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Abstract

Pan-sharpening, a panchromatic image guided low-
spatial-resolution multi-spectral super-resolution task,
aims to reconstruct the missing high-frequency information
of high-resolution multi-spectral counterpart. Although the
inborn connection with frequency domain, existing pan-
sharpening research has almost investigated the potential
solution upon frequency domain, thus limiting the model
performance improvement. To this end, we first revisit the
degradation process of pan-sharpening in Fourier space,
and then devise a Pyramid Dual Domain Injection Pan-
sharpening Network upon the above observation by fully
exploring and exploiting the distinguished information in
both the spatial and frequency domains. Specifically, the
proposed network is organized with multi-scale U-shape
manner and composed by two core parts: a spatial guid-
ance pyramid sub-network for fusing local spatial infor-
mation and a frequency guidance pyramid sub-network for
fusing global frequency domain information, thus encour-
aging dual-domain complementary learning. In this way,
the model can capture multi-scale dual-domain informa-
tion to enable generating high-quality pan-sharpening re-
sults. Quantitative and qualitative experiments over multi-
ple datasets demonstrate that our method performs the best
against other state-of-the-art ones and comprises a strong
generalization ability for real-world scenes.

1. Introduction
There is often a high demand for high-resolution mul-

tispectral (HRMS) images in the domain of agricultural
monitoring and mapping services. However, due to the
limitations of satellite sensors, the existing approaches
must instead separately capture high-resolution panchro-
matic (PAN) and multispectral low-resolution (LRMS) im-
ages and fuse them using a technique known as pan-
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Figure 1. Frequency domain analysis of multi-scale PAN, MS,
and Ground Truth images. The amplitude, denoted by A, is dis-
played for the original-scale image, the 2-times downsampled im-
age, and the 4-times downsampled image, from top to bottom, re-
spectively. The last two columns show the degradation of PAN
and MS images relative to GT images.

sharpening to get the desired HRMS images. Essentially,
pan-sharpening is a super-resolution process that utilizes
the richer details of PAN images to guide the reconstruc-
tion process of LRMS images. Pan-sharpening technology
has expanded the use of remote sensing images in a wider
range and gained considerable attention.

Pan-sharpening has seen an increase in the use of deep
learning-based techniques in recent years. The PNN [16],
which started this trend, was motivated by the SRCNN [4]
to introduce the convolutional neural network. The PNN
presented a three-layer convolutional neural network that
concatenated LRMS and PAN images as input and subse-
quently generated the output through the network. Since
then, a flood of deep learning-based techniques has been de-
veloped to improve the model’s representation capacity by
employing deeper models or model-driven techniques [33,
29, 7, 32]. While significant progress has been made, there
are still limitations need to be addressed. Prior approaches
have primarily focused on spatial domain solutions, thereby
neglecting the exploration of frequency domain solutions.
Nevertheless, it has been established that CNNs in the spa-
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tial domain exhibit a preference for low-frequency informa-
tion and struggle to capture high-frequency information [1],
resulting in insufficient texture in the generated images [14].
However, by incorporating frequency domain information,
high-frequency features in low-dimensional manifolds can
be efficiently captured [20]. Additionally, the LRMS im-
ages can be treated as degraded versions of HRMS images,
which indicates that pan-sharpening is fundamentally an
image restoration task. Image restoration are highly interre-
lated with frequency domain, as image degradation and con-
tent can be easily disentangled through the Fourier trans-
form [9]. Thus, it is natural for us to investigate the fea-
sibility of introducing frequency domain information into
the pan-sharpening domain, as detailed in Figure 1 where
the degradation effect of pan-sharpening is enlarged over
multi-scale manner.

Motivation. We conducted multi-scale Fourier analysis
on LRMS, PAN, and HRMS images since the degradation
mostly affects the amplitude of the image and the diversity
scale of remote sensing landforms has an effect on the pan-
sharpening process. The analysis results of image spectrum
is shown in the Figure 1. We can draw two inspirations from
the figure: 1) The difference in amplitudes between the PAN
and HRMS images is primarily in the low frequency com-
ponent, whereas the difference between the amplitudes of
the HRMS and LRMS images is observed in both the high
and low frequency components. 2) As the scale decreases,
we can observe the missing information in the PAN image
becomes more concentrated in the low-frequency compo-
nent, while the degradation of the LRMS image becomes
more concentrated in the high frequency component, and
the degradation of images at various scales is not exactly
the same. We may deduce from observation 1 that the fre-
quency information in the PAN image can be used to fill
in the missing information of the LRMS image. For ob-
servation 2, it is crucial to restore the information at sev-
eral scales since the degradation is varied under multi-scale
conditions. To encourage the learning of context informa-
tion and multi-scale reconstruction, frequency domain in-
formation should be handled at various scales. Additionally,
we can encourage the interaction of global and local, low-
frequency and high-frequency features through multi-scale
processing in the spatial and frequency domains in accor-
dance with CNN’s low-frequency preference in spatial do-
main and the global receptive field described by the spectral
convolution theorem [6] in frequency domain to enhance
the model’s performance.

