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Abstract

In partial-label learning (PLL), each training example
has a set of candidate labels, among which only one is the
true label. Most existing PLL studies focus on the instance-
independent (II) case, where the generation of candidate
labels is only dependent on the true label. However, this II-
PLL paradigm could be unrealistic, since candidate labels
are usually generated according to the specific features of
the instance. Therefore, instance-dependent PLL (ID-PLL)
has attracted increasing attention recently. Unfortunately,
existing ID-PLL studies lack an insightful perception of the
intrinsic challenge in ID-PLL. In this paper, we start with
an empirical study of the dynamics of label disambiguation
in both II-PLL and ID-PLL. We found that the performance
degradation of ID-PLL stems from the inaccurate supervi-
sion caused by massive under-disambiguated (UD) exam-
ples that do not achieve complete disambiguation. To solve
this problem, we propose a novel two-stage PLL framework
including selective disambiguation and candidate-aware
thresholding. Specifically, we first choose a part of well-
disambiguated (WD) examples based on the magnitude of
normalized entropy (NE) and integrate harmless comple-
mentary supervision from the remaining ones to train two
networks. Next, the remaining examples whose NE is lower
than the specific class-wise WD-NE threshold are selected
as additional WD ones. Meanwhile, the remaining UD
examples, whose NE is lower than the self-adaptive UD-
NE threshold and whose predictions from two networks are
agreed, are also regarded as WD ones for model train-
ing. Extensive experiments demonstrate that our proposed
method outperforms state-of-the-art PLL methods.

1. Introduction
The development of modern deep neural networks

(DNNs) relies on a large amount of perfectly labeled
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Figure 1. Illustration of the difference of labeling confidence after
label disambiguation between II-PLL (left) and ID-PLL (right).
We can see that the difficulty of identifying the true label (blue) of
examples with various types of candidate labels (CLs) is promi-
nently different. In addition, the image with sharp labeling confi-
dence on random CLs is well-disambiguated, while the image with
flat labeling confidence on ID CLs is under-disambiguated.

data in real-world tasks. However, collecting such high-
quality data in real-world scenarios is considerably time-
consuming and laborious even for experienced labeling ex-
perts [28]. To alleviate this issue, researchers have paid
much attention to partial-label learning (PLL), a weakly-
supervised learning paradigm that is labeling-friendly for
non-expert annotators, allowing to assign a candidate la-
bel set [6]. In particular, a majority of previous PLL works
implicitly employ an instance-independent (II) assumption
that the generation of each candidate label for an instance
is of equiprobability and independent of the instance itself.
But, this ideal assumption is unrealistic in real-world sce-
narios [22]. From the perspective of an image annotator, the
probability of a domain class being selected as a candidate
label is related to the visual perception information (i.e., se-
mantic, color, and shape) of an image itself. This case is
called instance-dependent (ID) [23] where the generation
of candidate labels is according to the specific features of
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CIFAR-10 CIFAR-10 CIFAR-10 (q=0.5) at Epoch 15 CIFAR-10 (ID) at Epoch 30
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Figure 2. Dynamics of label disambiguation during the training on CIFAR-10 under ID and II cases. Figure (a) presents the average
normalized entropy towards all training examples at each iteration, reflecting the whole status of label disambiguation. A lower entropy
value implies that more partially labeled training examples are well-disambiguated; Figure (b) shows the accuracy of label disambiguation
for WD and UD examples respectively; Figures (c) and (d) display the normalized entropy distribution of correctly disambiguated (blue)
and falsely disambiguated (red) examples at the early epoch respectively.

the instance, and has attracted much attention in the PLL
community recently.

To learn from the partially-labeled examples in II-PLL,
self-training based label disambiguation (LD) has achieved
great success, which progressively refines soft labeling con-
fidences [6, 24, 19] at each iteration towards each partially-
labeled example for the model training based on various
means such as the network prediction [11, 19], class acti-
vation map (CAM) [24], class prototypes [16] or consis-
tency regularization [19]. Unfortunately, these PLL meth-
ods show a serious degradation of performance in ID-PLL
[22, 23]. To alleviate this issue, researchers have started to
design specific ID-PLL algorithms recently [23, 13]. How-
ever, existing ID-PLL studies lack an insightful perception
of intrinsic challenges in ID-PLL. In this paper, we start
with an empirical study of the dynamics of LD both in II-
PLL and ID-PLL. To achieve a thorough exploration, we
first introduce a pivotal statistic to evaluate the status of LD:
normalized entropy (NE) of labeling confidences (the de-
tailed definition is referred to as Eq.(3)). The implication
is that a low NE indicates a better status of LD. Based on
this metric, we record the labeling confidence and corre-
sponding NE towards all training examples at each iteration
based on PRODEN [11] on CIFAR-10 under both II and
ID cases. Based on the statistics, we can analyze the dy-
namics of LD from three various aspects: the whole status
of LD, disambiguation accuracy, and NE distribution. The
experiment results are shown in Figure 2. In Figure 2 (a),
we calculate the average NE of labeling confidence towards
all training examples at each iteration, reflecting the whole
status of LD. We can see that the curves of LD on II-PLL
(q “ r0.1, 0.3, 0.5s) reach near zero, while the curve on ID-
PLL is close to 0.22. This phenomenon means that most
examples in II-PLL have been well-disambiguated (WD),
while a mass of under-disambiguated (UD) examples on ID-
PLL do not achieve complete disambiguation (i.e., main-
taining a relative high NE). To further explore the charac-
teristic of UD examples, we divide the whole training ex-
amples into well-disambiguated WD and UD ones based on

