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Abstract

We present Point-TTA, a novel test-time adaptation
framework for point cloud registration (PCR) that improves
the generalization and the performance of registration mod-
els. While learning-based approaches have achieved im-
pressive progress, generalization to unknown testing envi-
ronments remains a major challenge due to the variations in
3D scans. Existing methods typically train a generic model
and the same trained model is applied on each instance dur-
ing testing. This could be sub-optimal since it is difficult for
the same model to handle all the variations during testing.
In this paper, we propose a test-time adaptation approach
for PCR. Our model can adapt to unseen distributions at
test-time without requiring any prior knowledge of the test
data. Concretely, we design three self-supervised auxiliary
tasks that are optimized jointly with the primary PCR task.
Given a test instance, we adapt our model using these aux-
iliary tasks and the updated model is used to perform the
inference. During training, our model is trained using a
meta-auxiliary learning approach, such that the adapted
model via auxiliary tasks improves the accuracy of the pri-
mary task. Experimental results demonstrate the effective-
ness of our approach in improving generalization of point
cloud registration and outperforming other state-of-the-art
approaches.

1. Introduction

Given a pair of overlapping 3D point clouds, the goal of
point cloud registration (PCR) is to estimate the 3D trans-
formation that aligns these point clouds. PCR plays a vi-
tal role in a variety of applications, such as autonomous
driving [7], augmented reality [5], and robotics [30]. Stan-
dard PCR approaches start with extracting the pointwise
features. These features are matched to establish the cor-
respondences between points in the pair. Then an outlier
rejection module is used to remove outliers since the cor-
respondences obtained by feature matching are not com-

pletely reliable. Finally, the correspondences are used to
estimate the optimal 3D rotation and translation to align
the two point cloud fragments. Traditional approaches es-
tablish correspondences by matching hand-crafted features
and leveraging robust iterative sampling strategies such as
RANSAC [17] for model estimation. However, these ap-
proaches take a long time to converge and their accuracy
drops in the presence of high outliers.

To address the limitation of traditional approaches, most
recent PCR methods use learning-based approaches instead
of handcrafted features. These approaches first learn a
model on a labeled dataset. Then the model is fixed when
evaluating on unseen test data. The single set of model pa-
rameters may not be optimal for different test environments
captured with different 3D scanners due to the domain shift.
Our work is inspired by the success of test-time adaption
(TTA) [47] in image classification, where an auxiliary task
is used to update the model parameters at inference time to
learn feature representation specifically for a test instance.
In this paper, we introduce a TTA approach for point cloud
registration that adapts to new distributions at test-time. Un-
like existing 3D point cloud domain adaptation approaches
[27, 54, 40, 28, 51], our method does not require any prior
knowledge about the test data distributions. We adapt the
model parameters in an instance-specific manner during in-
ference and obtain a different set of network parameters for
each different instance. This allows our model to better cap-
ture the uniqueness of each test instance and thus generalize
better to unseen data. More importantly, our TTA formula-
tion is a generic framework that can be applied in a plug-
and-play manner to boost standard PCR pipelines.

Auxiliary learning has been shown to be effective to
improve a predefined primary task and is used in multi-
ple 2D computer vision tasks [35, 36, 47, 9]. Recently,
there have been some attempts at using auxiliary tasks for
improving the representation learning of 3D point clouds
[1, 24, 44, 15]. However, using auxiliary tasks for test-time
adaptation is still largely unexplored for 3D point cloud
data. In this work, we introduce three self-supervised auxil-
iary tasks: point cloud reconstruction, feature learning, and
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correspondence classification. These auxiliary tasks do not
require any extra supervision.

Some recent work [9] has shown that naively training the
primary task and the auxiliary task together may not be op-
timal, since the model may be biased toward improving the
auxiliary task rather than the primary task. Following [9],
we use a meta auxiliary learning framework based on the
model-agnostic meta learning (MAML) [16]. Each point
cloud pair acts as a task in MAML. We update the model for
each task using the auxiliary loss provided by the proposed
three auxiliary tasks. The updated model is then used to per-
form the primary task. The model parameters are learned in
such a way that the updated model using the auxiliary tasks
improve the performance of the primary registration task.
Our key contributions are summarized as follows:

• We propose a test-time adaptation approach for point
cloud registration. To the best of our knowledge, this
is the first work to apply test-time adaptation for 3D
point cloud registration.

• We design three self-supervised auxiliary tasks to ef-
fectively extract useful features from test instances and
adapt the model to unseen test distribution to improve
generalization. A meta auxiliary learning paradigm is
used to learn the model parameters, such that adapt-
ing the model parameter via the auxiliary tasks during
testing improves the performance of the primary task.

