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Abstract

Heterogeneous image fusion (HIF) techniques aim to en-
hance image quality by merging complementary informa-
tion from images captured by different sensors. Among
these algorithms, deep unfolding network (DUN)-based
methods achieve promising performance but still suffer from
two issues: they lack a degradation-resistant-oriented fu-
sion model and struggle to adequately consider the struc-
tural properties of DUNs, making them vulnerable to degra-
dation scenarios. In this paper, we propose a Degradation-
Resistant Unfolding Network (DeRUN) for the HIF task to
generate high-quality fused images even in degradation sce-
narios. Specifically, we introduce a novel HIF model for
degradation resistance and derive its optimization proce-
dures. Then, we incorporate the optimization unfolding
process into the proposed DeRUN for end-to-end training.
To ensure the robustness and efficiency of DeRUN, we em-
ploy a joint constraint strategy and a lightweight partial
weight sharing module. To train DeRUN, we further pro-
pose a gradient direction-based entropy loss with power-
ful texture representation capacity. Extensive experiments
show that DeRUN significantly outperforms existing meth-
ods on four HIF tasks, as well as downstream applications,
with cheaper computational and memory costs.

1. Introduction

Heterogeneous image fusion (HIF) aims to integrate im-
ages acquired by different imaging sensors to generate a
more robust and informative image. HIF has been investi-
gated in various domains, such as infrared and visible image
fusion (IVF) [61], medical image fusion (MIF) [45], and
biological image fusion (BIF) [41], based on different sen-
sors. By merging the complementary information from the
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Infrared Visible IVF-Net [17] DeRUN
Figure 1: IVF results under degradation scenarios, including low
light and heavy smoke. DeRUN generates more visual-appealing
results for its degradation resistance capacity.

heterogeneous images, the fused image is expected to have
better quality than individual ones and thus serves better
for decision-making or subsequent processing, especially
in degradation scenarios such as extreme weather in IVF,
magnetic turbulence in MIF, and phase noise in BIF.

Taking the IVF task as an example, visible images typi-
cally contain more details but are easily influenced by poor
illumination, fog, and other factors. In contrast, infrared im-
ages are resistant to lighting and weather disturbances but
usually have poor texture details. Hence, IVF aims to get
fused images that preserve texture details from visible im-
ages and the robust thermal radiation from infrared images
simultaneously. The fused images with enhanced quality
and informative components can better resist degradation
conditions and thus benefit high-level image analysis.

Existing HIF techniques can be classified into model-
based and learning-based methods. Model-based fusion
methods focus on iteratively solving the optimization-based
fusion framework with manually designed fusion rules [30,
34]. Although guaranteed with strong interpretability, such
methods are limited by hand-crafted feature extractors with
poor generalizability, thus failing to cope with degradation
conditions. Benefiting from the nonlinear capacity of con-
volutional neural network (CNN), learning-based fusion so-
lutions have strong generalizability by learning an end-to-
end fusion mapping [60, 65, 64]. However, such learning-
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based methods are criticized as black boxes [6] for lacking
interpretability, which inevitably suppresses the fusion per-
formance, especially in complex degradation scenarios.

Recently, a novel learning-based technique called deep
unfolding network (DUN) has been proposed to unify the
merits of model-based and deep learning-based methods.
Specifically, DUNs unfold the iterative optimization steps
of a model-based solution into a deep neural network for
end-to-end training. DM-Fusion [44] and IVF-Net [17]
have introduced DUN to the IVF task and achieved promis-
ing performance in most cases. However, existing DUN-
based HIF techniques suffer from two issues. (i) They lack
a fusion model dedicated to alleviating degradation, making
it difficult to fully leverage the complementary information
in complex degradation scenarios. (ii) These methods fail
to entirely consider the structural characteristics of DUNs,
thus neglecting to employ the valuable inter-module infor-
mation interaction and lacking an efficient feature extrac-
tion module among the cascade structure. Consequently, as
shown in Fig. 1, existing DUN-based methods struggle to
generate visually appealing results in degradation scenarios.

To address the above problem, in this paper, we propose
a novel deep unfolding network, Degradation-Resistant Un-
folding Network (DeRUN), for the HIF task to generate
high-quality fused images even in degradation scenarios
(see Fig. 1). DeRUN is derived from a novel fusion model
(HIFM) which improves the existing fusion model (Eq. (1))
in salient information emphasis and noise suppression, thus
better resisting degradation conditions. Next, we frame
the iterative optimization process of the fusion model into
a multi-stage network, where each stage consists of three
modules: data fusion module (DFM), visual fidelity mod-
ule (VFM), and structure preservation module (SPM), with
all the connections following the update procedure, thus ac-
commodating interpretability and generalizability.