a fixed threshold and calculate the accuracy of labeling con-
fidence for them at each iteration respectively. The result is
shown in Figure 2 (b). We can see that UD examples main-
tain a lower oscillating disambiguation accuracy than WD
ones. On the other hand, we plot the empirical NE distribu-
tion of correctly identified (True in blue) and falsely identi-
fied (False in red) examples at epoch 15 on II (q “ 0.5) and
30 on ID respectively. As shown in Figure 2 (c) and (d), we
can see that both in II-PLL and ID-PLL, correctly identified
examples have lower NE than falsely identified ones, and
correctly identified examples in ID-PLL have more falsely
identified low NE examples which is a knotty problem in
the model training. Based on these empirical observations,
we have revealed the intrinsic challenge in ID-PLL com-
pared with II-PLL lies in massive UD examples with in-
accurate supervision in the training procedure. Moreover,
the under-disambiguation phenomenon also motivates us to
think about how to determine whether a partially labeled
training example has been disambiguated. In the above em-
pirical study, we simply use a fixed threshold of NE to dis-
criminate WD from UD ones. However, training examples
with various candidate label sets have different intrinsic dif-
ficulties of LD, and the NE of training examples varies dy-
namically with the learning process of networks. Therefore,
it may be intractable to assign an appropriate fixed threshold
for all training examples [17].

To address these challenges, we propose a novel two-
stage PLL framework including selective disambiguation
and candidate-aware thresholding. Specifically, due to the
negative role of the UD example in ID-PLL, we first choose
a part of WD examples based on the magnitude of NE and
meanwhile integrate harmless complementary supervision
from the remaining ones to train two networks simultane-
ously. This selective disambiguation procedure is expected
to learn two well-trained networks that are powerful enough
to handle the remaining examples. Next, instead of using
a fixed threshold of NE, we propose a dynamic candidate-
aware thresholding scheme that respectively maintains a
class-wise WD-NE threshold reflecting the different diffi-
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culties of LD on each class and a self-adaptive UD-NE
threshold indicating the whole status of LD on UD exam-
ples. Based on these two thresholds, we select the remain-
ing examples whose NE is lower than the specific class-wise
WD-NE threshold as additional WD ones to supplement the
selected WD set in Stage 1. Meanwhile, we also select UD
examples whose NE is lower than the UD-NE threshold and
whose predictions from two networks are agreed, as WD
ones for model training. In this way, we only leverage these
selected WD examples for model training in Stage 2. Ex-
tensive experiments demonstrate that our proposed method
outperforms state-of-the-art PLL methods. Our contribu-
tion is summarized as follows:

• We discover that the performance degradation of ID-
PLL stems from the inaccurate supervision caused by
a mass of UD examples.

• We propose a novel two-stage PLL framework in-
cluding selective disambiguation and candidate-aware
thresholding for UD examples.

• Empirically, extensive experiments show our proposed
framework’s superiority and effectiveness in both II-
PLL and ID-PLL.

2. Related Work

In this section, we first brief conventional partial-label
learning (PLL) methods with hand-crafted features and then
introduce modern deep PLL methods in an end-to-end train-
ing scheme.

2.1. Conventional Partial-label Learning

Based on hand-crafted features, the core goal of conven-
tional PLL methods is label disambiguation which iden-
tifies the concealed true label inside the candidate label
set. For this purpose, there are two common frameworks
based on averaging and identification strategy respectively.
The former aims to discriminate candidate labels from non-
candidate ones [2, 8]. This manner treats all candidate la-
bels equally and thus degrades the classifier due to noisy
labels in the candidate label set. To overcome this issue,
the latter is devoted to identifying the true label by treat-
ing it as a latent variable [27]. For this purpose, they pro-
gressively refined the labeling confidence of each candidate
label based on different meanings, such as maximum likeli-
hood criterion [9], topological structure in the feature space
[26, 22], graph matching selection [12].

The potential limitation of conventional PLL methods is
that they rely on hand-crafted features, naive linear models,
and low-efficiency optimization technologies, thus leading
to the limited scalability of large-scale datasets.