• We perform extensive experiments on 3Dmatch [56]
and KITTI [19] benchmarks to show the effectiveness
of our approach in improving point cloud registration
performance and achieving superior results.

2. Related Work
We review two lines of related work in point cloud reg-

istration and meta-auxiliary learning.

Point Cloud Registration. Most traditional PCR ap-
proaches consist of two modules: feature-based correspon-
dence matching and outlier filtering.

Feature descriptors have been proposed to effectively ex-
tract the local and global features of point clouds, which
are used to match correspondences in the feature space.
Traditional methods use hand-crafted features such as spa-
tial features histogram [29, 48, 18], or geometric features
histogram [6, 43]. Recently, learning-based approaches
have been proposed to learn 3D feature descriptors includ-
ing fully convolution methods [20, 11], keypoint detection
methods [3, 52, 33], and coarse-to-fine methods [55, 41].

The correspondences obtained from feature matching of-
ten include many outliers that must be filtered out for ro-
bust point cloud registration. Many traditional approaches

[17, 58, 50, 8] have been proposed for robust outlier filter-
ing of correspondences. RANSAC [17] is the most popular
method, where a set of correspondences are iteratively sam-
pled to filter outliers. RANSAC variants [45, 13, 4] have
been introduced to provide new sampling strategies for fast
convergence. However, these methods still have slow con-
vergence rate and low performance in the presence of high
outliers. Other methods use robust cost functions that are
more effective with high outlier ratio. FGR [58] uses the
Geman-McClure cost function and TEASER [50] uses the
truncated least squares cost function for robust point cloud
registration.

In recent years, deep learning techniques have been em-
ployed for outlier filtering. The 3D outlier filtering ap-
proaches [38, 25, 26, 12, 32, 2] follow similar ideas in 2D
image matching [53, 57], where outlier filtering is defined
as an inlier classification problem. 3DRegNet [38] uses
the 2D correspondence selection network [53] for 3D point
clouds and added a regression module for rigid transforma-
tion. DGR [12] proposes a fully convolutional network to
better capture global features of correspondences and pre-
dict the inlier confidence of each correspondence. DHVR
[32] leverages Hough voting in 6D transformation parame-
ter space to identify the confidence of correspondences from
Hough space to predict the final transformation. PointDSC
[2] uses the spatial consistency between inlier correspon-
dences to better prune the outliers.

Auxiliary and Meta Learning. In auxiliary learning, an
auxiliary task (often self-supervised) is defined to improve
the performance and generalization of a target primary task.
This differs from multi-task learning where the goal is to
improve performance across all tasks [35]. Auxiliary learn-
ing has been proven to be effective in multiple 2D image
domain problems. [47] uses the image rotation prediction
as a self-supervised auxiliary task to improve image classi-
fication. [9] uses image reconstruction as the auxiliary task
to improve the primary task of deblurring. Auxiliary learn-
ing has also been studied for 3D point clouds. [44] pro-
poses an auxiliary task that reconstruct point clouds whose
parts have been randomly displaced. [24] adopts a con-
trastive auxiliary task [22] for better representation of 3D
point clouds. Moreover, several studies have proposed self-
supervised tasks [49, 1, 15] to learn domain-invariant and
useful representations of point clouds from unlabelled point
cloud data. [1] presents a self-supervised task of recon-
structing deformations to learn the underlying structures of
3D objects. [15] introduces a pair of self-supervised tasks,
including a scale prediction task and a 3D/2D projection
reconstruction task to facilitate global and local features
learning across different domains.

MAML [16] is a widely used meta-learning algorithm,
which has been successfully employed for many 2D image
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domain tasks [39, 46, 35, 34, 9]. MAML learns the model
parameters to fastly adapt to new tasks with few training
samples and few gradient updates. [39, 46] use MAML
for super-resolution problem to facilitate adaptation to un-
seen images. [35] proposes a meta-auxiliary framework
(MAXL), in which an auxiliary label generator is trained
to generate optimal labels to improve the generalization of
the primary task. [9] uses a self-supervised auxiliary task
in a meta learning framework for image deblurring. [34]
propose to employ meta-auxiliary learning along with test-
time adaptation for the problem of future depth prediction
in videos.

3. Approach
Given a pair of partially overlapping 3D point clouds

X ∈ RM×3 with M points and Y ∈ RN×3 with N points,
our goal is to find an optimal 3D transformation T between
the two point clouds that accurately aligns them. Our goal
is to learn a model Fθ(X,Y ) → T parameterized by θ
that maps (X,Y ) to T . In this work, we propose a frame-
work for point cloud registration that adapts the trained
model parameters to each different input at test time, so that
our model can improve generalization and performance of
point cloud registration. The adaptation is achieved via self-
supervised auxiliary tasks.