To ensure the robustness and efficiency of DeRUN, we
incorporate a joint constraint strategy (JCS) and a partial
weight sharing module (PWSM). Specifically, we propose
JCS by imposing physical and denoising constraints, which
are derived from DFM and VFM, on SPM to ensure the ro-
bustness of DeRUN in salient texture enhancement even in
degradation scenarios. Additionally, to achieve efficient and
effective feature extraction, we propose a lightweight net-
work named PWSM, which can also mitigate the domain
discrepancy problem of JCS. We further propose to train
DeRUN with a novel gradient direction-based entropy loss.
This loss is inspired by the group property of gradient di-
rections for weak boundary recognition and noise removal,
thus encouraging DeRUN to possess the texture representa-
tion capacity, even in degradation scenarios.

Our contributions are summarized as follows:

• We propose DeRUN for HIF, which unifies inter-
pretability and generalization, to generate high-quality

fused images even in degradation scenarios.

• We propose a series of valid techniques to ensure the
robustness and efficiency of our DeRUN model, in-
cluding the joint constraint strategy (JCS), the partial
weight sharing module (PWSM), and a novel gradient
direction-based entropy loss dubbed LGDE loss.

• Extensive experiments on four HIF tasks verify the su-
periority of our DeRUN to existing methods in terms
of image quality, running efficiency, degradation resis-
tance, and favorability in downstream applications.

2. Related Work

Heterogeneous image fusion. Early works address HIF in
a model-based fashion by modeling physic priors with some
optimization techniques, such as image decomposition [25]
and saliency detection [34]. However, these methods usu-
ally suffer from poor generalizability for hand-crafted oper-
ators, thus failing to handle complex degradation. Learning-
based methods have dominated this field recently. Some
methods generated fused images with Generative Adversar-
ial Networks from the concatenation of sources [63, 24, 62]
or individually [33, 28]. DPCN [41] proposed a detail-
preserving network with two branches corresponding to the
two source inputs on the BIF task. U2Fusion [46] designed
a VGG16-based unified fusion framework with saliency
maps in IVF and MIF tasks. While these learning-based
methods treat the neural network as a black box with poor
interpretability, suppressing fusion performance.

To alleviate this problem, DM-Fusion [44] introduced
DUN to the IVF task with the existing fusion model [35].
Moreover, IVF-Net [17] designed a novel fusion model to
fuse infrared and visible images with different resolutions.
However, current DUN-based HIF methods neither con-
tain a degradation-resistant-oriented fusion model nor ad-
equately consider the structural properties of DUNs, mak-
ing it difficult to fully leverage the complementary informa-
tion in complex degradation scenarios and thus struggling to
generate visually appealing results in degradation scenarios.

Unlike existing DUN-based techniques, we propose
DeRUN to generate high-quality results even in degradation
conditions, which comprises a degradation-resistant model,
a joint constraint strategy, a lightweight feature extraction
module, and a gradient direction-based entropy loss.
Deep unfolding network. Early deep unfolding networks
(DUNs) are devoted to unfolding the computational graph
of an iterative algorithm to a deep neural network to train
the predefined parameters and operators in an end-to-end
manner, e.g., LSC [5] and ADMM-Net [50]. With the de-
velopment of CNN, current existing DUNs tend to use off-
the-shelf CNN modules to fit the physical priors in the opti-
mization task [26, 4]. While increasing the nonlinear capac-
ity of the framework, they neglect the significant constraint
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of prior information on system imaging and weaken the in-
terpretability of the DUNs. To overcome these problems,
some DUNs only use the CNN modules, e.g., U-Net and
DenseNet, for feature extraction [66, 57], which, however,
leads to heavy storage burdens. Our DeRUN model directly
unfolds the iterative minimization process of HIFM for in-
terpretability and proposes the lightweight PWSM for effi-
cient and effective feature extraction.

3. Methodology

In this section, we take the IVF task as an example to
explain the working mechanism of DeRUN.

3.1. HIFM Model

Given an infrared image U and a visible image V, early
model-based IVF methods typically obtain the fused image
X by optimizing the objective function [31, 56]:

min
X

1

2
∥X−U∥22 + λ∥∇X−∇V∥pp, (1)

where λ, ∥ • ∥p, ∇ represent a trade-off parameter, ℓp-norm,
the gradient operator. Eq. (1) encourages X to preserve the
global appearance from U and texture details from V.

Inspired by the success of residual priors in related
fields [51, 38], some model-based IVF methods also intro-
duce the cross-field residual map M = U −V to enhance
the pixel-level salient information by the fidelity term [35]
and rewrite Eq. (1) with the residual variable Y = X−V:

min
Y

1

2
∥Y −M∥22 +

L∑
l=1

λlψ (∇lY) , (2)

where L, λl, ψ(•), and ∇l denote the filter number, trade-off
parameter, regularizer, and Sobel operator [29]. The final
result X can be calculated by X = Yfinal +V. For smooth-
ness, existing fusion methods set ψ(•) as ℓ2-norm [35].
However, since V is sensitive to imaging scenarios, simple
subtraction of U and V struggles to eradicate the degrada-
tion, such as heavy fog or complex noise, which leads to the
presence of undesired noise and artifacts in the residual map
M and further diminishes the quality of Y. To overcome
this, we set ψ(•) as ℓ1-norm regularizer, which can suppress
undesired degradation in Y and serve as a denoiser.