In light of the aforementioned observation, we pro-
pose a brand new Pyramid Dual Domain Injection Network
(PDDIN) to inject the multi-scale details of the PAN im-
age into the LRMS image in both the spatial and frequency
domains to aid in the restoration process. A Feature Ex-
traction Pyramid, a Frequency Injection Pyramid, and a

Spatial Injection Pyramid compensate the three major key
components of the network. The Feature Extraction Pyra-
mid is responsible for extracting multi-scale feature infor-
mation from the PAN image. By using these features, the
Frequency Injection Pyramid may inject global multi-scale
features into the LRMS image, facilitating the recovery of
global and high-frequency information in the spatial do-
main. To promote the reconstruction of local and spatial
information, the spatial domain feature of PAN images is
injected into the LRMS image in the Spatial Injection Pyra-
mid. This approach effectively compensates for degradation
at various scales, leading to a more thorough and precise re-
construction of the image. We conducted comprehensive
experiments on multiple datasets to assess the effectiveness
of our suggested network. The results show the efficacy of
our method, by outperforming state-of-the-art techniques in
both qualitative and quantitative evaluations.

Our contributions are summarized below:

• In this work, we revisit the degradation process of pan-
sharpening in Fourier space, and then devise a Pyramid
Dual Domain Injection Pan-sharpening Network, in-
spired by the above observation in both the spatial and
frequency domains.

• To fully explore and exploit the distinguished informa-
tion, we devised a frequency guidance pyramid sub-
network and a spatial guidance pyramid sub-network.
This design allows for the fusion of multi-scale infor-
mation from both the frequency and spatial domains,
lifting the learning capability of the model.

• Extensive experiments on multiple satellite datasets
demonstrate our approach’s quantitative and qual-
itative superiority to existing state-of-the-art pan-
sharpening algorithms.

2. Related work
2.1. Traditional pan-sharpening method

Three sorts of traditional techniques are widely adapted
in the realm of pan-sharpening: component substitution
(CS) method, MRA method, and VO-based method. The
component substitution approach generates high-resolution
images by substituting the LRMS image components with
the spatial detail components from the PAN image. IHS al-
gorithm [10], Brovey [8], PCA [12], and GS algorithm [11]
are examples of CS methods. Due to the fact that spectral
information is not fully considered in CS methods, the pan-
sharpened images suffer from serious spectral distortion. In
light of this, the MRA method reduces spectral distortion by
fusing PAN and LRMS through multi-resolution decompo-
sition. DWT [15] ATWT [17] HPF [19] and LP [22] algo-
rithms are typical MRA algorithms. The VO-based meth-
ods, in contrast to the above two, treat pan-sharpening as
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Figure 2. The framework of the Pyramid Dual Domain Injection Network. It consists of three key components: Feature Extraction Pyramid,
Frequency Injection Pyramid and Spatial Injection Pyramid.

an optimization problem, design the loss function under a
prior constraints, and then generate results by iterative so-
lution and minimization of the loss function. The Bayesian
technique [5] and the total variation algorithm [18] are com-
mon approaches in VO methods. The VO method can de-
liver decent results, but designing the optimization model
and choosing the loss function is a significant challenge.

2.2. CNN-based pan-sharpening method

In recent years, the dominant approach in this area has
been the CNN-based pan-sharpening method. PNN [16],
which is inspired by SRCNN [4], is the pioneering work
that introduced CNN to this field, giving rise to an un-
precedented number of novel CNN-based techniques [27,
29, 7, 32, 33]. Despite having a clear and simple network
structure, the results of PNN outperformed traditional tech-
niques, demonstrating the promising potential of CNN tech-
niques. Following that, Pannet [30] employs residual con-
nection and high-frequency filtering to learn high-frequency
features of images, while multi-scale convolution is taken
into account in MSDCNN [31] to handle the varied re-
mote sensing landforms. The model-driven models such as
GPPNN [25], MMNet [28] and ARFNet [26] achieve inter-
pretable models by utilizing deep unfolding techniques to
construct the network structure. Additionally, SRPPNN [2]
uses the progress super resolution method to enhance the
performance of model and construct a profoundly deep net-
work. Recently, MutNet [33] utilizes a mutual informa-
tion mechanism to learn a more effective feature representa-
tion. The study of these techniques has also been expanded
to include generative networks [13] and unsupervised pan-
sharpening [21] technologies.