3.1. Auxiliary Tasks

We propose three different auxiliary tasks in our work.
All these auxiliary tasks are self-supervised and do not re-
quire extra labels. So they can be used during test-time for
adaptation.
Point Cloud Reconstruction. Inspired by the success of
using image reconstruction as the auxiliary task [9, 36], we
propose to use 3D point cloud reconstruction as one of our
self-supervised auxiliary tasks. Given a point cloud P , the
features of the point cloud are extracted using the feature
encoder. Then, a decoder is used to reconstruct the point
cloud P ′. Adapting the model parameters at test time using
the reconstruction auxiliary loss enables the model to take
advantage of the internal features of the test instance before
performing the primary task. The reconstruction loss does
not require any supervision, which makes it suitable for test-
time adaptation. We use L1 reconstruction loss as follows:

ℓrec = ||P − P ′||1. (1)

Self-Supervised Feature Learning. Self-supervised learn-
ing (SSL) is an active area of research. The main idea of
SSL is to define some proxy self-supervised tasks to learn
feature representations from data without manual annota-
tions. We can use any existing SSL task as one of our aux-
iliary tasks. In our work, we adapt BYOL [22] as our self-
supervised task. Different from contrastive learning, BYOL

does not require negative samples. This makes it suitable for
test-time adaptation. The model architecture of BYOL con-
sists of two networks, namely the online network and the
target network. Each network predicts a representation of
an augmented view of the same point cloud. The idea is to
train the online network to predict representations similar to
the target network’s predictions, so that the representations
of the two augmented views are closely similar.

The online network parameterized by θ consists of a fea-
ture encoder fθ, a feature projector zθ and a predictor pθ.
Similarly, the target network parameterized by ξ has a fea-
ture encoder fξ and a feature projector zξ . The online net-
work θ is trained based on the regression targets provided
by the target network, while the target network ξ is the ex-
ponential moving average of the online parameters θ:

ξ ← τξ + (1− τ)θ, (2)

where τ ∈ [0, 1] is the target decay rate.
Given a 3D point cloud P , we perform augmentation to

produce two augmented versions Pv and Pv′ . The point
Pv is passed to the online network to obtain the projec-
tion zθ = gθ(Pv) and Pv′ is passed to the target network
to obtain the projection zξ = gξ(Pv′). Then we minimize
the mean squared error between the normalized predictions
qθ(zθ) and target projections zξ as follows:

Lθ,ξ = 2− 2qθ(zθ)
⊤zξ

∥qθ(zθ)∥2∥∥zξ∥2∥
. (3)

We define another symmetric loss L′
θ,ξ by similarly pass-

ing Pv′ to the online network and Pv to the target network
to compute L′

θ,ξ. The final BYOL loss is defined as:

ℓbyol = Lθ,ξ + L′
θ,ξ. (4)

Correspondence Classification. We introduce an addi-
tional self-supervised auxiliary task designed specifically
for PCR. Given a 3D point cloud P , we construct an aug-
mented point cloud P ′ using a randomly generated 3D
transformation T by sampling a random rotation along
three axes within [0◦..360◦] and a random translation within
[0cm..60cm]. The sampled transformation T is applied on
each axis of point cloud to obtain P ′. The feature encoder
is used to extract the features of P and P ′. Then these two
sets of points are matched in the feature space using nearest
neighbors to obtain the correspondences. Using the same
outlier rejection network architecture of the primary task,
this auxiliary task is trained to predict whether a correspon-
dence is an inlier or an outlier. Since the transformation
T of the point cloud is known, the ground-truth inlier cor-
respondences C are available and the auxiliary loss does
not require any manual supervision. Similar to [12, 2], the
classification loss is defined as the binary cross entropy loss
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Figure 1: Overview of the proposed meta-auxiliary training framework. Given a pair of input point clouds during training,
we first adapt the model by performing a small number of gradient updates using the auxiliary loss calculated via three
auxiliary tasks including point cloud reconstruction, BYOL and correspondence classification. Then the adapted model is
used to perform the primary registration task and is evaluated using the meta-objective. Finally, we update the model using
the primary loss.

between the probability pi(i,j) that a correspondence C(i,j)

is an inlier and the ground-truth inliers C.

ℓcc =
1

|M |
(

∑
(i,j)∈C

log pi(i,j) +
∑

log po(i,j)), (5)

where po = 1− pi.