2.2. Deep Partial-label Learning

To solve the mentioned weakness of conventional PLL
methods, researchers pay much attention to training a deep
neural network with partial-labeled data in an end-to-end
manner referred to as deep PLL [19, 24, 14].
Instance-independent PLL. Most previous PLL works
implicitly employed an instance-independent assumption
about the uniform generation process of the candidate la-
bel set. Specifically, the first theoretically guaranteed al-
gorithm was proposed by [6] with risk consistency and
classifier consistency. Similarly, [11] proposed to progres-
sively identify the true label with theoretical guarantees
and achieved impressive performance on image classifi-
cation benchmarks. Meanwhile, [18] proposed the lever-
aged weighted loss, a family of loss functions with risk
consistency, that considered the trade-off between losses
on candidate and non-candidate labels. Inspired by con-
trastive learning, [16] utilized it to establish well-separated
class prototypes and thereby performed label disambigua-
tion based on the distance between instances and these class
prototypes. Recently, [19] utilized consistency regulariza-
tion to achieve state-of-the-art performances in deep PLL.
Instance-dependent PLL. Recently, instance-dependent
PLL (ID-PLL), a more realistic case considering the genera-
tion of the candidate label set related to the specific features
of the instance, has attracted much attention in the commu-
nity. The first work [23] aimed to recover the latent label
distribution via a label enhancement process. [20] proposed
to utilize contrastive learning by leveraging additional infor-
mation from label ambiguity. Recent work [13] considered
a decompositional generation process of candidate labels
and explicitly modeled this process via decomposed prob-
ability distribution models. However, these studies lack an
insightful perception of the intrinsic challenge in ID-PLL.
Moreover, these PLL methods based on naive label disam-
biguation could suffer from under-disambiguation shown in
the empirical study, thereby leading to serious performance
degradation.

3. Problem Setup

In this section, we introduce the symbols and terminolo-
gies to define the problem of partial-label learning (PLL).
Supposed we have a partially-labeled training dataset with
n examples D “ txi, Yiu

n
i“1, each pair consists of an exam-

ple xi P X and a corresponding candidate label set Yi Ă Y
where X and Y “ t1, 2, ..., cu denote the input space and
the label space respectively. Note that different from con-
ventional supervised learning, the ground-truth label yi P Y
is concealed in the candidate label set.

The objective of deep PLL is to train a deep neural net-
work fp¨q based on these partially-labeled examples D. Ob-
viously, directly utilizing category cross-entropy loss cal-
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Figure 3. The pipeline of our proposed framework. The first stage is selective disambiguation which selects a part of WD examples based
on the magnitude of normalized entropy (NE) and meanwhile integrates harmless complementary supervision from the remaining examples
to learn well-trained models simultaneously. In the second stage, the remaining examples whose NE is lower than the specific class-wise
WD-NE threshold (τwd) are additionally selected into the WD set. Meanwhile, the remaining UD examples, whose NE is lower than the
self-adaptive UD-NE threshold τud which is the average NE of UD examples updated by the exponential moving average (EMA), and
whose predictions from two models are agreed, are also regarded as the WD ones for model training. We abbreviate “Cat”, “Dog”, “Lion”,
and “Bear” to C, D, L, and B respectively.

culated by multiple candidate labels could not train an ef-
fective network with convergence, due to the inherent label
ambiguity in Yi. Hence, the principle approach is label dis-
ambiguation that identifies true label yi from the candidate
label set Yi. To achieve this aim, an example xi is gener-
ally equipped with a labeling confidence vector pi P r0, 1sc

(corresponding to a candidate label vector yi) where each
entry denotes the probability of the corresponding candi-
date label being the ground-truth one. Based on this, The
update of pi implies the process of label disambiguation.
Generally, a vanilla means of label disambiguation [11] is
as follows:

pi “ NMpSMpfpxiqq ¨ yiq, (1)

where fpxiq is the model output, NMp¨q is a normalization
operator, and SMp¨q is the softmax function. The implica-
tion of this equation is twofold. First, the labeling confi-
dence of non-candidate labels maintains zero. Second, the
labeling confidence of candidate labels is updating slightly
and progressively based on the magnitude of model out-
put. After this procedure, the model is trained by the cross-
entropy loss with the updating pi:

ℓpxi,piq “
ÿc

j“1
´pij logpfjpxiqq. (2)

The above is a versatile PLL framework [6, 11, 19] that
archives satisfying performance in instance-independent
(II) PLL where the generated candidate label set Y is ran-
domly sampled from the label space Y . However, label
ambiguity in instance-dependent (ID) PLL is more inher-
ently challenging because more indistinguishable candidate
labels co-occur with the true label in the candidate label set
Y , thereby leading to a serious under-disambiguation phe-
nomenon in ID-PLL.

4. Methodology
To address the challenge in instance-dependent partial

label learning (ID-PLL), we propose a novel two-stage
PLL framework including selective disambiguation and
candidate-aware thresholding. An overview of the proposed
framework is shown in Figure 3. Next, we introduce a key
metric normalized entropy (NE) to evaluate the status of la-
bel disambiguation (LD).