3. Methods
In this part, we first discuss the pertinent Fourier trans-

form properties before delving into further details about
our network shown in Figure 2, 3 and 4. It is organized
into three parts: the Feature Extraction Pyramid, which ex-
tracts the multi-scale features from PAN images; the Fre-
quency Injection Pyramid, which incorporates multi-scale
frequency features from PAN into LRMS images for global
and high-frequency information restoration; and the Spatial
Injection Pyramid, which introduces the multi-scale spatial
information from PAN into LRMS images to reconstruct lo-
cal details. Finally, we will describe our loss function.

3.1. Fourier transform of images

Due to its capacity to decompose signals into their
frequency components, the Fourier transform is widely
adapted in the image processing community. This transfor-
mation makes it possible to analyze the image from a differ-
ent perspective and offers valuable insights into its features.
The Fourier transform of an input image x ∈ Rh×w can be
defined as follows:

F(x)(u, v) =
1√
HW

H−1∑
h=0

W−1∑
w=0

x(h,w)e−j2π( h
H u+ w

W v)

(1)
In our work, the Fourier transform is individually applied to
each image channel. The amplitude and phase components
can be described as follows:

A(x)(u, v) = [R2(x)(u, v) + I2(x)(u, v)]
1
2 , (2)

P(x)(u, v) = arctan[
I(x)(u, v)

R(x)(u, v)
] (3)

12910



where I(x) and R(x) indicate imaginary and real parts
of the image’s frequency representation F(x), correspond-
ingly.

The Fourier transform can be beneficial in the task
of pan-sharpening by disentangling and analyzing image
degradation in the amplitude component. We may ob-
tain important insights into the level of degradation exist-
ing in the image by carefully evaluating the amplitude in-
formation, ultimately resulting in more effective restora-
tion attempts. Figure 1 illustrates that whereas LRMS im-
ages degrade in both the high-frequency and low-frequency
regions, while PAN images degrade mostly in the low-
frequency region. Moreover, it is important to note that the
frequency of image degradation can vary across different
scales. Following frequency analysis, it is obvious that the
frequency domain information from a PAN image can be
effectively integrated into a LRMS image to assist with its
restoration. This process can be further optimized by inject-
ing the frequency domain information at multiple scales, al-
lowing for a more comprehensive reconstruction of the im-
age’s contextual information.

3.2. Network framework

As shown in Figure 2, given an input of a PAN and
LRMS pair, we start by upsampling the LRMS image to
the size of the PAN image. After that, a feature extraction
pyramid is employed to process the PAN image, obtaining
multi-scale features. Once the LRMS image is upsampled,
the frequency injection pyramid injects multi-scale features
into the LRMS image. The frequency injection pyramid is
used to integrate the frequency domain features of various
scales to further explore the frequency information. Then,
we adopt spatial injection pyramid to reconstruct local de-
tails. Finally, the reconstruction image is obtained through a
skip connection between network output and the upsampled
LRMS image.

3.3. The key building components

Three essential elements make up the architecture of our
network, and they are shown in Figures 2, 3, and 4. We go
into great depth on each of these parts in the part that follow.
Feature Extraction Pyramid. The Feature Extraction
Pyramid is in charge of extracting multi-scale features from
the PAN images, which can be utilized by other modules for
further feature injection. To obtain the original size feature,
the PAN image is first projected into the feature space us-
ing a convolution layer. After that, two sets of convolution
and downsampling operations are carried out to generate
features that are half as large and a quarter as large as the
original. These features, namely P1, P2, and P3, are then
injected as supplemental information to the LRMS images
to aid in the reconstruction process. The convolution op-
eration with a stride of 2 is employed as a down-sampling

Figure 3. Architecture of Frequency Injection Module (FIM). The
phase and amplitude components of Pi and Fi are obtained us-
ing the Fourier transform. Feature fusion is performed in the fre-
quency domain, and the resulting frequency domain feature map
is combined with the spatial feature to facilitate frequency domain
information recovery and dual-domain complementary learning.