3.2. Model Architecture

Our model architecture consists of a shared feature en-
coder and two branches for the primary and auxiliary tasks.
The primary branch corresponds to the point cloud registra-
tion task. The auxiliary branch corresponds to three self-
supervised auxiliary tasks defined in Section 3.1. We de-
note the model parameters as θ = {θshar, θpri, θaux}, where
θshar corresponds to the shared feature encoder, θpri is the
primary branch and θaux is the auxiliary branch. Note that
θaux represents the parameters of three auxiliary tasks.
Auxiliary Tasks. Our aim of the auxiliary tasks is to
transfer rich and useful knowledge to improve the perfor-
mance of the primary task. The overall auxiliary loss is the
weighted sum of the losses for the three auxiliary tasks:

Laux = λ1ℓrec + λ2ℓbyol + λ3ℓcc. (6)

Instead of fixing the values of the balancing weights λi

(i = 1, 2, 3), we treat them as learnable parameters and

learn their values during training. This allows the learn-
ing algorithm to automatically choose the right weights that
balance the relative importance of each auxiliary task.

To train both primary and auxiliary tasks, we first fol-
low the joint training approach in [47]. The loss of the joint
training is simply the combination of the primary and aux-
iliary losses:

Lpri(θ
shar, θpri;X,Y, T )+Laux(θ

shar, θaux;X,Y ). (7)

Note that since our auxiliary tasks are self-supervised, the
auxiliary loss Laux(·) does not need the ground-truth trans-
formation T . To simplify the notation, we have assumed
one training instance in Eq. 7. It is straightforward to gen-
eralize Eq. 7 to the entire training set by summing over all
training instances.

The model learned from Eq. 7 is then used as the initial-
ization for the meta-auxiliary learning.
Primary Task. We follow the standard learning-based net-
work architecture for point cloud registration. First, a pair
of 3D point clouds are passed to a fully convolutional net-
work to extract the corresponding geometric pointwise fea-
tures. Then the points are matched using the nearest neigh-
bor in the feature space to obtain correspondences. These
correspondences are fed to an outlier rejection network
which predicts the confidence of each correspondence. Fi-
nally, given the correspondences with their associated prob-
ability weights resulting from the outlier rejection network,
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Figure 2: Overview of the proposed meta-auxiliary test-
ing procedure. We use the auxiliary branch to fine-tune the
model for each test instance using the auxiliary loss and the
adapted model is used to register the input point clouds.

the weighted Procrustes approach is used to align the paired
3D scans by estimating the transformation between the
two point clouds. We use Lpri(θ

shar, θpri;X,Y, T ) to
denote the loss function that measures the difference be-
tween the ground-truth transformation T and the prediction
Fθ(X,Y ).

In this paper, we use Fully Convolutional Geometric Fea-
tures (FCGF) [11] to extract pointwise features of the 3D
point clouds. For the outlier rejection network, we adopt
the architecture of three state-of-the-art methods including
DGR [12], DHVR [32] and PointDSC [2]. However, it is
importance to note that our proposed meta-auxiliary frame-
work is agnostic to these choices and can be applied to any
learning-based point cloud registration methods.

3.3. Meta-Auxiliary Learning

Our goal is to combine self-supervised auxiliary tasks
along with the point cloud registration task to quickly adapt
the model parameters for each test instance without the need
for any extra supervision. Although jointly training the pri-
mary and auxiliary tasks will improve the generalization
of our model to unknown test distribution, the updated pa-
rameters using auxiliary loss may be more biased during
training to improve the auxiliary task and not the primary
task. Following [9], we propose to use a meta auxiliary task
scheme.
Training. We use meta-learning to train the model param-
eters θ to be quickly adaptable to different test distribution
data, such that updating model parameters at test-time im-
prove the primary point cloud registration task.

Given a batch of paired point clouds Xb, Yb, and the pre-
trained model parameters θ resulting from jointly training
primary and auxiliary tasks on the 3DMatch dataset [56] by
optimizing Eq. 7. We perform adaptation for small gradient
updates using the auxiliary loss, in which all model param-
eters ( ϕshar

b , ϕpri
b , ϕaux

b ) are updated:

ϕb ← θ − α∇θLaux(Xb, Yb, θ), (8)

Algorithm 1 Meta-auxiliary training
Require: X,Y, T : training pairs with their transformation
Require: α, β: learning rates
Output: θ: learned parameters

1: Initialize the network with pre-trained weights θ
2: while not done do
3: Sample a training batch {Xb, Yb, Tb}Bb=1

4: for each example do
5: Evaluate the three auxiliary tasks:

Laux = λ1ℓrec + λ2ℓbyol + λ3ℓcc
6: Compute adapted parameters via gradient descent:

ϕb ← θ − α∇θLaux(Xb, Yb, θ)
7: Update auxiliary branch:

θaux ← θaux − α∇θLaux(Xb, Yb, θ
aux)

8: end for
9: Evaluate the primary task using the adapted parame-

ters and update:
θ ← θ − β

∑B
b=1∇θLpri(Xb, Yb, Tb, ϕ

shar
b , ϕpri

b )
10: end while
11: return θ

where α is the adaptation learning rate. Note that since
Eq. 8 is based on the auxiliary task, the adaptation can be
done at test-time since it does not require the ground-truth
transformation.