In addition to pixel-level saliency, salient texture details
are also critical for maintaining salient information. There-
fore, we propose a sparse texture constraint for Y to fo-
cus on the salient texture in M under sparse scenarios. By
incorporating the salient residual map and introducing the
salient texture constraint, the final energy-based HIF model
(HIFM) is designed to emphasize salient information at
both pixel and texture levels while effectively suppressing
undesired noise. Our HIFM is formulated as follows:

min
Y

1

2
∥Y−M∥22+

L∑
l=1

λlψ(∇lY)+
K∑

k=1

µkϕ[∇k(Y−M)], (3)

where µk is a trade-off parameter, ∇k is a texture extractor,
and ϕ(•) is a sparsity-oriented non-convex potential func-
tion [40]: ϕ (a) =

∑
i log

(
1 + θa2i

)
, where ai denotes the

ith element of a and θ is the sparsity controlled parameter.
Model optimization. By introducing two auxiliary vari-
ables El and Hk, Eq. (3) can be reformulated as follows:

min
Y,El,Hk

1

2
∥Y −M∥22 +

L∑
l=1

λlψ (El) +
K∑

k=1

µkϕ (Hk) ,

s.t. El = ∇lY,Hk = ∇k(Y −M).

(4)

We solve Eq. (4) with alternative direction method of
multipliers (ADMM) [1] by introducing two dual variables
Fl and Gk to control the step size of El and Hk. The solu-
tions are presented as follows (see derivations in Supp):

Y(n)=(Qa)
−1

(M+Qb) ,

E
(n)
l = S

(
∇lY

(n) + F
(n−1)
l ; λl

ρl

)
,

F
(n)
l = F

(n−1)
l + φl

(
∇lY

(n) −E
(n)
l

)
,

H
(n)
k = H

(n−1)
k − σkQc,

G
(n)
k = G

(n−1)
k + ωk

(
∇k

(
Y(n) −M

)
−H

(n)
k

)
,

(5)

where n denotes nth iteration. Qa = I +
∑L

l=1 ρl∇2
l +∑K

k=1 τk∇2
k, Qb =

∑L
l=1 ρl∇T

l (E
(n−1)
l − F

(n−1)
l ) +∑K

k=1 τk∇T
k (∇kM + H

(n−1)
k − G

(n−1)
k ), and Qc =

τk∇k(Y
(n)−M)+

2µkH
(n−1)
k

1+θ(H
(n−1)
k )2

+τkG
(n−1)
k +τkH

(n−1)
k .

ρl and τk are penalty weights. I is the identity matrix. S(•)
is a nonlinear proximal operator. φl and ωk control the
training rates. Note that Hk is optimized by the gradient
descent strategy for its non-convex property [4].

3.2. DeRUN

3.2.1 Deep Unfolding Mechanism

In this section, we propose a Degradation-Resistant Un-
folding Network (DeRUN), which incorporates the HIFM-
based optimization into the deep network architecture. As
shown in Fig. 2 (i), DeRUN is unfolded into N stages that
correspond to N iterative optimization steps. Each stage
comprises three decoupled modules, namely, the data fusion
module (DFM), visual fidelity module (VFM), and structure
preservation module (SPM), whose progression process fol-
lows Eq. (5) with the learnable variables and parameters for
adaptive image fusion. Refer to Fig. 2 (ii) for more details.
Data fusion module. DFM is derived from the data term
in Eq. (4) and serves to consolidate the extracted informa-
tion from the previous stage. Therefore, DFM is instru-
mental in revealing the intrinsic essence of fusion tasks and
guiding network training. Given E

(n−1)
l , F(n−1)

l , H(n−1)
k ,

G
(n−1)
k , the DFM at the nth stage is defined as:

Y(n) = (Qa)
−1(M+Qb), (6)

where Qa and Qb keep the same formulations in Eq. (5). In
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(ii) Details of DFM, VFM, SPM at the n
th

 stage.
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the first stage, E(n−1)
l , F(n−1)

l , H(n−1)
k , G(n−1)

k are initial-
ized as zeros. For consistency in mathematical representa-
tion, we relax the variables {ρl,∇l, τk,∇k} to be learnable
parameters, with the stage number omitted.
Visual fidelity module. VFM is evolved from the ℓ1-norm-
based denoising regularization in Eq. (4) with a noise sup-
pression variable El and its dual variable Fl for step size.
Therefore, VFM can serve as a denoiser by suppressing un-
desired noise and artifacts in Y and provide cleaner feature
maps. Given F