4.1. Normalized Entropy

An intuitive measurement to evaluate the status of LD is
the common metric entropy of labeling confidence p. How-
ever, the entropy of labeling confidence on different num-
bers of candidate labels is not comparable due to the inher-
ent property of entropy [7]. For example, suppose there are
three examples with different numbers of candidate labels
and corresponding labeling confidences: [0.8, 0.2], [0.8,
0.1, 0.1], [0.8, 0.05, 0.03, 0.02], the calculated entropy val-
ues are 0.72 ă 0.92 ă 1.02 respectively. We can see that
although these three examples hold a similar status of LD,
their entropy values incrementally increase with the num-
ber of candidate labels. Actually, the training example with
more candidate labels should be more difficult to achieve
the same status of LD, and thereby should possess a rela-
tively lower entropy. For this purpose, we employ normal-
ized entropy [7] that considers the magnitude of the candi-
date label set to modulate the original entropy:

NEppiq “ ´
ÿ

j

pij logppijq

logp|Yi|q
, (3)

where |Yi| is the number of candidate labels of xi. Based
on this metric, the normalized entropy values of the above
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three examples are 0.72 ą 0.58 ą 0.51 respectively, which
satisfies our consideration.

4.2. Selective Disambiguation

Based on the NE metric, we are able to effectively eval-
uate the status of LD towards all training examples. In the
empirical study, we have found that the supervision of well-
disambiguated (WD) examples is more accurate and stable
than that of under-disambiguated (UD) ones. Therefore, we
propose selective disambiguation that first selects a part of
WD examples and meanwhile integrates harmless comple-
mentary supervision from the remaining ones to learn well-
trained networks. Before the selection procedure, we first
warm-up networks with the ordinal LD procedure in Eq.(1)
for a certain epoch ϕ1, making the network produce a more
efficient NE distribution that is beneficial for the subsequent
selection process.
Low-NE selection. Towards all training examples at each
iteration, we globally select a part of low NE examples as
WD ones.

rDwd “ argminD1 :|D1
|ďγ|D|

ÿ

pxi,piqPD1

NEppiq, (4)

where γ is a selection proportion parameter and |D| is the
number of training data. Note that we execute the selection
procedure in each iteration before training the networks.
After the selection procedure, during a mini-batch training
process, we can calculate the ordinal cross-entropy loss for
the selected WD set rBwd Ă rDwd in a training mini-batch:

Lwd “
1

| rBwd|

ÿ

xiP rBwd

ℓpWpxiq,piq, (5)

where | rBwd| is the number of selected WD examples in a
mini-batch and Wp¨q is a weakly-augmented transform op-
erator. Following the previous work [19], we also employ
the consistency regularization technique for boosting per-
formance:

Lcr “
1

| rBwd|

ÿ

xiP rBwd

ℓpSpxiq,piq, (6)

where Sp¨q is a strongly-augmented transform operator de-
tailed in the experiment. Besides, we further incorporate the
widely used technique of mix-up [25]. Concretely, we gen-
erate a virtual mixed training example (x

1

, ry
1

) by linearly
interpolating the randomly sampled pair of WD examples
(xi, ryi) and (xj , ryj) where ryi is a one-hot vector corre-
sponding to the predicted label ryi in pi. Based on this, we
can obtain a virtual mix-up WD set rB1

wd and calculate the
cross-entropy loss towards it:

Lm “
1

| rB1

wd|

ÿ

px
1

i,ry1
qP rB1

wd

ℓpx
1

, ry
1

q. (7)

Complementary supervision. Due to the inaccurate su-
pervision of the remaining examples, it cannot directly
leverage them for model training. Instead of discard-
ing them for model training, motivated by the success of
complementary-label learning [5, 19], we further utilize
harmless complementary supervision from non-candidates
of the remaining examples for model training:

Lcs “ ´
1

| rBr|

ÿ

i“1

c
ÿ

j“1

p1 ´ pijqlogp1 ´ fjpWpxiqqq, (8)

where rBr is the remaining non-selected examples in a mini-
batch. The implication of Eq.(8) is that the log-likelihoods
of predictions from non-candidates should be small since
their labeling confidence maintains zeros. Finally, we can
use the overall loss to update two networks respectively in
Stage 1:

L1 “ Lwd ` βpLcs ` Lcr ` Lmq, (9)

where β is a trade-off parameter and we ramp it up linearly
[19]. This stage continues until a certain epoch ϕ2 to learn
well-trained networks that are expected to be powerful for
dealing with remaining examples in the subsequent stage of
candidate-aware thresholding.

