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Abstract

Recent audio2mesh-based methods have shown promis-
ing prospects for speech-driven 3D facial animation tasks.
However, some intractable challenges are urgent to be set-
tled. For example, the data-scarcity problem is intrinsically
inevitable due to the difficulty of 4D data collection. Be-
sides, current methods generally lack controllability on the
animated face. To this end, we propose a novel frame-
work named Speech4Mesh to consecutively generate 4D
talking head data and train the audio2mesh network with
the reconstructed meshes. In our framework, we first recon-
struct the 4D talking head sequence based on the monocu-
lar videos. For precise capture of the talking-related varia-
tion on the face, we exploit the audio-visual alignment infor-
mation from the video by employing a contrastive learning
scheme. We next can train the audio2mesh network (e.g.,
FaceFormer) based on the generated 4D data. To get con-
trol of the animated talking face, we encode the speaking-
unrelated factors (e.g., emotion, etc.) into an emotion em-
bedding for manipulation. Finally, a differentiable renderer
guarantees more accurate photometric details of the re-
construction and animation results. Empirical experiments
demonstrate that the Speech4Mesh framework can not only
outperform state-of-the-art reconstruction methods, espe-
cially on the lower-face part but also achieve better ani-
mation performance both perceptually and objectively after
pre-trained on the synthesized data. Besides, we also verify
that the proposed framework is able to explicitly control the
emotion of the animated talking face.

1. Introduction

Speech-driven facial animation is aimed at guiding the
face model (either 2D image or 3D mesh) to have perceptu-
ally rational motion (especially for lip sync) only according
to the input audio signal. It is drawing increasingly more

Figure 1: Overview of the proposed Speech4Mesh frame-
work. In this framework, the speech signal is leveraged for
both the reconstruction module and the audio2mesh mod-
ule. An emotion code is embedded into the audio2mesh
module for emotional manipulation. Differentiable render-
ing is employed for recovering the details of the face.

attention with the development of virtual reality, game and
film production, etc. There are currently two mainstreams
to deal with this task, either from 2D or 3D perspectives.
By learning from video data [9, 41, 55, 71], 2D solutions
try to generate the talking head images frame by frame.
Although sufficient data is available to be used, the syn-
thesized images cannot directly be applied to 3D scenes.
Thus, in this paper, we mainly focus on 3D facial animation
driven by speech. In recent years, a handful of 3D speech-
driven facial animation methods [20, 47, 39, 13, 7, 34] have
shown promising performance by directly learning a map-
ping from audio to 3D avatar mesh deformation with deep
neural networks (hereinafter called audio2mesh methods).
In this way, some subtle variations on the face mesh can
be captured. Generally speaking, for the audio2mesh meth-
ods, data quality is one of the most important factors to be
considered [20] since they generally demand high-precision

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

14192



4D talking head data to learn the correspondence from au-
dio embedding to mesh movement in a supervised manner.
However, in practice, real 4D data is extremely hard to col-
lect. It is generally reconstructed and registered from syn-
chronized multi-view images or 3D scan frame by frame,
which is extraordinarily costly [13, 21]. Therefore, how
to deal with the data scarcity problem becomes an urgent
agenda to be discussed.

In contrast, the accessibility of monocular videos is
much higher. The scarcity of 4D data may be mitigated
through the use of 3D reconstruction techniques applied to
2D videos. The majority of current monocular 3D face re-
construction methods (e.g., 3DDFA-V2 [27], DECA [22])
are based on the self-supervised training scheme, whose es-
sential guidances are landmark loss and photometric loss.
Nonetheless, these losses can only provide 2D information
from the image plane, which is relatively weak to capture
the complex nonrigid deformation of the lower face re-
gion [51, 62]. Therefore, the reconstructed results always
demonstrate obvious artifacts and ambiguities between ut-
terance and visual perception, such as mouth funnel, pucker,
and rounded vowels, which may considerably limit the pre-
cision of the audio2mesh methods [20].