(n−1)
l and Y(n), the solution of denoising

variable E
(n)
l at nth stage is presented as follows:

E
(n)
l = Sλl/ρl

(
∇lY

(n) + F
(n−1)
l ; {θl,i}Iti=1

)
, (7)

where Sλl/ρl
(•) is a nonlinear map with the learnable pa-

rameters {θl,i}Iti=1. Given E
(n)
l , we update F

(n)
l as:

F
(n)
l = F

(n−1)
l + φl

(
∇lY

(n) −E
(n)
l

)
, (8)

where φl is a learnable parameter to control the step size.
Structure preservation module. SPM comes from the
salient texture constraint from Eq. (4) with a salient texture
enhancement variable Hk and a dual variable Gk. H(n)

k is

updated with the gradient descent strategy [4]:

H
(n)
k = H

(n−1)
k − σkQc, (9)

where σk is a learnable parameter and Qc follows the defi-
nition in Eq. (5). Then, we acquire the dual variable G

(n)
k :

G
(n)
k = G

(n−1)
k + ωk

(
∇k

(
Y(n) −M

)
−H

(n)
k

)
, (10)

where ωk is a learnable parameter.
Overall, in each stage, DeRUN updates the five variables,

namely, {Y,El,Fl,Hk,Gk}, with eight sets of learnable
weights, i.e., {ρl,∇l, τk,∇k, {θl,i}Iti=1, φl, σk, ωk}. By
integrating the degradation-resistance HIF model (HIFM)
into the deep network architecture with the deep unfold-
ing mechanism, DeRUN is expected to adaptively generate
high-quality fused images even in degradation scenarios.

3.2.2 Joint Constraint Strategy

To enhance the robustness of DeRUN in salient texture en-
hancement, joint constraint strategy (JCS) is proposed for
SPM. JCS imposes extra constraints, including the physi-
cal constraint and the denoising constraint, on the salient
texture enhancement variable H

(n)
k to facilitate salient tex-

ture maintenance and noise suppression, ensuring robust-
ness even in degradation scenarios. Specifically, the physic
constraint, derived from the textural subtraction of Y(n)

(in DFM) and M, provides physical guidance for salient
texture maintenance. Meanwhile, the denoising constraint
transfers cleaner information from E

(n)
l (in VFM), which
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Figure 4: Distributions of gradient directions at edge and noise.

serves as a denoiser, to H
(n)
k (in SPM) for noise suppres-

sion. To maintain the original optimization process, we in-
troduce an optimization auxiliary variable H̃

(n)
k [15] with

the joint constraints imposed, which is defined as follows:

H̃
(n)
k = η1H

(n−1)
k + η2∇k(Y

(n) −M)

+ η3∇k

(
1

L

L∑
l=1

∇T
l E

(n)
l −M

)
,

(11)

where η1, η2, η3 are learnable trade-off parameters. With
the assistance of H̃(n)

k , H(n)
k can be re-updated as follows:

H
(n)
k =H

(n−1)
k −σk∂Hk

H
(
H

(n−1)
k ,G

(n−1)
k ,Y(n), H̃

(n)
k

)
, (12)

where ∂Hk
denote the partial derivative operator for H(n−1)

k

and H(H
(n−1)
k ,G

(n−1)
k ,Y(n), H̃

(n)
k ) = µkϕ(H

(n−1)
k ) +

λHk
∥H̃(n)

k −H
(n−1)
k ∥22+ τk∥∇k(Y

(n) − M)−H
(n−1)
k +

G
(n−1)
k ∥22. λHk

is a learnable step size parameter.
The second and third terms in Eq. (11) correspond to the

physical constraint and denoising constraint, which provide
the physical guidance and cleaner information for variables
in SPM, i.e., Hk (Eq. (12)) and Gk (Eq. (10)). These con-
straints ensure salient texture maintenance and noise sup-
pression, thereby improving the robustness of DeRUN in
salient texture enhancement, even in degradation scenarios.

3.2.3 Partial Weight Sharing Module

DUNs typically employ CNN modules [10, 11] for fea-
ture extraction, owing to their powerful nonlinear capacity.
However, due to the cascade structure of DUNs, the uti-
lization of large-scale CNN modules for feature extraction
can result in heavy storage burdens [66, 12]. To address
this issue, recent DUN-based techniques have opted to re-
duce the number of parameters by using Siamesed struc-
tures, such as weight sharing in one stage or across the en-
tire pipeline [26, 57]. Although decreasing memory costs,
such Siamesed structures can inevitably weaken the fea-
ture extraction capacity and thus degrade the performance
of DUNs. Therefore, a lightweight but effective feature ex-
traction module is critical for DUN-based frameworks.