Then, the adapted model( ϕshar
b , ϕpri

b ) will be used to
perform the primary task and calculate the primary loss.
This will enforce the adapted model to boost the primary
task performance. The primary loss will be used to opti-
mize the model parameters θ as:

θ ← θ − β

B∑
b=1

∇θLpri(Xb, Yb, Tb, ϕ
shar
b , ϕpri

b ), (9)

where β is the meta-learning rate and B is the batch size.
Note that Lpri(·) in Eq. 9 is defined in terms of the updated
model ϕb for each instance, while the optimization is per-
formed on the model parameters θ. The training process is
summarized in Algorithm 1 and Figure 1.
Testing. During test-time, the optimized meta-learned pa-
rameters θ are adapted to a test instance that consists of a
pair of 3D point clouds using the auxiliary loss as follows:

ϕ← θ − α∇θLaux (10)

Then, the adapted model (ϕshar, ϕpri) is used to perform
point cloud registration.

4. Experiments
We first evaluate our method on a 3D indoor dataset

for the pairwise registration task. Then we analyze the
generalization of our proposed model to unseen 3D out-
door datasets. Additionally, we integrate our method into
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DGR DHVR PointDSC DGR PointDSC

Ours + DGR Ours + DHVR Ours + PointDSC Ours + DGR Ours + PointDSC

Figure 3: We propose a generic test-time adaptation framework that can be applied to boost standard point cloud registration
pipeline. Here we show qualitative comparisons between the baselines and our method. The first three columns are from
3DMatch dataset [56] and the last two columns are from 3DLoMatch dataset [23]. Our proposed framework can successfully
align failure examples of DGR [12], DHVR [32], and PointDSC [2].

a multi-way registration pipeline and evaluate its perfor-
mance on generating final 3D reconstruction scenes. Fi-
nally, we perform extensive ablation studies to inspect each
component of our approach. Additional results and ablation
studies are provided in the supplementary document.

4.1. Experimental Setup

Dataset. We use the 3DMatch benchmark [56] for in-
door pairwise registration. It consists of point cloud pairs
with corresponding ground-truth transformations from real-
world indoor scenes scanned by commodity RGB-D sen-
sors. We follow the standard splitting strategy and evalu-
ation protocol in 3DMatch [56], where the test data con-
tain 1623 partially overlapping 3D point cloud scans from
8 different indoor scenes. For the outdoor dataset, we use
the KITTI odometry benchmark [19] which consists of 3D
outdoor scenes scanned using a Velodyne laser. We follow
the train/test split in [11] to create pairwise splits, since the
official benchmark does not have labels for pairwise regis-
tration. We perform voxel downsampling to generate point
clouds with uniform density and set voxel size to 5cm for
indoor dataset and 30cm for outdoor dataset. For multi-way
registration experiment, we use the simulated Augmented
ICL-NUIM dataset [10] which contains augmented indoor
reconstruction scenes from RGB-D videos.

Evaluation Metrics. Following [12, 2], we report Reg-
istration Recall (RR), Rotation Error (RE) and Translation

Error (TE). RE and TE are defined as:

RE = arccos
Tr(RTR∗)− 1

2
, TE = ||t− t∗||2, (11)

where R∗ and t∗ are the ground-truth rotation and transla-
tion, respectively. Registration Recall (RR) is the ratio of
successful pairwise registration that its rotation error and
translation error are below predefined thresholds. These
thresholds are set to (RE = 15, TE = 30cm) for indoor
scenes and (RE = 5, TE = 60cm) for outdoor scenes.

Implementation Details. We implement our framework
in PyTorch and use the official implementation of DGR
[12], DHVR [32], and PointDSC [2] as the backbones of
our approach. We first jointly train primary and auxiliary
tasks by optimizing the loss in Eq. 7 using the ADAM opti-
mizer with an initial learning rate of 10−4 and an exponen-
tially decayed factor of 0.99. For meta-training, the learning
rates α and β are set to 2.5×10e−5. We perform 5 gradient
updates during training and testing to adapt the model pa-
rameters using the auxiliary loss in Eq. 6. All experiments
are conducted on an NVIDIA TitanX GPU.