operation in the pyramid. In the end, this module produces
multi-scale feature maps for further information injection
utilizing PAN image as input.
Spatial Injection Pyramid. The Spatial Injection Pyramid
is designed to inject the local, multi-scale spatial informa-
tion from PAN into the LRMS image. This module may
effectively concentrate on small objects by leveraging the
locality of the convolution operation in the pixel domain. In
this module, the spatial features of P1, P2, and P3 are in-
jected into LRMS images at various scales to aid in recon-
struction. For instance, given the output of the frequency
pyramid presented by Msi and the feature map Pi at the
original scale, further feature extraction is performed using
a convolution layer to get Si, and then the features Pi are
injected into Si using the spatial injection module (SIM).
Following injection, a down-sampling or up-sampleing op-
eration is applied to generate the feature map of a different
size. Taking the down-sampling branch for example, the
process can be described as follows:

Si = conv3×3(Msi) (4)
Fspainj = SIM(Si, Pi) (5)
Msi+1 = down(Fspainj) (6)

The suggested spatial injection module, shown in the figure
4, uses the AFF [3] as a basis block and is built on attention
mechanism to enable effective and consistent injection of
spatial details. The module works by enabling interaction
between the PAN and LRMS branches, which enhances de-
tail injection and facilitates the acquisition of LRMS fea-
tures with injected spatial details.
Frequency Injection Pyramid. The purpose of the fre-
quency injection pyramid is to provide LRMS features with
high-frequency and global information from PAN image.
By utilizing the multi-scale frequency injection, the restora-
tion of LRMS image’s frequency domain information is en-
hanced by leveraging the frequency information of PAN im-
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Figure 4. The proposed module for injecting spatial domain in-
formation, dubbed SIM, is based on attention mechanism and uses
a basic module built on attentional fusion block.

age. Processing information in frequency domain enables
the network to quickly capture high-frequency features that
are challenging to acquire using pixel domain CNN, encour-
ages dual-domain complementary learning, and generates
clear texture features. Specifically, given the feature map
of the LRMS image presented by Mfi and the feature map
Pi, first Mi are fed to a convolution block to extract a fur-
ther feature Fi. Next, the frequency injection module (FIM)
is used to inject the frequency domain features of Pi into
Fi. The resulting feature map is then down-sampled or up-
sampled for the next scale of frequency domain information
injection. Taking the up-sampling branch as an example,
this process is summarized as follows:

Fi = conv3×3(Mfi) (7)
Ffreinj = FIM(Fi, Pi) (8)
Mfi+1 = up(Ffreinj) (9)

where up is implemented by pixel-shuffle.
With the inputs Fi and Pi, the FIM shown in Figure 3

employs the Fourier transform to produce amplitude and
phase components. Following that, the phase and ampli-
tude information of Pi is individually injected into Fi to aid
in the restoration of the LRMS image in the frequency do-
main.

In particular, the following procedure is used to acquire
the relevant amplitude and phase components:

A(Fi),P(Fi) = F(Fi), (10)
A(Pi),P(Pi) = F(Pi), (11)

For the A(Fi), we use SFT [24] to inject frequency infor-
mation from A(Pi), and use Conv1×1 to fuse phase com-
ponents, for the difference between two modalities mainly
lay in amplitude:

α, β = Conv3×3(A(Pi)), Conv3×3(A(Pi)), (12)
A(Fi) = A(Fi) · α+ β, (13)
A(F ) = Conv1×1(Cat([A(Pi),A(Fi)])), (14)
P(F ) = Conv1×1(Cat([P(Pi),P(Fi)])) (15)

The injected components are then transformed back to
the pixel domain using the inverse transform, and are sub-
sequently fused with spatial features to inject frequency
features into spatial information and promote dual-domain
complementary learning:

Ffre = Conv1×1(F−1(A(F ),P(F ))) (16)
Fspa = Conv3×3(Fi), (17)
Ffreinj = Ffre + Fspa (18)

3.4. Loss Function

To improve the perception of high-frequency informa-
tion, we propose a loss function that combines spatial and
frequency domain losses in this study. Provided that Y
represents the model output, Yf represents the output of
frequency injection pyramid and H represents the ground
truth, the L1 distance between Y and H is employed to de-
fine the spatial domain loss:

Ls = ||Y −H||1. (19)

The frequency domain loss, which aims to improve the per-
ception of high-frequency information, is determined using
the following formula:

Lf = ||log(A(Yf ))− log(A(H))||1 + ||P(Y )− P(H)||1,
(20)

where the amplitude and phase components of the Fourier
transform are denoted by A and P respectively. The com-
plete loss function is a combination of the dual domain
losses, and involves a hyper-parameter λ which is set to 0.1
based on empirical evidence.