Considering that overly independent feature extractors
can introduce domain discrepancies between VFM and
SPM and thus limit the effect of the denoising constraint
in JCS, we propose a lightweight network, named par-

tial weight sharing module (PWSM) T , to replace ∇l

and ∇k for powerful feature extraction. Specifically, as
shown in Fig. 3, the proposed PWSM consists of a weight-
specific branch and a weight-sharing branch. The weight-
specific branch ensures the feature extraction capacity and
thus compensates for the deficiency of the Siamesed struc-
ture, while the weight-sharing branch simultaneously de-
creases parameters and mitigates the domain discrepancy
problem of JCS. The two branches cooperate with each
other and jointly form a lightweight but powerful feature
extractor. Following [57], the feature extractors share the
same structure as their transposes, i.e., T T

l and T T
k , with

different weights for weight-specific branches.

3.2.4 Local Gradient Directional Entropy Loss

In HIF, degradation scenarios, e.g., the low-light illumina-
tion in IVF, the magnetic turbulence in MIF, and the phase
noise in BIF, often manifest as blurred images with low
contrast and undesired artifacts, which weaken the bound-
ary information and introduce complex noise. In this case,
existing gradient magnitude-based loss functions struggle
to effectively grasp the weak boundary information and re-
sist the complex noise, because gradient magnitude is sen-
sitive to pixel-level numerical variations (individual prop-
erty). However, distinct from gradient magnitude, gradient
direction exhibits the group property, i.e., gradient direc-
tions present a consistent trend around the texture and are
cluttered around noise (see Fig. 4). Therefore, gradient di-
rection is more favorable than gradient magnitude in weak
boundary recognition and noise removal, and thus owns ad-
vantages to resist those degraded images.

Inspired by local entropy that measures the local consis-
tency of pixel values for image segmentation [13], we quan-
tize the gradient direction into I directions with 2π

I intervals
and propose a Shannon entropy-based locally consistent
measurement for quantified gradient direction, termed local
gradient directional entropy (LGDE). Given a B ×B lo-
cal block, the LGDE of the center point (x, y) is defined as:
E (D (X))(x,y) = −

∑I
i=1 pi log pi, where D (X) is the

quantized gradient directional map of the input image X. I
is the number of quantized gradient directions, which is set
as 8 to balance the performance and efficiency. pi denotes
the probability of the ith gradient direction in the B × B
block with the center point of (x, y). RelectionPad2d [36]
is used to pad the boundaries. Note that LGDE is sensitive
to the block size, where a larger size can ignore some de-
tailed texture and a smaller size can suppress the diversity
of entropy. Inspired by dilated convolution [53], a multi-
scale LGDE is proposed with the following definition:

E (D (X)) =
1

2
(EB=3 (D (X)) + EB=5 (D (X))) , (13)

where LGDE of the block with B = 5 is a dilated operation
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TNO (100 pairs) M3FD (4200 pairs) LLVIP (3463 pairs)Methods SSIM PSNR AG FMI VIF EN UIQI QP SSIM PSNR AG FMI VIF EN UIQI QP SSIM PSNR AG FMI VIF EN UIQI QP

U2Fusion [46] 0.73 16.73 6.05 0.90 1.27 6.97 0.80 0.70 0.72 16.89 6.04 0.91 1.30 6.96 0.80 0.72 0.69 17.13 6.13 0.90 0.75 6.59 0.80 0.66
SDNet [54] 0.76 17.24 6.26 0.88 1.30 6.64 0.82 0.71 0.74 17.13 6.22 0.90 0.94 6.83 0.78 0.71 0.68 17.26 6.09 0.89 1.13 6.72 0.78 0.65
IVF-Net [17] 0.77 18.52 6.73 0.90 1.32 7.12 0.83 0.75 0.79 18.57 6.68 0.92 1.16 7.15 0.83 0.71 0.72 17.15 6.62 0.92 1.42 6.87 0.85 0.67
DM-Fusion [44] 0.75 18.62 6.61 0.89 1.31 7.34 0.81 0.75 0.78 18.38 6.43 0.91 1.33 7.22 0.82 0.73 0.73 17.32 6.50 0.91 1.36 7.04 0.81 0.65
TarDAL [28] 0.72 17.19 6.58 0.89 0.98 7.28 0.84 0.73 0.73 18.21 5.13 0.90 0.89 7.16 0.77 0.70 0.70 17.09 5.57 0.91 0.91 7.22 0.79 0.70
RFNet [47] 0.77 18.53 6.87 0.92 1.42 6.83 0.88 0.75 0.80 18.40 7.30 0.91 1.30 7.07 0.82 0.79 0.72 17.35 6.99 0.91 1.41 7.13 0.85 0.70
DeFusion [27] 0.79 18.46 7.02 0.90 1.35 6.95 0.85 0.79 0.81 18.51 7.18 0.90 1.27 7.28 0.87 0.77 0.75 17.42 6.68 0.90 1.54 7.10 0.88 0.69
DeRUN 0.79 18.83 7.18 0.91 1.54 7.45 0.88 0.78 0.81 18.73 7.47 0.93 1.42 7.34 0.86 0.77 0.75 17.58 6.98 0.92 1.58 7.17 0.86 0.72

Table 1: Quantitative evaluation in IVF task on five datasets. The best results and the second-best are marked in red and blue.