To address the problems mentioned above, we pro-
pose a novel framework named Speech4Mesh to consec-
utively synthesize 4D talking head data and train the au-
dio2mesh network with the reconstructed mesh sequences.
An overview of the Speech4Mesh framework is illustrated
in Fig. 1. Firstly, to obtain better synthesis results, we pro-
pose a novel speech-assisted monocular 3D face reconstruc-
tion module to exploit multi-modal correlation from the
video data rather than merely from the RGB image, since
the mouth geometry and expression are naturally correlated
to the speech. Specifically, this module is built based on
a backbone reconstruction model DECA [22], one of the
state-of-the-art monocular 3D face reconstruction methods.
By employing a speech-visual contrastive loss, it can learn
the correspondence between audio and visemes to make the
reconstructed 3D face to be more reliable and perceptually
reasonable.

Secondly, once sufficient 4D data has been acquired,
we can train an audio2mesh network to model the de-
formation of a face mesh based on input speech. For
our work, we employed FaceFormer [20] as the back-
bone for the audio2mesh network. Compared with the
vanilla training scheme of FaceFormer, the primary benefit
of Speech4Mesh is data sufficiency. In fact, Speech4Mesh
provides a low-cost self-supervised approach to generate
“infinite” 4D training data from infinite RGB videos. Be-
sides, owing to the diversity of the talking head videos, the
reconstructed data empowers our model to further disentan-
gle other auxiliary properties of the face (e.g., emotion, etc.)
for manipulation. To be specific, we first pre-train Face-

Former on the reconstructed emotional 4D dataset with the
corresponding emotion codes. At the fine-tuning stage, dif-
ferent emotion codes can be embedded into the FaceFormer
backbone to realize the emotion control of the animated
talking head.

The main contributions of our work can be summarized
as follows:

• We propose Speech4Mesh, a novel framework that
tackles the data scarcity issue in speech-driven
3D facial animation by consecutively reconstructing
pseudo-4D data and training an audio2mesh network.
This framework also provides a referable scheme to al-
leviate the data scarcity problem of similar 4D tasks.

• This framework enables emotional control in the ab-
sence of high-quality expressive 4D data by pre-
training with the emotional pseudo-4D talking head
data reconstructed from 2D videos. And the syn-
thesized emotional 4D talking head dataset can
be found in https://github.com/haonanhe/
MEAD-3D/tree/main.

• To the best of our knowledge, we are the first to uti-
lize speech information as complement for monocular
3D face reconstruction. Empirical experiments show
that the exploitation of multi-modal information yields
more natural and precise results.

2. Related Work
Speech-driven 3D Facial Animation: Speech-driven

facial animation has been widely explored over the years.
Existing methods could be categorized into 2D-based ap-
proaches which attempt to operate in 2D pixel space [72, 70,
45, 15, 11, 8], and 3D-based approaches that we focus on.
Some works animate 3D models based on visemes through
complex rules of coarticulation [19, 73, 68, 57, 12]. Though
they could capture accurate lip movements and achieve ex-
plicit control over the entire process, such methods usu-
ally involve plenty of manual adjustments. Data-driven ap-
proaches have been proposed to automatically learn a map
from acoustic features to 3D models. Most of them were
trained in a supervised manner [20, 13, 47, 6, 34] with
multi-view motion capture data [4, 6] or high-resolution 4D
scans [34, 13]. [6] searches the matching mouth anima-
tion for phonemes based on an Anime Graph structure. [34]
proposes an end-to-end convolutional network and uses a
latent code to control the emotional state of animated mesh.
VOCA [13] achieves speaker-independent facial animation
by leveraging a subject-specific latent code. MeshTalk
[47] learns a categorical latent space to disentangle audio-
correlated and audio-uncorrelated information, which en-
ables it to animate the entire face. FaceFormer [20] first ap-
plies Transformer to 3D facial animation to make an autore-
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gressive prediction of the animated 3D face mesh sequence,
which claims to be able to capture accurate lip movements.