L = Ls + λLf . (21)

4. Experiment
4.1. Datasets and benchmark

Three datasets—WorldView-II (WV2), WorldView-III
(WV3), and Gaofen2 (GF2) were used in our experiments.
Due to the unavailability of real HRMS images, we uti-
lized the Wald protocol [23] to generate the training and
test data. In further detail, we extracted patches from the
same location from the PAN and LRMS images, with the
PAN patch being r times larger than the LRMS patch. The
original LRMS patch was utilized as the ground truth, and
both the LRMS and PAN patches were downsampled by a
factor of r and used as input data. The selected patch sizes
were 128x128 and 32x32, respectively.

To evaluate the efficacy of our approach, we com-
pared it with five traditional and six advanced CNN-based
methods. Specifically, we included SFIM, Brovey [8],
GS [11], IHS [10], and GFPCA [12] as traditional meth-
ods, and PANNET [30], MSDCNN [31], SRPPNN [2],
GPPNN [25], MutNet [33] and INNformer [32] as advanced
methods.
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Table 1. Quantitative comparison on three datasets. Best results are highlighted by red. ↑ indicates that the larger the value, the better the
performance, and ↓ indicates that the smaller the value, the better the performance.

WorldView-II GaoFen2 Worldview-III
Method PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ ERGAS↓
SFIM 34.1297 0.8975 0.0439 2.3449 36.9060 0.8882 0.0318 1.7398 21.8212 0.5457 0.1208 8.9730

Brovey 35.8646 0.9216 0.0403 1.8238 37.7974 0.9026 0.0218 1.3720 22.5060 0.5466 0.1159 8.2331

GS 35.6376 0.9176 0.0423 1.8774 37.2260 0.9034 0.0309 1.6736 22.5608 0.5470 0.1217 8.2433

IHS 35.2962 0.9027 0.0461 2.0278 38.1754 0.9100 0.0243 1.5336 22.5579 0.5354 0.1266 8.3616

GFPCA 34.5581 0.9038 0.0488 2.1411 37.9443 0.9204 0.0314 1.5604 22.3344 0.4826 0.1294 8.3964

PANNET 40.8176 0.9626 0.0257 1.0557 43.0659 0.9685 0.0178 0.8577 29.6840 0.9072 0.0851 3.4263

MSDCNN 41.3355 0.9664 0.0242 0.9940 45.6847 0.9827 0.0135 0.6389 30.3038 0.9184 0.0782 3.1884

SRPPNN 41.4538 0.9679 0.0233 0.9899 47.1998 0.9877 0.0106 0.5586 30.4346 0.9202 0.0770 3.1553

GPPNN 41.1622 0.9684 0.0244 1.0315 44.2145 0.9815 0.0137 0.7361 30.1785 0.9175 0.0776 3.2593

MutNet 41.6773 0.9705 0.0224 0.9519 47.3042 0.9892 0.0102 0.5481 30.4907 0.9223 0.0749 3.1125

INNformer 41.6903 0.9704 0.0227 0.9514 47.3528 0.9893 0.0102 0.5479 30.5365 0.9225 0.0747 3.0997

Ours 41.8473 0.9707 0.0222 0.9358 47.4939 0.9895 0.0100 0.5360 30.8502 0.9255 0.0726 2.9945

Table 2. Evaluation of the proposed method on real-world full-resolution scenes from the GaoFen2 dataset.
Metric SFIM Brovey GS IHS GFPCA PANNET MSDCNN SRPPNN GPPNN MutNet INNformer Ours
Dλ ↓ 0.0822 0.1378 0.0696 0.0770 0.0914 0.0737 0.0734 0.0767 0.0782 0.0694 0.0693 0.0682
DS ↓ 0.1087 0.2605 0.2456 0.2985 0.1635 0.1224 0.1151 0.1162 0.1253 0.1118 0.1138 0.1101

QNR ↑ 0.8214 0.6390 0.0725 0.6485 0.7615 0.8143 0.8215 0.8173 0.8073 0.8247 0.8259 0.8307

4.2. Implementation details

The experiment was conducted on an RTX 3060 GPU,
using the PyTorch framework. The Adam optimizer was
employed with an initial learning rate of 5×10−4. To ensure
stable training, the learning rate was decayed to 5×10−8 us-
ing the cosine annealing method after 500 epochs. Several
commonly used evaluation metrics were chosen, including
PSNR, SSIM, SAM, and ERGAS, as well as non-reference
indices such as DS , Dλ, and QNR.