PMF task in MIF (200 pairs) SMF task in MIF (250 pairs) GPF task in BIF (90 pairs)Methods SSIM PSNR AG FMI VIF EN UIQI QP SSIM PSNR AG FMI VIF EN UIQI QP SSIM PSNR AG FMI VIF EN UIQI QP

U2Fusion [46] 0.73 20.17 4.92 0.86 0.72 4.55 0.85 0.76 0.75 22.41 5.41 0.84 0.68 3.47 0.77 0.74 0.77 17.90 4.71 0.85 0.66 4.31 0.78 0.68
SDNet [54] 0.76 20.54 5.92 0.87 0.75 3.83 0.82 0.74 0.74 22.48 6.13 0.86 0.65 3.43 0.85 0.71 0.75 18.07 5.51 0.86 0.86 4.67 0.77 0.67
IVF-Net [17] 0.79 20.41 6.73 0.90 0.77 4.68 0.88 0.75 0.76 22.54 7.16 0.89 0.68 4.76 0.88 0.74 0.78 18.96 5.17 0.88 0.94 5.04 0.81 0.70
DM-Fusion [44] 0.80 20.35 6.64 0.89 0.72 4.96 0.87 0.74 0.79 22.35 6.44 0.88 0.66 5.42 0.86 0.73 0.76 18.52 4.96 0.87 0.73 4.10 0.83 0.72
TarDAL [28] 0.76 20.04 6.50 0.88 0.73 3.81 0.87 0.76 0.47 22.61 6.83 0.84 0.64 3.66 0.91 0.75 0.73 18.20 5.25 0.86 0.77 4.33 0.82 0.69
RFNet [47] 0.80 20.41 6.81 0.92 0.78 4.77 0.90 0.76 0.80 23.94 7.94 0.89 0.72 4.39 0.89 0.78 0.78 19.74 6.67 0.90 1.10 5.12 0.87 0.73
DeFusion [27] 0.81 20.46 7.18 0.90 0.75 4.27 0.91 0.77 0.81 24.18 7.87 0.88 0.62 3.81 0.90 0.80 0.77 19.66 6.80 0.89 1.04 5.37 0.89 0.73
DeRUN 0.81 20.59 7.60 0.91 0.77 5.14 0.93 0.80 0.83 24.32 8.01 0.89 0.83 5.39 0.92 0.81 0.79 19.79 6.73 0.91 1.18 5.53 0.89 0.75

Table 2: Quantitative evaluation for the PMF, SMF, and GPF tasks. The best results and the second-best are marked in red and blue.

with the dilated rate r = 1, which has the same number of
pixels as the block with B = 3 but with larger perceptual
fields. Therefore, the total loss is presented as follows:
Lt = Lpixel + γLlgde,

=MSE(X,U)+γMSE(E(D(X)), E(D(V))),
(14)

where Lpixel is the content loss [9]. MSE(•) denotes mean
square error and γ is the trade-off parameter.

4. Experiment
Implementation details. The proposed DeRUN is imple-
mented by PyTorch on two RTX3090TI GPUs and is op-
timized by Adam optimizer with momentum terms (0.9,
0.999), 150 epochs, and a batch size of 4. The learning rate
is initialized as 1×10−4 and decays with a factor of 0.9 ev-
ery ten epochs after the first 50 epochs. The stage number
N is set as 9 and the trade-off parameter γ in the loss is 10.
Compared methods and evaluation metrics. We select
seven state-of-the-art (SOTA) methods for comparison, in-
cluding U2Fusion [46], SDNet [54], DM-Fusion [44], IVF-
Net [17], TarDAL [28], RFNet [47], and DeFusion [27].

Eight metrics are employed to quantitatively evaluate the
fusion performance, including SSIM, PSNR, average gra-
dient (AG) [21], FMI, visual fidelity (VIF) [7], entropy
(EN) [39], universal image quality index (UIQI) [43], and
phase congruency-based metric QP [59]. For all the met-
rics, larger metrics indicate better fusion performance. For
fairness, all methods are evaluated with the same toolbox.