4.2. Main Results

We first evaluate our method on the 3DMatch dataset
and report the results in Table 1. We compare our method
with 5 traditional methods: FGR [58], TEASER [50], GC-
RANSAC [4], RANSAC [17], CG-SAC [42], 2 unsuper-
vised learning-based methods: LEAD [37], Ppf-foldnet
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Figure 4: Registration results for different scenes on the 3DMatch dataset in terms of RE and TE. “w/o meta” refers to a
variant of our method that simply optimizes Eq. 7 during training without adopting the meta-auxiliary training paradigm.

Table 1: Comparison with other state-of-the-art methods on
the 3DMatch dataset [56]. ↑ ( or ↓) indicates that a higher
(or lower) number means better performance.

Recall ↑ RE (deg) ↓ TE (cm) ↓
FGR [58] 78.56 2.82 8.36
TEASER [50] 85.77 2.73 8.66
GC-RANSAC [4] 92.05 2.33 7.11
RANSAC-1M [17] 88.42 3.05 9.42
RANSAC-2M [17] 90.88 2.71 8.31
RANSAC-4M [17] 91.44 2.69 8.38
CG-SAC [42] 87.52 2.42 7.66
LEAD [37] 67.15 3.39 12.01
Ppf-foldnet [14] 71.82 3.45 9.16
3DRegNet [38] 77.76 2.74 8.13
DGR [12] 91.30 2.40 7.48
Ours + DGR 92.45 1.71 6.39
DHVR [32] 91.40 2.08 6.61
Ours + DHVR 92.28 1.75 6.42
PointDSC [2] 92.85 2.08 6.51
PointDSC-reported 93.28 2.06 6.55
Ours + PointDSC 93.47 1.70 6.21

[14], and 4 supervised learning-based methods: 3DRegNet
[38], DGR [12], DHVR [32], PointDSC [2]. All learning-
based methods are trained on the 3DMatch dataset and fol-
low the same experiment setup for fair comparison. As
shown in Table 1, our method improves the registration
recall of DGR [12] and DHVR [32] by about 1%, and
PointDSC [2] by about 0.5%, as well as the RE and TE
have significantly decreased for all three backbones (on av-
erage 7.3% and 21%). More importantly, our method with
PointDSC [2] as backbone outperforms all other state-of-
the-art methods. Figure 3 shows qualitative results com-
parison on challenging examples of 3DMatch [56] and
3DLoMatch [23] datasets when applying our TTA method
to DGR [12]. Our meta-auxiliary framework enables the
model to better capture the internal features of each test-
instance, leading to performance improvement.

Table 2: Results of cross-dataset generalization. Here we
train the model on 3DMatch [56] and evaluate on KITTI
[19]. The results of training on KITTI and evaluating on
3DMatch can be found in the supplementary document.

Recall ↑ RE (deg) ↓ TE (cm) ↓
DGR 95.24 0.44 23.25
Ours + DGR 97.36 0.34 21.16
DHVR 95.82 0.39 22.17
Ours + DHVR 98.01 0.32 21.18
PointDSC 97.15 0.36 21.74
Ours + PointDSC 98.23 0.33 20.86

Figure 4 shows the 3DMatch registration results per
scene. As an ablation study, we remove the meta learn-
ing diagram and simply optimize the joint loss Eq. 7 during
training1. By doing so, we obtain superior results than the
backbone DGR [12], which demonstrates that our proposed
auxiliary tasks can complement the primary PCR task and
thus improves accuracy. Moreover, our final meta-auxiliary
framework achieves the best. Figure 5 shows the robustness
of our approach under different rotation and translation er-
ror thresholds.

4.3. Ablation and Additional Results

We perform additional experiments and ablation studies
to further analyze our proposed method.
Outdoor Registration Generalization. Although our
method achieves the best performance over all the tradi-
tional and learning-based methods, the main advantage of
our method is the ability to generalize to unseen test dis-
tribution. In order to evaluate the generalization of our
method, we perform a cross-dataset experiment on both
3DMatch [56] and KITTI [19] datasets, where the trained
model on 3DMatch [56] is used to test on KITTI [19]
and vice versa. As shown in Table 2, our method shows
a significant improvement on all evaluation metrics when

1At test-time, we still perform Eq. 10 for TTA.
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Figure 5: Comparison of the registration recall on the
3DMatch dataset between our approach and other state-of-
the-art methods by varying the translation error and the ro-
tation error thresholds. Our framework with PointDSC as
backbone outperforms all other methods for all thresholds.

Table 3: Registration results on ETH dataset [21]. We report
the registration recall per scene as well as the average recall
across all scenes.