4.3. Comparison with state-of-the-art methods

Evaluation on Reduced-Resolution Scene. The evalua-
tion results of our approach on three datasets are shown in
Table 1. The results demonstrate that our model performs
better than the state-of-the-art approaches in the majority of
assessment measures, and the improvements are significant.
To be specific, our method outperforms the cutting-edge
method INNformer on most indicators, on the WV2 dataset,
our model achieves a 0.16 dB improvement in PSNR com-
pared to MIDN. Similarly, on the GF2 and WV3 datasets,
our model achieves a 0.14 dB and 0.31 dB improvement
in PSNR, respectively, demonstrating its excellent perfor-
mance. Comparable improvements are also observed in
other evaluation metrics.

Additionally, for qualitative evaluation, we compared the
results obtained from our method with those of the other
nine methods on the WV2 and GF2 datasets. To evaluate
the similarity between the generated results and the ground
truth, a residual map was generated by computing their
mean squared error. The brighter areas of residual map
indicate the larger differences with the ground truth. Our
approach produces images with the finest texture and most
realistic spectrum, as shown in Figures 5 and 6. The resid-
ual maps exhibit the least amount of bright spots, indicating
high congruence with the ground truth. These findings are
further supported by the evaluation indicators presented in
the Table 1.

Evaluation on Full-Resolution Scene. To test the gener-
alization ability of our model, we trained it on the GF2
dataset and evaluated full-resolution data from GF2 that was
not downsampled, using the reserved portion of the dataset.
Since there was no reference image available, we evaluated
the dataset using no-reference indices. As shown in Table 2,
our method achieved the best QNR index on this dataset,
indicating its strong generalization ability compared to tra-
ditional and deep learning methods. This demonstrates that
our approach can be applied to real-world scenes.
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Table 3. The outcomes of the ablation experiments conducted on the WordView-II dataset are presented.
WorldView-II GaoFen2 WorldView-III

Config Multi-scale FIM
PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ ERGAS↓

(I) # ! 41.6361 0.9701 0.0225 0.9581 47.3788 0.9892 0.0102 0.5466 30.7849 0.9252 0.0717 3.0240
(II) ! # 41.6399 0.9695 0.0227 0.9600 47.4588 0.9890 0.0101 0.5403 30.8140 0.9256 0.0718 3.0106

Ours ! ! 41.8435 0.9711 0.0222 0.9478 47.4939 0.9895 0.0100 0.5360 30.8645 0.9258 0.0757 2.9851

Figure 5. The result of our approach was compared against nine other methods on WorldView-II dataset.

Figure 6. The result of our approach was compared against nine other methods on Gaofen2 dataset.
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Figure 7. The feature map display result reduces in size from the top to the bottom, corresponding to the output of the pyramid. It should
be noted that the last two rows have been magnified for better visualization.

4.4. Ablation experiments

We conducted two sets of ablation experiments on three
datasets to examine the effects of our suggested approach on
model performance to further demonstrate the effectiveness
of our method. Multi-scale information modeling and dual-
domain information injection are the fundamental parts of
our model, and we conducted ablation experiments by re-
moving each part independently.
Multi-scale feature extraction. The results of our model
are shown in the first row of table 3 after the multi-scale
feature extraction and reconstruction capabilities have been
removed. We kept feature map size constant, eliminated
all upsampling operations, and substituted the downsam-
pling operation with standard convolution of stride 1 to con-
duct these trials. The results underscore the significance of
multi-scale modeling for remote sensing images by show-
ing that the model’s performance declined after losing the
capability of multi-scale modeling.
Frequency Injection Pyramid. The impact of eliminat-
ing frequency domain information from the model is shown
in the second row of table 3. In order to remove frequency
domain information, we used SIM to replace FIM in the fre-
quency injection pyramid and remove the frequency loss to
conduct these studies. The importance of introducing fre-
quency information into the pan-sharpening process is re-
vealed by the observation that the different indicators dete-
riorated when the global frequency domain information was
removed.

4.5. Visualization of feature maps in different pyra-
mids

To further demonstrate the multi-scale and dual-domain
modeling capabilities of our model, we present P , Ms,
Fspainj , Mf , Ffre, and Ffreinj at different scales. These
feature maps correspond to the output of the feature ex-
traction pyramid, the features described in formula 6, and
the features expressed in formulas 5, 9, 16, and 8, respec-
tively. The Figure 7 illustrate that the features of different
scales capture different regions of remote sensing images.
The spatial pyramid features focus well on local informa-
tion, while the frequency domain features effectively cap-
ture global and high-frequency features. The features after
frequency domain injection combine the two types of infor-
mation effectively.

