. In ICLR,
2022. 2

[38] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In ICCV,
2017. 6, 8

[39] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, pages 740–755, 2014. 5

[40] Shiwei Liu, Tianlong Chen, Xiaohan Chen, Xuxi Chen, Qiao
Xiao, Boqian Wu, Tommi Kärkkäinen, Mykola Pechenizkiy,
Decebal Constantin Mocanu, and Zhangyang Wang. More
convnets in the 2020s: Scaling up kernels beyond 51x51 us-
ing sparsity. In The Eleventh International Conference on
Learning Representations, 2023. 2

[41] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, pages 10012–10022, 2021. 2, 6, 8

[42] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 11976–11986,
2022. 2

[43] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In
CVPR, 2015. 2

[44] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 6

[45] Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong,
Jingchao Ni, Haifeng Chen, and Xiang Zhang. Learning to
drop: Robust graph neural network via topological denois-
ing. In Proceedings of the 14th ACM international confer-
ence on web search and data mining, pages 779–787, 2021.
3

[46] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library.
NeurIPS, 2019. 6

[47] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In NIPS, pages 91–99, 2015. 2

[48] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International Journal of
Computer Vision, 115(3):211–252, 2015. 5

[49] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor,
Brian Galligher, and Tina Eliassi-Rad. Collective classifica-
tion in network data. AI magazine, 29(3):93–93, 2008. 2

[50] Han Shi, Jiahui Gao, Hang Xu, Xiaodan Liang, Zhenguo Li,
Lingpeng Kong, Stephen Lee, and James T Kwok. Revisiting
over-smoothing in bert from the perspective of graph. arXiv
preprint arXiv:2202.08625, 2022. 4

[51] Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon
Shlens, Pieter Abbeel, and Ashish Vaswani. Bottleneck
transformers for visual recognition. In CVPR, pages 16519–
16529, 2021. 6

[52] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In CVPR, 2016. 6

[53] Yehui Tang, Kai Han, Jianyuan Guo, Chang Xu, Yanxi Li,
Chao Xu, and Yunhe Wang. An image patch is a wave:
Phase-aware vision mlp. In CVPR, 2022. 2

[54] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-
cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,
Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al.
Mlp-mixer: An all-mlp architecture for vision. In NeurIPS,
volume 34, 2021. 1, 2, 6

[55] Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu
Cord, Alaaeldin El-Nouby, Edouard Grave, Gautier Izac-
ard, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, et al.
Resmlp: Feedforward networks for image classification with
data-efficient training. arXiv preprint arXiv:2105.03404,
2021. 1, 2, 6

[56] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In ICML, 2021. 6

[57] Asher Trockman and J Zico Kolter. Patches are all you need?
arXiv preprint arXiv:2201.09792, 2022. 6

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. NeurIPS, 2017. 6

[59] Nikil Wale, Ian A Watson, and George Karypis. Compar-
ison of descriptor spaces for chemical compound retrieval

19887

and classification. Knowledge and Information Systems,
14(3):347–375, 2008. 2

[60] Peihao Wang, Shenghao Yang, Yunyu Liu, Zhangyang
Wang, and Pan Li. Equivariant hypergraph diffusion neural
operators. arXiv preprint arXiv:2207.06680, 2022. 3

[61] Peihao Wang, Wenqing Zheng, Tianlong Chen, and
Zhangyang Wang. Anti-oversmoothing in deep vision trans-
formers via the fourier domain analysis: From theory to
practice. arXiv preprint arXiv:2203.05962, 2022. 4

[62] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyra-
mid vision transformer: A versatile backbone for dense pre-
diction without convolutions. In ICCV, 2021. 2, 6, 8

[63] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019. 2

[64] Tianxin Wei, Yuning You, Tianlong Chen, Yang Shen, Jin-
grui He, and Zhangyang Wang. Augmentations in hyper-
graph contrastive learning: Fabricated and generative. Ad-
vances in neural information processing systems, 35:1909–
1922, 2022. 3

[65] Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet
strikes back: An improved training procedure in timm. arXiv
preprint arXiv:2110.00476, 2021. 6

[66] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu,
Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt: Introducing
convolutions to vision transformers. In ICCV, pages 22–31,
2021. 6

[67] Kan Wu, Houwen Peng, Minghao Chen, Jianlong Fu, and
Hongyang Chao. Rethinking and improving relative posi-
tion encoding for vision transformer. In ICCV, pages 10033–
10041, 2021. 2

[68] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In CVPR, pages 1492–1500, 2017. 8

[69] Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei.
Scene graph generation by iterative message passing. In
CVPR, pages 5410–5419, 2017. 3

[70] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav,
Vikram Nitin, Anand Louis, and Partha Talukdar. Hypergcn:
A new method for training graph convolutional networks on
hypergraphs. Advances in neural information processing sys-
tems, 32, 2019. 3

[71] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-
ral graph convolutional networks for skeleton-based action
recognition. In AAAI, 2018. 3

[72] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi
Parikh. Graph r-cnn for scene graph generation. In ECCV,
pages 670–685, 2018. 3

[73] Zhaohui Yang, Yunhe Wang, Xinghao Chen, Boxin Shi,
Chao Xu, Chunjing Xu, Qi Tian, and Chang Xu. Cars: Con-
tinuous evolution for efficient neural architecture search. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 1829–1838, 2020. 2

[74] Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou,
Xinchao Wang, Jiashi Feng, and Shuicheng Yan. Metaformer
is actually what you need for vision. In CVPR, 2022. 6, 8

[75] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In ICCV, 2019. 6

[76] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In ICLR, 2018. 6

[77] Jiying Zhang, Yuzhao Chen, Xi Xiao, Runiu Lu, and Shu-
Tao Xia. Learnable hypergraph laplacian for hypergraph
learning. In ICASSP 2022-2022 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP),
pages 4503–4507. IEEE, 2022. 3

[78] Zizhao Zhang, Yifan Feng, Shihui Ying, and Yue Gao.
Deep hypergraph structure learning. arXiv preprint
arXiv:2208.12547, 2022. 3

[79] Zizhao Zhang, Haojie Lin, Yue Gao, and KLISS BNRist.
Dynamic hypergraph structure learning. In IJCAI, pages
3162–3169, 2018. 3

[80] Wei Zhao, Shulong Tan, Ziyu Guan, Boxuan Zhang, Maoguo
Gong, Zhengwen Cao, and Quan Wang. Learning to map so-
cial network users by unified manifold alignment on hyper-
graph. IEEE transactions on neural networks and learning
systems, 29(12):5834–5846, 2018. 3

[81] Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao
Ni, Wenchao Yu, Haifeng Chen, and Wei Wang. Robust
graph representation learning via neural sparsification. In In-
ternational Conference on Machine Learning, pages 11458–
11468. PMLR, 2020. 3

[82] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. In AAAI, vol-
ume 34, pages 13001–13008, 2020. 6

[83] Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Yuanqi Du, Jieyu
Zhang, Qiang Liu, Carl Yang, and Shu Wu. A survey on
graph structure learning: Progress and opportunities. arXiv
e-prints, pages arXiv–2103, 2021. 3

[84] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. In ICLR, 2017. 2

19888