Gazebo Wood AVG
Summer Winter Summer Autumn

DGR 92.63 83.28 79.86 71.34 81.78
Ours + DGR 95.28 87.95 81.73 82.45 86.85
DHVR 93.78 82.74 81.07 75.32 83.22
Ours + DHVR 95.96 87.13 82.25 80.79 86.53
PointDSC 94.21 89.68 83.14 78.42 86.36
Ours + PointDSC 94.89 91.49 87.02 85.22 89.65

training on 3DMatch dataset [56] and evaluating on KITTI
dataset [19], demonstrating the effectiveness of the pro-
posed framework. To further inspect the generalization of
our method, we test our framework on another widely-used
outdoor dataset, namely ETH dataset [21]. In Table 3, we
report the registration results of our approach when evalu-
ating on ETH dataset [21]. We can observe that our method
improves the performance of the baselines across all scenes
with a good margin. In particular, the average recall of DGR
[12] is significantly improved by about 5%, which sheds
light on the generalization capability of our approach.
Robustness to Low-Overlapping Point Clouds. To fur-
ther validate the robustness of our method, we evaluate our
method on a dataset with low-overlapping ratio between in-
put point clouds, namely 3DLoMatch [23]. This dataset is
constructed from the 3DMatch benchmark [56] and has a
low-overlapping ratio (10%-30%) between 3D point cloud
fragments. Figure 6 compares the inlier ratio between
3DLoMatch [23] and 3DMatch [56], which shows that
3DLoMatch [23] is more challenging due to the lower inlier
ratio. We use the model trained on 3DMatch [56] for eval-
uation and report our results in Table 4. Our approach out-
performs all other methods, demonstrating the robustness
of our approach to low-overlapping scenarios. More impor-
tantly, this validates the robustness of our approach to the
percentage of template and target overlaps where 3Dmatch
[56] contains overlapping ratios (≥30%) and 3DLoMatch

Figure 6: Comparison between the distribution of the inlier
ratio of correspondences obtained by feature matching on
3DMatch [56] and 3DLoMatch [23] benchmarks. The reg-
istration task is more challenging with a lower inlier ratio.

Table 4: Robustness to low-overlapping point clouds on
the 3DLoMatch dataset [23] with low-overlapping ratio be-
tween 3D point cloud segments. We train on 3DMatch and
evaluate on 3DLoMatch.

Recall ↑ RE (deg) ↓ TE (cm) ↓
DGR 43.80 4.17 10.82
Ours + DGR 50.73 4.06 10.52
DHVR 54.46 4.13 10.54
Ours + DHVR 57.32 3.83 10.26
PointDSC 56.10 3.87 10.39
Ours + PointDSC 57.81 3.79 10.15

Table 5: Multiway registeration results on Augmented ICL-
NUIM dataset evaluated by ATE(cm) where lower is better.

Living1 Living2 Office1 Office2 AVG
FGR 78.97 24.91 14.96 21.05 34.98
RANSAC 110.9 19.33 14.42 17.31 40.49
DGR 21.06 21.88 15.76 11.56 17.57
Ours + DGR 18.32 16.12 12.24 10.44 14.28
DHVR 22.91 16.37 12.58 10.90 15.69
Ours + DHVR 18.46 13.59 12.43 9.56 13.51
PointDSC 20.25 15.58 13.56 11.30 15.18
Ours + PointDSC 15.73 12.07 12.15 9.78 12.43

[23] contains low-overlapping ratios (10%-30%). The eval-
uation results on both datasets show the superiority of our
approach among the baselines under different ratios.
Multiway Registration for 3D Reconstruction. Point
cloud registration is a critical step for various 3D applica-
tions. In this section, we present the effect of pairwise reg-
istration performance on obtaining more accurate and ro-
bust 3D reconstruction scenes. Following [12, 2], we in-
tegrate our method into a 3D reconstruction pipeline[10].
Given RGB-D scans, 3D fragments are generated from the
scene. Next, we perform pairwise registration using our
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Table 6: Ablation studies on framework components: Aux-
iliary Learning, Meta Learning, and Test-time Adaptation.

Recall ↑ RE (deg) ↓ TE (cm) ↓
DGR 91.31 2.40 7.48
DGR + Aux. 91.42 2.25 7.06
DGR + TTA (w/o meta) 91.86 1.88 6.54
DGR + Meta-Aux. (w/o TTA) 92.28 1.71 6.40
DGR + full framework 92.45 1.71 6.39

Table 7: Ablation studies on the three auxiliary tasks: Point
Cloud Reconstruction (rec), Correspondence Classification
(cc), and Feature Learning (byol).