5. Conclusion

In this paper, we investigate the amplitude degradation
of LRMS and PAN images across various scales. Based on
the results of our investigation, we suggest a pyramid dual-
domain injection network that injects multi-scale frequency
and spatial domain information from the PAN image into
the LRMS image to aid in its restoration. Our rigorous ex-
periments on a variety of datasets demonstrate that our sug-
gested model surpasses SOTA methods, exhibits good gen-
eralization, and effectively handles real-world scenarios.

12915



Acknowledgment
This work was Supported by the HFIPS Director’s Fund,

Grant No.2023YZGH04.

References
[1] Devansh Arpit, Stanisław Jastrzebski, Nicolas Ballas, David

Krueger, Emmanuel Bengio, Maxinder S Kanwal, Tegan
Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio,
et al. A closer look at memorization in deep networks. In
International conference on machine learning, pages 233–
242. PMLR, 2017.

[2] Jiajun Cai and Bo Huang. Super-resolution-guided progres-
sive pansharpening based on a deep convolutional neural net-
work. IEEE Transactions on Geoscience and Remote Sens-
ing, 59(6):5206–5220, 2021.

[3] Yimian Dai, Fabian Gieseke, Stefan Oehmcke, Yiquan Wu,
and Kobus Barnard. Attentional feature fusion. In Proceed-
ings of the IEEE/CVF winter conference on applications of
computer vision, pages 3560–3569, 2021.

[4] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Image super-resolution using deep convolutional net-
works. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 38(2):295–307, 2016.

[5] Dominique Fasbender, Julien Radoux, and Patrick Bogaert.
Bayesian data fusion for adaptable image pansharpening.
IEEE Transactions on Geoscience and Remote Sensing,
46(6):1847–1857, 2008.

[6] Matteo Frigo and Steven G Johnson. Fftw: An adaptive soft-
ware architecture for the fft. In Proceedings of the 1998 IEEE
International Conference on Acoustics, Speech and Signal
Processing, ICASSP’98 (Cat. No. 98CH36181), volume 3,
pages 1381–1384. IEEE, 1998.

[7] Xueyang Fu, Zeyu Xiao, Gang Yang, Aiping Liu, Zhiwei
Xiong, et al. Unfolding taylor’s approximations for image
restoration. Advances in Neural Information Processing Sys-
tems, 34:18997–19009, 2021.

[8] A. R. Gillespie, A. B. Kahle, and R. E. Walker. Color
enhancement of highly correlated images. ii. channel ratio
and ”chromaticity” transformation techniques - sciencedi-
rect. Remote Sensing of Environment, 22(3):343–365, 1987.

[9] Xin Guo, Xueyang Fu, Man Zhou, Zhen Huang, Jialun Peng,
and Zheng-Jun Zha. Exploring fourier prior for single im-
age rain removal. In Lud De Raedt, editor, Proceedings of
the Thirty-First International Joint Conference on Artificial
Intelligence, IJCAI-22, pages 935–941. International Joint
Conferences on Artificial Intelligence Organization, 7 2022.
Main Track.

[10] R. Haydn, G. W. Dalke, J. Henkel, and J. E. Bare. Appli-
cation of the ihs color transform to the processing of multi-
sensor data and image enhancement. National Academy of
Sciences of the United States of America, 79(13):571–577,
1982.

[11] C.A. Laben and B.V. Brower. Process for enhancing
the spatial resolution of multispectral imagery using pan-
sharpening. US Patent 6011875A, 2000.

[12] W. Liao, H. Xin, F. V. Coillie, G. Thoonen, and W. Philips.
Two-stage fusion of thermal hyperspectral and visible rgb
image by pca and guided filter. In Workshop on Hyper-
spectral Image and Signal Processing: Evolution in Remote
Sensing, 2017.

[13] Jiayi Ma, Wei Yu, Chen Chen, Pengwei Liang, Xiaojie Guo,
and Junjun Jiang. Pan-gan: An unsupervised pan-sharpening
method for remote sensing image fusion. Information Fu-
sion, 62:110–120, 2020.

[14] Salma Abdel Magid, Yulun Zhang, Donglai Wei, Won-Dong
Jang, Zudi Lin, Yun Fu, and Hanspeter Pfister. Dynamic
high-pass filtering and multi-spectral attention for image
super-resolution. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 4288–4297,
2021.