4.3. Candidate-aware Thresholding

After the selective disambiguation procedure, the well-
trained networks are expected to have the ability to handle
the remaining examples, i.e., determining whether the re-
maining examples have been disambiguated and selecting
qualified examples as WD ones for model training. For this
purpose, instead of using a fixed threshold for all remaining
examples, we propose a dynamic candidate-aware thresh-
olding (CAT) scheme that respectively maintains a class-
wise WD-NE threshold τwd “ r0, 1sc reflecting the differ-
ent difficulties of LD on each class c and a self-adaptive
UD-NE threshold τud indicating the whole LD status on UD
examples. Actually, we maintain two different thresholds
for two models respectively. For convenience, we consider
a single model case in the next. Formally, the class-wise
WD-NE threshold τwd is calculated by:

τ cwd “
1

| rDc
wd|

ÿ

xiP rDc
wd

NEppiq, (10)

where rDc
wd Ă rDwd “ tpxi, cq|c “ argmaxppiqu is a class-

wise subset whose predicted label is c. Note that τwd is
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calculated in a global fashion using the selected WD subset
rDwd in the selective disambiguation procedure. In a mini-
batch training process, we additionally select the remaining
examples rBawd whose NE is lower than the specific class-
wise WD-NE threshold as WD ones:

NEppiq ă τ cwd, (11)

where c “ argmaxppiq is the predicted label in rBr. The
potential advantage of additionally selecting WD exam-
ples is to combat the class-imbalanced selection bias in
the first stage [15]. This is because the class-wise WD-
NE threshold would possess a larger (lower) value for a
hard (easy) class, thereby producing more (less) additional
WD examples selected from a hard (easy) class. After this
process, the remaining examples are regarded as UD ones
rBud “ rBr ´ rBawd. Formally, we also maintain a self-
adaptive UD-NE threshold τud by the exponential moving
average (EMA):

τ
ptq
ud “ λτ

pt´1q

ud ` p1 ´ λq
1

| rBud|

ÿ

xiP rBud

NEppiq, (12)

where τ
ptq
ud is the UD-NE threshold at the t-th step and λ P

p0, 1q is the momentum decay of EMA. The initial value of
τud is set to 0. Based on this, we hold that the UD examples
whose NE is lower than the UD-NE threshold have been
disambiguated. Due to the inaccurate supervision of UD
examples, we additionally employ the agreement condition
of two networks to reduce the selection error:

pNEppiq ă τudq&pc1 ““ c2q, (13)

where cipi “ t1, 2uq is the predicted label of the i-th net-
work. In Stage 2, we further leverage the additionally se-
lected WD examples for model training:

L2 “ Lwd ` βpLcr ` Lmq. (14)

The pseudo-code of the proposed method is in Algorithm 1.

5. Experiment

In this section, we conduct extensive experiments
with benchmark datasets: Kuzushiji-MNIST [1], Fashion-
MNIST [21], CIFAR-10 and CIFAR-100 [10] to demon-
strate the superiority and effectiveness of our proposed
method. We first introduce the generation of instance-
dependent (ID) and instance-independent (II) candidate la-
bels and then show compared PLL methods and the de-
tail of implementation. Finally, we present experiment re-
sults including test accuracy comparison, ablation study,
and hyper-parameter analysis.

Algorithm 1: Our Framework
Input: Partially-labeled dataset D, model1 f1p¨q,

model2 f2p¨q parameters: loss parameter β,
selection proportion γ, the epoch ϕ1, ϕ2, and
Tmax, weak and strong data augmentation
Wp¨q and Sp¨q, τud “ 0, λ “ 0.99.

Output: model1 and model2
1 for t ă Tmax do
2 for t ă ϕ1 do
3 Warm-up f1p¨q and f2p¨q by Eq.(1);
4 end
5 for t ą“ ϕ1 do
6 Select WD examples rDwd by Eq.(4)

respectively for each model;
7 Calculate the WD-NE threshold τwd by

Eq.(10);
8 if t ą“ ϕ2 then
9 Select addition WD examples rBawd by

Eq.(11);
10 Update the UD-NE threshold τud by

Eq.(12);
11 Select qualified UD examples rBud by

Eq.(13);
12 end
13 Calculate the overall loss L1 Eq.(9) or L2

Eq.(14) to update two models;
14 Update labeling confidence by Eq.(1);
15 end
16 end

5.1. Setup

Datasets. On four benchmark datasets, to generate
instance-dependent (ID) candidate labels, we follow the
work [23] where the probability of each domain class be-
ing selected as a candidate label is related to each instance
itself by utilizing the prediction of a neural network trained
with original clean labels. On the other hand, we gener-
ate instance-independent (II) candidate labels by a uniform
flipping probability q “ r0.2, 0.4, 0.6s where q implies a
higher degree of label ambiguity [6]. Particularly, we gen-
erate candidate labels that belong to the same super-class
on CIFAR-100 with hierarchical labels denoted by CIFAR-
100-H (q “ 0.5).
Compared methods. Two ID-PLL methods are com-
pared: IDGP [13] that assumes that the generation process
of the candidate labels could decompose into two sequen-
tial parts, and ABLE [20], a contrastive learning method
that utilizes the label ambiguity information. Moreover, we
compare five II-PLL algorithms: (1) CC [6], a classifier-
consistent method that assumes a set-level uniform data
generation process; (2) PRODEN [11], a self-training-based
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Table 1. Test Accuracy comparisons on Fashion-MNIST, Kuzushiji-MNIST, CIFAR-10 and CIFAR-100 with instance-dependent partial
labels. The best result is highlighted.