Recall ↑ RE (deg) ↓ TE (cm) ↓
DGR [12] 91.31 2.43 7.34
DGR + rec 92.24 1.71 6.42
DGR + (rec, cc) 92.38 1.69 6.40
DGR + (rec, cc, byol) 92.45 1.71 6.39

method to align all fragments. Finally, multi-way regis-
tration [10] is used to optimize the fragment poses using
pose graph optimization [31]. We use the model trained
on 3DMatch to further demonstrate the generalization of
our method and evaluate our approach on Augmented ICL
dataset using Absolute Trajectory Error (ATE). As shown in
Table 5, our method achieves the lowest error compared to
all other methods.
Methodology Components. To study the effectiveness of
the proposed framework, we conduct ablation experiments
on 3DMatch dataset [56] and evaluate the effect of each
component of the proposed framework. We consider DGR
[12] as the backbone in our experiments and report the re-
sults after applying each component to DGR [12]. Specifi-
cally, we compare the results between our method’s three
major components: Auxiliary Learning, Meta Learning,
Test-time Adaptation. We first investigate the effect of our
proposed Auxiliary Learning method by jointly training the
primary and three auxiliary tasks by optimizing the loss in
Eq. 7. This shows the strength of the proposed auxiliary
tasks acting as a regularizer during training. Then, we study
the impact of combining test-time adaptation with auxiliary
learning, in which the auxiliary tasks are used to update the
model parameters at test-time by optimizing the auxiliary
loss in Eq. 6. Furthermore, we show the effect of the pro-
posed meta-auxiliary learning paradigm elaborated in Al-
gorithm 1 in learning optimal model parameters. However,
we fixed the model parameters at test-time. Finally, we re-
port the results of our final framework integrating Auxiliary
Learning, Meta Learning, and Test-time Adaptation.

As reported in Table 6, auxiliary learning improves the
registration results across all evaluation metrics compared

to DGR [12]. This demonstrates that the proposed aux-
iliary tasks can complement the registration task, leading
to performance improvement. Combining auxiliary learn-
ing with TTA has further improved the performance of
registration recall by 0.44%, and decreased the TE and
RE by 0.52cm and 0.37 deg, respectively. As TTA al-
lows the auxiliary tasks to transfer useful features of test-
instance to the primary registration task, it enhances the
registration performance. Moreover, the proposed meta-
auxiliary training method greatly boosts the performance,
which demonstrates the effectiveness of training tasks us-
ing meta-learning terminology such that the meta-objective
enforces the auxiliary tasks to improve the primary task per-
formance. Finally, our final framework further boosts the
registration performance by fine-tuning the model parame-
ters at test-time.

Analysis of Auxiliary Tasks. We conduct an additional ab-
lation study on the 3DMatch dataset [56] to investigate the
importance of each auxiliary task in our approach in im-
proving the registration performance. As shown in Table
7, the auxiliary reconstruction task significantly boosts the
registration recall of DGR [12] by 0.92%. Also, Transla-
tion Error (TE) and Rotation Error (RE) greatly drop by
13% and 30%, respectively. These evaluation metrics are
further improved when combining the auxiliary correspon-
dence classification task to the reconstruction task. This
demonstrates the impact of multiple auxiliary tasks in trans-
ferring additional features to the primary task and enhanc-
ing registration results. Finally, our final three auxiliary
tasks achieve a higher registration recall of 92.45% and a
lower Translation Error (TE) of 6.39cm. However, the Ro-
tation Error (RE) was slightly worse when compared to the
two auxiliary tasks results.

5. Conclusion

We have introduced a novel test-time adaptation frame-
work for point cloud registration using multitask meta-
auxiliary learning. Previous work usually follows a super-
vised learning approach to train a model on a labeled dataset
and fix the model during evaluation on unseen test data.
In contrast, our framework is designed to effectively adapt
the model parameters at test time for each test instance
to boost the performance. We have introduced three self-
supervised auxiliary tasks to improve the the primary reg-
istration task. Furthermore, we have used a meta-auxiliary
learning paradigm to train the primary and auxiliary tasks,
so that the adapted model using auxiliary tasks improve the
performance of the primary task. Extensive experiments
show the effectiveness of the proposed approach in improv-
ing the registration performance and outperforming state-
of-the-art methods.

16502



References
[1] Idan Achituve, Haggai Maron, and Gal Chechik. Self-

supervised learning for domain adaptation on point clouds.
IEEE Winter Conference on Applications of Computer Vi-
sion, 2021. 1, 2

[2] Xuyang Bai, Zixin Luo, Lei Zhou, Hongkai Chen, Lei Li,
Zeyu Hu, Hongbo Fu, and Chiew-Lan Tai. Pointdsc: Ro-
bust point cloud registration using deep spatial consistency.
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2021. 2, 3, 5, 6, 7, 8

[3] Xuyang Bai, Zixin Luo, Lei Zhou, Hongbo Fu, Long Quan,
and Chiew-Lan Tai. D3feat: Joint learning of dense detection
and description of 3d local features. IEEE Conference on
Computer Vision and Pattern Recognition, 2020. 2
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