[15] SG Mallat. A theory for multiresolution signal decompo-
sition: The wavelet representation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 11(7):674–693,
1989.

[16] Giuseppe Masi, Davide Cozzolino, Luisa Verdoliva, and
Giuseppe Scarpa. Pansharpening by convolutional neural
networks. Remote Sensing, 8(7):594, 2016.

[17] Jorge Nunez, Xavier Otazu, Octavi Fors, Albert Prades, Vi-
cenc Pala, and Roman Arbiol. Multiresolution-based image
fusion with additive wavelet decomposition. IEEE Transac-
tions on Geoscience and Remote sensing, 37(3):1204–1211,
1999.

[18] Frosti Palsson, Johannes R Sveinsson, and Magnus O Ulfars-
son. A new pansharpening algorithm based on total variation.
IEEE Geoscience and Remote Sensing Letters, 11(1):318–
322, 2013.

[19] Robert A Schowengerdt. Reconstruction of multispa-
tial, multispectral image data using spatial frequency con-
tent. Photogrammetric Engineering and Remote Sensing,
46(10):1325–1334, 1980.

[20] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. Advances in Neural Information Processing
Systems, 33:7537–7547, 2020.

[21] Tatsumi Uezato, Danfeng Hong, Naoto Yokoya, and Wei He.
Guided deep decoder: Unsupervised image pair fusion. In
Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part VI,
pages 87–102. Springer, 2020.

[22] Gemine Vivone, Luciano Alparone, Jocelyn Chanussot,
Mauro Dalla Mura, Andrea Garzelli, Giorgio A Licciardi,
Rocco Restaino, and Lucien Wald. A critical comparison
among pansharpening algorithms. IEEE Transactions on
Geoscience and Remote Sensing, 53(5):2565–2586, 2014.

[23] Lucien Wald, Thierry Ranchin, and Marc Mangolini. Fusion
of satellite images of different spatial resolutions: Assessing
the quality of resulting images. Photogrammetric Engineer-
ing and Remote Sensing, 63:691–699, 11 1997.

[24] Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy.
Recovering realistic texture in image super-resolution by

12916



deep spatial feature transform. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 606–615, 2018.

[25] Shuang Xu, Jiangshe Zhang, Zixiang Zhao, Kai Sun, Junmin
Liu, and Chunxia Zhang. Deep gradient projection networks
for pan-sharpening. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 1366–1375, June 2021.

[26] Keyu Yan, Man Zhou, Jie Huang, Feng Zhao, Chengjun Xie,
Chongyi Li, and Danfeng Hong. Panchromatic and mul-
tispectral image fusion via alternating reverse filtering net-
work. Advances in Neural Information Processing Systems,
35:21988–22002, 2022.

[27] Keyu Yan, Man Zhou, Liu Liu, Chengjun Xie, and Dan-
feng Hong. When pansharpening meets graph convolution
network and knowledge distillation. IEEE Transactions on
Geoscience and Remote Sensing, 60:1–15, 2022.

[28] Keyu Yan, Man Zhou, Li Zhang, and Chengjun Xie.
Memory-augmented model-driven network for pansharpen-
ing. In European Conference on Computer Vision, pages
306–322. Springer, 2022.

[29] Gang Yang, Man Zhou, Keyu Yan, Aiping Liu, Xueyang
Fu, and Fan Wang. Memory-augmented deep conditional
unfolding network for pan-sharpening. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1788–1797, 2022.

[30] Junfeng Yang, Xueyang Fu, Yuwen Hu, Yue Huang, Xinghao
Ding, and John Paisley. Pannet: A deep network architecture
for pan-sharpening. In IEEE International Conference on
Computer Vision, pages 5449–5457, 2017.

[31] Q. Yuan, Y. Wei, X. Meng, H. Shen, and L. Zhang. A
multiscale and multidepth convolutional neural network for
remote sensing imagery pan-sharpening. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote
Sensing, 11(3):978–989, 2018.

[32] Man Zhou, Jie Huang, Yanchi Fang, Xueyang Fu, and Aip-
ing Liu. Pan-sharpening with customized transformer and
invertible neural network. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 36, pages 3553–
3561, 2022.

[33] Man Zhou, Keyu Yan, Jie Huang, Zihe Yang, Xueyang Fu,
and Feng Zhao. Mutual information-driven pan-sharpening.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1798–1808, 2022.

12917