Datasets CC PRODEN LWS PiCO CRDPLL ABLE IDGP Ours
K-MNIST 92.65˘.12 96.18˘.12 97.88˘.26 96.27˘.14 98.23˘.10 98.15˘.10 97.85˘.25 98.35˘.12

F-MNIST 86.23˘.15 88.32˘.10 87.65˘.13 88.15˘.06 89.15˘.08 90.14˘.15 88.98˘.39 92.81˘.18

CIFAR-10 79.37˘.28 86.54˘.16 89.25˘.19 91.15˘.18 87.29˘.25 92.25˘.18 85.62˘.21 95.04˘.15

CIFAR-100 61.45˘.33 64.27˘.20 71.14˘.25 70.88˘.12 77.82˘.12 74.36˘.29 66.88˘.37 78.67˘.22

Table 2. Test Accuracy comparisons on Fashion-MNIST, Kuzushiji-MNIST, CIFAR-10 and CIFAR-100 with uniform partial labels on
different levels of label disambiguity q. The best result is highlighted. in bold.

Datasets q CC PRODEN LWS PiCO CRDPLL ABLE IDGP Ours

K-MNIST
0.2 96.12˘.18 97.65˘.24 98.12˘.15 97.86˘.09 98.66˘.13 98.21˘.15 98.09˘.14 98.72˘.15
0.4 95.64˘.15 96.67˘.10 97.42˘.12 97.39˘.12 98.15˘.05 97.86˘.20 97.78˘.33 98.58˘.18
0.6 94.25˘.24 95.43˘.21 96.33˘.27 97.12˘.18 97.74˘.12 97.29˘.13 97.10˘.22 98.24˘.22

F-MNIST
0.2 92.23˘.26 93.42˘.15 94.41˘.10 94.62˘.22 94.53˘.20 94.33˘.23 94.12˘.11 95.02˘.16
0.4 91.89˘.12 92.56˘.13 93.90˘.15 94.13˘.17 94.22˘.09 94.10˘.15 93.78˘.26 94.85˘.10
0.6 90.15˘.17 91.26˘.22 92.72˘.23 93.24˘.12 93.76˘.13 93.02˘.14 93.14˘.18 94.62˘.25

CIFAR-10
0.2 87.62˘.15 92.35˘.14 93.85˘.13 94.53˘.17 96.56˘.31 95.24˘.26 93.34˘.15 96.58˘.12
0.4 85.88˘.12 89.68˘.12 92.54˘.15 94.15˘.15 96.23˘.28 94.71˘.20 92.85˘.16 96.35˘.15
0.6 82.57˘.23 86.42˘.28 90.38˘.21 92.95˘.10 95.89˘.17 93.15˘.13 90.15˘.24 96.17˘.26

CIFAR-100
H-0.5 62.24˘.10 66.17˘.20 74.53˘.14 72.37˘.24 78.01˘.13 73.41˘.13 67.85˘.26 80.25˘.14
0.05 63.02˘.17 65.21˘.28 74.18˘.21 72.18˘.26 78.89˘.15 73.17˘.20 68.39˘.17 81.26˘.18
0.1 61.63˘.18 64.15˘.16 72.64˘.15 60.12˘.20 78.12˘.20 62.83˘.12 58.22˘.14 80.34˘.20

method that progressively identifies the true labels using the
output of the classier itself; (3) LWS [18], a set of loss func-
tions that weights the risk function by means of a trade-
off between losses on candidates and non-candidates; (4)
PiCO [16], a contrastive learning-based method that estab-
lishes class prototypes for label disambiguation; (5) CRD-
PLL [19], a regularization based method that achieves state-
of-the-art performance in instance-independent PLL.
Implementation. We employ a basic training scheme: a
ResNet-18 backbone, a standard SGD optimizer with a
learning rate of 0.05, a momentum of 0.9, a weight de-
cay of 5e-4, and cosine learning rate schedule with a decay
rate of 0.1, and a total training epoch 450, the batch size is
256. For a fair comparison, we reimplement CC, PRODEN,
LWS, and CRDPLL (the batch size is 64) using the same
training scheme. In particular, CC, PRODEN, and LWS
are equipped with weak transform operators random crop-
ping and horizontal flipping, while CRDPLL is additionally
equipped with a strong transform operator RandAugment
[3] on CIFAR-10 and CIFAR100 (CutOut [4] on Fashion-
MNIST, Kuzushiji-MNIST). These weak and strong trans-
form operators are also used in our method as Wp¨q and
Sp¨q respectively. For PiCO, ABLE, and IDGP, we follow
their original training schemes. For the parameters in our
method, the epoch ϕ1 (ϕ2) is set to 60 (300), the selection
proportion γ is set to 0.6, the momentum λ is set to 0.99,
β is ramped up to 1 linearly with the ramp-up epoch 100,

and the shape parameter of beta distribution used in mix-up
is set to 4. We present the mean and standard deviation in
each case based on three trials.