4.1. Comparative Results

Natural image fusion (NIF). Following [58], we employ
the first 90 pairs from TNO [42] to train DeRUN and eval-
uate it on five datasets, i.e., the rest in TNO, M3FD [28],

LLVIP [16], INO [30], RoadScene [46], where M3FD and
LLVIP are the two largest IVF datasets. For space lim-
itation, we only report the results of TNO, M3FD [28],
LLVIP [16], and present the rest in Supp. Tab. 1 shows the
quantitative results, where DeRUN achieves seventeen best
results and seven second-best results in the three datasets.
Fig. 5 presents the qualitative results, where DeRUN gener-
ates fusion images with visual fidelity and texture enhance-
ment even in extreme conditions while existing methods fail
to achieve this, such as the slogan carved on the stone.
Medical image fusion (MIF). Following [52], we evaluate
two medical image fusion tasks, i.e., PET and MRI image
fusion (PMF), and SPECT and MRI image fusion (SMF).
We train DeRUN with HWBA dataset [3], where the train-
ing set has 144 pairs of images. In Tab. 2, our DeRUN
model achieves thirteen best metrics and three second-best
metrics on the two tasks. The first two rows of Fig. 6
are the fusion results of PMF and SMF, respectively. We
can see that DeRUN can ensure the functional informa-
tion, i.e., color intensity, from PET/SPECT, and preserve
the anatomical details from MRI, which is attributed to our
task-specific HIFM and the multi-scale LGDE loss.
Biological image fusion (BIF). ATC dataset [18] of green
fluorescent protein (GFP) and phase contrast (PC) image
fusion (GPF) is used for training, which includes 60 pairs.
As shown in Tab. 2, we achieve leading performance on
almost all metrics, which demonstrates the superiority of
our DeRUN. We present a qualitative comparison in the
last row of Fig. 6. With the proposed JCS and PWSM,
DeRUN can preserve the structure feature from PC while
retaining the high contrast of the green fluorescent from
GFP. Furthermore, DeRUN can resist the phase noise from
PC and generate a cleaner output by LGDE loss. Although
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Figure 5: Qualitative comparison of IVF task in LLVIP dataset. DeRUN can better highlight the texture details in the low-light scenario.

Figure 6: Qualitative comparison of PMF, SMF, GPF tasks. DeRUN generates visual-appealing results with texture preservation.

(a) PSNRs under haze degradation. (b) SSIMs under haze degradation.

(c) PSNRs under rain degradation. (d) SSIMs under rain degradation.

Figure 7: Robustness analysis in degraded scenarios on IVF task.
Haze and rain are simulated following [20] and [14].

PET/SPECT/GFP are color images, information fusion is
only conducted in their Y channel, and the outputs are col-
orized by a common post-processing operation [46].

4.2. Ablation Study

We evaluate the effect of DeRUN with four metrics, i.e.,
SSIM, PSNR, AG, and FMI. See Supp for more details,
e.g., parameter analyses for the stage number N , and the
hyper-parameters I and B in the LGDE loss.
Effect of HIFM. To verify the effect of HIFM, we com-
pare DeRUN with other combinations of fusion models and
solutions. As shown in Tab. 3a, better results can be ob-
tained with our fusion model (HIFM), whether in ADMM
or DUN, which demonstrates the superiority of HIFM.
Effect of JCS. In Tab. 3b, the proposed JCS outperforms
other ablation methods, i.e., w/o JCS, w/o physical con-
straint (PC), and w/o denoising constraint (DC), which is
credited to our joint physical and denoising constraints, in
salient texture maintenance and noise suppression.
Effect of PWSM. To verify the effect of PWSM, we com-
pare PWSM with a Siamese extractor [50], and a symmet-
rical extractor, where the symmetrical extractor shares a
similar parameter number with PWSM. Tab. 3c illustrates
the superiority of PWSM, which attributes to the favor-
able cooperation between the weight-specific branch and
the weight-sharing branch.
Effect of LGDE loss Llgde. We verify the effect of LGDE
loss by comparing it with existing gradient-based losses,
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Metrics CM+OS PM+OS CM+DL PM+DL

SSIM 0.70 0.73 0.78 0.81
PSNR 15.76 16.23 18.46 18.73
AG 5.83 6.37 6.58 7.47
FMI 0.87 0.88 0.91 0.93

(a) Effect of HIFM.

Metrics w/o JCS w/o PC w/o DC w/ JCS

SSIM 0.79 0.80 0.80 0.81
PSNR 18.14 18.53 18.29 18.73
AG 6.82 7.08 7.25 7.47
FMI 0.91 0.91 0.92 0.93

(b) Effect of JCS.

Metrics Siam Symm PWSM

SSIM 0.79 0.81 0.81
PSNR 18.24 18.57 18.73
AG 6.96 7.23 7.47
FMI 0.90 0.92 0.93

(c) Effect of PWSM.