However, 4D scans are usually too expensive to access,
which leads to the data scarcity issue. There are methods
trying to address this problem by using 4D data generated
from videos [56, 65, 44]. [44] trains an LSTM-RNN model
to regress the shape parameter of the parametric face model
tracked from input video frames. [56] uses a sliding win-
dow predictor to learn mappings from phoneme sequences
to lower facial shape and appearance that an Active Appear-
ance Model (AAM) tracks from video frames. [65] aims
to synthesize 3D talking-head with rich emotion. However,
their 3D faces tracked from videos are only optimized by 2D
landmarks loss, which may lead to inaccurate reconstruc-
tion and animation results. In contrast, our method lever-
ages speech features to capture 3D faces with more accu-
rate facial movements. In addition, pre-training on emotion
datasets enables our reconstructed 3D face meshes to have
emotion states, which leads to 3D facial animation with rich
emotion.

Monocular 3D face reconstruction: Monocular 3D
face reconstruction aims to track and recover the 3D
shape and texture of the human face from monocular 2D
data. Early methods often perform an optimization pro-
cedure in an analysis-by-synthesis framework, predicting
landmarks[75, 62, 30, 5] or local features[29, 50] to regress
parameters of 3D Morphable Models (3DMM) [2, 43, 3,
35]. Although optimization-based approaches could re-
cover high-quality 3D faces, they usually involve costly op-
timization processes. In recent years, learning-based meth-
ods were proposed for more efficient reconstruction. Some
of them predict 3DMM coefficients [32, 74, 48, 37, 49]
directly. To alleviate constraints caused by models’ lim-
ited geometry, there are also model-free methods directly
regressing 3D meshes [16, 18, 23, 33, 53], voxels [31] or
Signed Distance Function (SDF) [42].

However, the greatest limitation of learning-based meth-
ods is the lack of paired training data. Some methods ad-
dress this problem by generating synthetic data or using
image-model pairs fitted by traditional optimization-based
methods [63, 66, 28, 38, 74, 48, 53]. Others have tried
to solve it in an unsupervised manner. Most of unsuper-
vised methods try to regress 3DMM parameters by predict-
ing 2D landmarks [17, 22, 40, 52, 54, 58, 59, 60, 69], pho-
tometric constraints [17, 22, 25, 54, 59, 60, 69] or multi-
image constraints[17, 22, 25, 52, 58]. Perceptual constraints
such as face recognition features [17, 22, 25, 54] or emo-
tion features [14] are also utilized to constrain models’
learning objects. While unsupervised methods provide a
large amount of training data, reconstructing 3D faces from
merely 2D information is still underconstrained. To cap-
ture more accurate expressions from monocular videos, our
framework leverages speech information as another source

of constraints, which has a strong relationship with facial
movements, especially the mouth area.

3. Preliminaries
Current monocular 3D face reconstruction methods gen-

erally leverage the self-supervised scheme for training. In
such a way, a parametric face model and a differentiable
renderer are required to recover the 3D face mesh and ren-
der the 3D face back to the image for training, respectively.
In this section, we review the basic knowledge of the para-
metric face model and differentiable renderer for reference.

3.1. FLAME

In this work, we used FLAME [36] as the prior para-
metric face model for reconstruction, which is a generic
3D head model using standard vertex-based linear blend
skinning (LBS) with corrective blendshapes. Specifically,
it consists of N = 5023 vertices and could be defined as:

M(β,θ,ψ) ∈ R3N , (1)

which contains shape parameters β ∈ R|β| accounting for
shape variation, expression ψ ∈ R|ψ| to capture facial ex-
pressions, and pose parameters θ ∈ R3K+3 to rotate ver-
tices around K = 4 joints (neck, jaw, and eyeballs) as well
as correcting pose deformations. FLAME provides a geo-
metric constraint and a low-dimensional latent space, mak-
ing our reconstruction process much easier. Besides, highly
disentangled parameters allow us to control the face model’s
expression or pose independently, which benefits us in both
the reconstruction and animation phases.