5.2. Experimental Results

Test accuracy comparison. As shown in Table 1, our
method significantly outperforms all counterparts on the ID
case. This definitely validates the superiority of the pro-
posed method to combat ID candidate labels. Moreover, we
also show the comparison results on the II case with differ-
ent levels of label ambiguity q “ r0.2, 0.4, 0.6s in Table 2.
We can see that our method also achieves superior results
against state-of-the-art PLL methods. From the compari-
son of these two tables, we can see that existing PLL meth-
ods have a prominent degradation of performance in the ID
case compared with the II case. This observation justifies
our empirical study in Figure 2 and implies the increased
difficulty of label disambiguation against ID candidate la-
bels. Fortunately, our proposed method maintains superior
performance in these two cases.
Dynamic evaluation. We evaluate the dynamics of our
method on three aspects: the accuracy (precision) of dis-
ambiguated labeling confidence (pi), selective selection
( rDwd), and candidate-aware thresholding ( rBawd and rBud).
As shown in Figure 4, the accuracy of disambiguated la-
beling confidence reaches a high level on different datasets,
e.g., near 99% on CIFAR-10 (0.2) and 98% on F-MNIST
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Figure 4. Curves of the accuracy of disambiguated labeling confidence (red), the precision of selective selection (green), and precision of
candidate-aware thresholding (blue). The vertical dotted line divides the different stages during the training.
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Figure 5. Dynamics of candidate-aware thresholding during the training. The first two sub-figures present class-wise WD-NE at the
beginning training of epoch 300 (ending of epoch 450). The last two sub-figures present curves of UD-NE at each iteration.

(0.2-0.6). This definitely verifies the effectiveness of la-
bel disambiguation in the proposed method. On the other
hand, the precision of selection maintains a high level in
all cases except F-MNIST (ID). This procedure ensures that
correctly selected WD examples can induce a well-trained
network that is beneficial for the subsequent stage. More-
over, the precision of candidate-aware thresholding is kept
at a high level in the ID case so that correctly identified ex-
amples can be leveraged for model training.

Analysis of candidate-aware thresholding. As shown in
Figure 5, the first two sub-figures show class-wise WD-NE
at the beginning training of epoch 300 (ending of epoch
450), and the last two sub-figures present curves of UD-
NE at each iteration (from epoch 300 to 450). From the first
two sub-figures, we can see that under the low level of la-
bel ambiguity (q “ 0.2), WD-NE is well class-balanced at
the beginning and end, while under the high level of label
ambiguity (q “ 0.4, 0.6, and ID), WD-NE becomes rela-
tively class-imbalanced at the beginning. This phenomenon
implies high label ambiguity degrades selective selection,

resulting in a class imbalance in the selected WD set. For-
tunately, by virtue of class-wise WD-NE thresholding, the
selected WD set becomes much more class-balanced at the
end of training. On the other hand, class-wise WD-NE is
constantly decreased during the training, which adapts to
the learning process of networks. From the last two sub-
figures, we can see that UD-NE is adaptively updated at
each iteration according to the learning status of UD exam-
ples. The overall trend of UD-NE is also to decrease like
WD-NE but maintain a higher value reflecting the under-
disambiguation status. In particular, as the label ambiguity
increases, UD-NE also maintains a larger value. This im-
plies that high label ambiguity also affects UD-NE, leading
to a larger threshold for UD examples.

5.3. Ablation Studies

In this section, we present our ablation studies shown in
Table 3. The item ”w/o consistency regularization Lcr” or
”w/o mix-up augmentation Lm” means that we do not use
the data augmentation technique by directly discarding the
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Table 3. Ablation studies on CIFAR-10 (ID).