Metrics w/o Llgde Lgp Ljg w/ Llgde

SSIM 0.78 0.80 0.80 0.81
PSNR 17.14 18.67 18.58 18.73
AG 6.87 7.28 7.32 7.47
FMI 0.91 0.91 0.91 0.93

(d) Effect of LGDE loss.
Table 3: Ablation study in the IVF task on M3FD. “w/” and “w/o” denote with and without. (a) CM, PM, OS, and DL are short for
conventional model (Eq. (2)), proposed model (HIFM), optimization solution (ADMM), and deep learning (DUN). (b) JCS contains PC
and DC. (c) Siam and Symm are short for Siamesed and Symmetrical. The best results are marked in bold.

Datasets Metrics Infrared Visible DM-Fusion IVF-Net TarDAL RFNet DeFusion DeRUN

mAP@.5 ↑ 0.853 0.799 0.871 0.789 0.876 0.867 0.869 0.884
mAP@.75 ↑ 0.521 0.394 0.562 0.497 0.558 0.553 0.538 0.564LLVIP
mAP@.5:.95 ↑ 0.502 0.417 0.525 0.487 0.531 0.524 0.516 0.529

mAP@.5 ↑ 0.764 0.756 0.784 0.745 0.781 0.776 0.807 0.819
mAP@.75 ↑ 0.584 0.581 0.604 0.533 0.616 0.614 0.629 0.644M3FD
mAP@.5:.95 ↑ 0.496 0.489 0.507 0.427 0.523 0.524 0.516 0.553

Table 4: Object detection comparison with partial IVF methods.

Trackers Metrics Infrared Visible DM-Fusion IVF-Net TarDAL RFNet DeFusion DeRUN

Accuracy ↑ 0.501 0.537 0.542 0.533 0.547 0.546 0.578 0.596
Failures ↓ 59.47 43.71 41.15 42.33 37.15 39.16 39.45 36.11LADCF
EAO ↑ 0.201 0.257 0.245 0.224 0.263 0.267 0.259 0.284

Accuracy ↑ 0.522 0.571 0.583 0.591 0.554 0.607 0.623 0.635
Failures ↓ 57.39 35.42 30.16 33.72 35.41 30.13 30.36 28.33GFSDCF
EAO ↑ 0.221 0.287 0.271 0.288 0.302 0.297 0.301 0.311

Table 5: Object tracking comparison with partial IVF methods.

i.e., gradient penalty-based Lgp [23] and joint gradient-
based Ljg [55]. To do so, we replace Llgde with these losses
and retrain the DeRUN model. Tab. 3d indicates the effect
of our LGDE loss, which is attributed to the strong capacity
of Llgde in weak boundary recognition and noise removal.

4.3. Downstream Tasks and Running Time

Robustness analysis in degraded scenarios. A significant
application for IVF is the intelligent transportation systems
(ITS), where the core competency is the ability to resist
degradation from visible images [32, 2]. To rank the capac-
ity in degradation resistance, we simulate some inference
(haze and rain) for the visible images in RoadScene dataset
following [20, 14]. In Fig. 7, our DeRUN not only shows a
strong performance but also exhibits a more robust trend of
change with the increasing degradation, which attributes to
the robustness of DeRUN with HIFM, JCS, and LGDE.
Object detection with fused images. The fused images
with enhanced quality are expected to have better down-
stream performance than the individual ones. We first ver-
ify this on object detection [37, 8] with IVF task. Following
TarDAL, all the compared methods are performed on LLVIP
and M3FD datasets with YOLOv5. As shown in Tab. 4,
DeRUN acquires five best results and one second-best re-
sult, which indicates that we can generate detection-friendly
fused results owing to the powerful capability in salient in-
formation emphasis and degradation resistance.
Object tracking with fused images. Object tracking is also
conducted on the IVF task with VOT-RGBT2019 bench-
mark [19]. Following [22], two trackers, i.e., LADCF [49]

Figure 8: Efficiency analysis with the image size of 256× 256

and GFSDCF [48] are used for evaluation. The best perfor-
mance exhibited in Tab. 5 proves the superiority of DeRUN,
attributing to our salient information preservation capacity.
Efficiency analysis. We compare the average time, param-
eters, and FLOPs on the IVF task in Fig. 8. As shown
in Fig. 8, our DeRUN achieves the fastest average time,
the smallest FLOPs, and the most minor parameters for its
DUN-based framework and the lightweight PWSM.

5. Conclusions
In this paper, we first design a novel HIF model (HIFM)

for degradation resistance. Then we unfold the ADMM so-
lution of HIFM and propose a Degradation-Resistant Un-
folding Network (DeRUN) for HIF. To ensure the robust-
ness and efficiency of DeRUN, we propose JCS and PWSM.
Inspired by the group property of gradient direction, we
propose a gradient direction-based entropy loss (LGDE)
with powerful texture representation capacity. Extensive ex-
periments comprehensively verify the advancement of our
DeRUN over SOTAs from image quality, computational ef-
ficiency, and downstream applications.
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