Ablation Accuracy

w/o consistency regularization Lcr 94.35˘.23
w/o mix-up augmentation Lm 94.46˘.18

w/o complementary supervision Lcs 95.20˘.12
with fixed threshold τwd and τud 94.58˘.18

w/o UD examples in Stage 2 93.89˘.24
with only WD examples in Stage 1 94.12˘.20

Ours 95.62˘.15

loss item Lcr or Lm in Eq.(9) and Eq.(14). The degradation
of performance implies the significance of data augmenta-
tion in the proposed method. The item ”w/o complementary
supervision Lcs” means that we do not use complementary
supervision from the remaining examples by directly dis-
carding the loss item Lcs in Eq.(9). Although the final ac-
curacy drops sightly, the accuracy at the end of Stage 1 has
a serious degradation, i.e., from 93.25% to 91.52%. The
last two items explore the effect of selected WD and UD
examples for model training in different stages. The item
”with fixed threshold τwd and τud” means that we use a
fixed threshold τwd “ 1e ´ 3 in Eq.(11) and τud “ 1e ´ 2
in Eq.(13). This results in fewer examples being selected
as WD ones in Stage 2 thereby degrading the performance.
The item ”w/o UD examples in Stage 2” means that we to-
tally discard selected qualified UD examples in candidate-
aware thresholding. This would reduce the number of se-
lected training examples, thereby losing useful information
for generalization and obtaining the degraded performance.
The item ”with only WD examples in Stage 1” means that
we only leverage selected WD examples in Stage 1 and do
not add additional WD ones from Stage 2 for model train-
ing. This also leads to a serious reduction in selected train-
ing examples and a sharp degradation in performance.

5.4. Hyper-parameter Analysis

Here, we evaluate the main hyper-parameters in our
method, including selection proportion γ, the epoch ϕ1 and
ϕ2, and β. As shown in Figure 3, with a small value of γ,
i.e., a few selected WD examples, the performance drops
constantly. This is because too few selected WD examples
in Stage 1 cannot learn well-trained networks. Otherwise,
with a large γ, too many wrongly identified examples in the
selected WD set degrade the performance seriously. For the
epoch of warm-up ϕ1, a small value leads to serious degra-
dation of performance. This is because the network can not
produce an efficient normalized entropy distribution for se-
lective disambiguation, thereby reducing the precision of
the selection procedure. Therefore, sufficient warming up
of networks is significant in the proposed method. On the
contrary, warming up too long could overfit wrongly iden-
tified candidate labels, thereby degrading the performance.
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Figure 6. Varying parameters on CIFAR-10 (ID).

For the epoch of training ϕ2, a large value i.e., the long
training of Stage 1 slightly improves the performance. For
β, the performance drops sharply as β increases. This is
because paying much attention to data augmentation and
complementary supervision affects the gradient updating of
networks.

6. Conclusion

In this paper, we deal with the problem of instance-
dependent partial-label learning (ID-PLL). Specially, we
start with an insightful empirical study against the dynam-
ics of label disambiguation during the training process,
and discover that the performance degradation of ID-PLL
stems from the inaccurate supervision caused by massive
under-disambiguated (UD) examples. To address this chal-
lenge, we propose a novel two-stage PLL framework in-
cluding selective selection and candidate-aware threshold-
ing. The former first selects a part of WD examples and in-
tegrates complementary supervision of the remaining ones
for model training. The latter maintains two dynamic and
self-adaptive thresholds for WD and UD examples respec-
tively, and selects additional WD and qualified UD ones for
model training. Extensive experiments verify the superior-
ity and effectiveness of the proposed method. In the future,
it is interesting to develop other advanced methods to detect
and handle UD examples effectively.

7. Acknowledgement

Lei Feng is supported by the National Natural Science
Foundation of China (Grant No. 62106028), Chongqing
Overseas Chinese Entrepreneurship and Innovation Sup-
port Program, CAAI-Huawei MindSpore Open Fund,
and Chongqing Artificial Intelligence Innovation Center.
Guowu Yang is supported by the National Natural Science
Foundation of China (Grant No. 62172075). The authors
also wish to thank the anonymous reviewers for their help-
ful and valuable comments.

1800



References
[1] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto,

Alex Lamb, Kazuaki Yamamoto, and David Ha. Deep
learning for classical japanese literature. arXiv preprint
arXiv:1812.01718, 2018. 6

[2] Timothee Cour, Ben Sapp, and Ben Taskar. Learning from
partial labels. Journal of Machine Learning Research,
12(5):1501–1536, 2011. 3

[3] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmen-
tation with a reduced search space. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition workshops, pages 702–703, 2020. 7

[4] Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 7

[5] Lei Feng, Takuo Kaneko, Bo Han, Gang Niu, Bo An, and
Masashi Sugiyama. Learning with multiple complementary
labels. In Proceedings of the International Conference on
Machine Learning, pages 3072–3081. PMLR, 2020. 5

[6] Lei Feng, Jiaqi Lv, Bo Han, Miao Xu, Gang Niu, Xin Geng,
Bo An, and Masashi Sugiyama. Provably consistent partial-
label learning. In Advances in Neural Information Process-
ing Systems, 2020. 1, 2, 3, 4, 6

[7] Babak Hassibi and Sormeh Shadbakht. Normalized entropy
vectors, network information theory and convex optimiza-
tion. In IEEE Information Theory Workshop on Information
Theory for Wireless Networks, pages 1–5. IEEE, 2007. 4
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