We obtain FLAME’s texture map through an appearance
model A(α) ∈ Rd×d×3 with albedo parameters α ∈ R|α|

as input. This is achieved by converting Basel Face Model’s
linear albedo space to FLAME’s UV layout. More details
can be found in [35].

3.2. Differentiable Rendering

3D rendering is a function that maps the 3D object to a
2D image. Differentiable rendering, as the name implies,
provides a differentiable rendering function where the gra-
dient of the function with respect to the 3D object param-
eters can be effectively computed. In this work, we use
the differentiable rasterizer from Pytorch3D [46] to render
parametric FLAME model M(β,θ,ψ) to 2D images IR as

R(M(β,θ,ψ),α, l, c) → IR, (2)

with albedo parametersα, Spherical Harmonics (SH) light-
ing parameters l =

[
lT1 , · · · , lT9

]T
, lk ∈ R3 to create

shaded textures and camera parameters c ∈ R3 which is the
concatenation of isotropic scale s ∈ R and 2D translation
t ∈ R2.
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Figure 2: Speech-Assisted Monocular 3D Face Reconstruc-
tion. The block in grey color are fixed models or networks,
and the Expression Encoder Ee in blue color is the learn-
able network.

4. Speech4Mesh
4.1. Speech-Assisted Monocular 3D Face Recon-

struction

In the proposed Speech4Mesh framework, 3D face se-
quences are first reconstructed from RGB videos. The de-
tailed structure of our reconstruction module is illustrated
in Fig. 2. The overall structure is built on DECA [22],
the state-of-the-art method in monocular 3D face recon-
struction. DECA learns animatable detailed 3D face mod-
els from static RGB images I in a two-stage scheme. The
coarse stage first predicts parameters to reconstruct a rough
face shape based on the FLAME model. The detail stage
then generates a UV displacement map conditioned on ex-
pression and jaw pose parameters to achieve fine-grained
details. Since the detail stage may bring noise to the re-
constructed mesh, we only borrow the coarse part as our
backbone. In DECA’s coarse part, an encoder (ResNet-50)
learns to regress 3DMM coefficients merely under visual
constraints, including landmark-related losses, photometric
loss, perceptual-level loss, and shape consistency loss. We
will introduce some of the losses we have used later in the
text.

Expression encoder: Since DECA already can capture
the overall facial features well, we fix the pre-trained coarse
encoder Ec in DECA for shape, pose (except jaw), camera,
albedo, and light parameters. We then train an additional
expression encoder Ee to regress expression parameters ψe
and jaw parameters θjawe as follows:

θjawe ,ψe = Ee(I). (3)

Note that, for computational efficiency, we use Mo-
bileNetV2 instead of ResNet-50 as the backbone network.

Only trainingEe simplifies the learning goal and enables
us to remove losses that are unrelated to lip motion such as

identity loss Lid and shape consistency loss Lsc in DECA,
which leads to faster training speed and fewer training re-
sources. Also, speech content would mainly affect mouth-
related movements, which are most relevant to expression
and jaw pose. The rendering output of the reconstruction
part is then denoted as:

R
(
M

(
β, [θ, θjawe ],ψe

)
,α, l, c

)
→ IRe, (4)

in which [θ, θjawe ] means we replace the original vectors
representing jaw pose in θ with θjawe .

Speech-visual contrastive loss: As discussed in pre-
vious sections, the majority of current works only utilize
the visual information from utterance videos. While these
methods have achieved acceptable reconstruction results, it
is still an underconstrained problem to retrieve 3D faces
merely from 2D planes. Ignoring information contained
in audio can lead to a considerable loss in reconstruction.
Thus, we propose to leverage speech constraints here to
achieve more precise 3D face reconstruction in a contrastive
manner. We calculate the contrastive loss using a minibatch
of N speech-visual representation pairs (ϵs, ϵv), where ϵv is
the hidden state before the last 4-layer MLP in expression
encoder, which projects ϵv to the target 3DMM space, and
ϵs is the audio embedding. In specific, ϵs is obtained by the
pre-trained wav2vec 2.0 [1] model as follows:

ϵs = Es(S), (5)

which can extract powerful representations from speech au-
dio. Since we interpolate the frequency of audio features
to be two times the video frame rate, we then adopt a linear
combination of audio features from time steps (t−⌊T/2⌋)·2
to (t + ⌊T/2⌋) · 2 for frame t as the speech-visual posi-
tive pair, where T is set to 5 in our experiment. Minimiz-
ing the contrastive loss leads to encoders that maximally
preserve the mutual information between positive speech-
visual pairs. The contrastive loss consists of two terms,
in which the first term calculates the speech-to-visual con-
trastive cost for the i-th pair:

ℓ
(s→v)
i = − log

exp (⟨ϵsi , ϵvi ⟩ /τ)∑N
k=1 exp (⟨ϵsi , ϵvk⟩ /τ)

(6)

where ⟨ϵsi , ϵvi ⟩ calculates cosine similarity between two vec-
tors, i.e., ⟨v,u⟩ = v⊤u/∥v∥∥u∥. τ ∈ R+ is the temper-
ature parameter, which is fixed to 0.07 in our experiment.
While the second term is similar to the first term, it calcu-
lates cosine similarity as ⟨ϵvi , ϵsi ⟩. The final contrastive loss
is the weighted sum of the two terms:

Lcon =
1

N

N∑
i=1

(
λℓ

(s→v)
i + (1− λ)ℓ

(v→s)
i

)
, (7)

where we set λ to 0.5 in our experiment as a scalar weight.
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Weighted landmark loss: We use weighted landmark
loss to minimize the L1 distance between ground-truth 2D
key points and corresponding landmarks projected into the
image plane from mesh.

Llmk =

68∑
i=1

λi ∥ki − sΠ(Mi) + t∥1 (8)

in which λi is the weight of the ith landmark, Π(Mi) rep-
resents projecting 3D meshes Mi to the 2D pixel space. We
set weights of landmarks in the mouth, jaw, and nose area
higher than others to capture more accurate geometry rep-
resentations.

Eye closure loss: We calculate the eye closure loss

Leye =
∑

(i,j)∈E

∥ki − kj − sΠ(Mi −Mj)∥1 (9)

to force the relative offset of vertices Mi and Mj on the
upper and lower eyelid to be close to the offset of ground-
truth eyelid landmarks pairs ki and kj . In this way, the
reconstructed mesh could capture the blink of eye.

Lip closure loss: The lip closure lossLlp is similar to the
eye closure loss. It measures the relative distance between
the upper/lower lip and left/right lip corners keypoint pairs.

Photometric loss: The photometric loss

Lpho = ∥VI ⊙ (I − IRe)∥1,1 (10)

measures the pixel-to-pixel differences between ground-
truth training images and rendered images. VI is the face
skin mask with a value 1 in the face skin area and ⊙ de-
notes the Hadamard product.

Emotion consistency loss: To capture more vivid ex-
pressions, we borrow the idea from EMOCA [14] that in-
troduces an emotion consistency loss with a fixed emotion
recognition network. We compute the L2 distance between
emotion features of input images and output rendered im-
ages as follows:

Lemo = ∥ϵemoI , ϵemoRe ∥2 , (11)

where ϵemoI and ϵemoRe are produced by a fixed emotion
recognition network.

Regularization term: We constrain the expression
parameters ψe and jaw parameters θjawe produced by
our expression encoder to be close to the original pa-
rameters produced by pre-trained DECA by minimizing
their L2 distance as performed in [24]: ∥ψe − ψ∥2 and∥∥θjawe − θjaw

∥∥
2
.

Loss function: To sum up, our optimization goal is:

Lrecon = λconLcon + λlmkLlmk + λeyeLeye + λlpLlp

λphoLpho + λemoLemo + λregLreg,
(12)

where λ with different subscripts are hyper-parameters to
balance the corresponding losses. The detailed values of λs
can be found in the supplemental material.

4.2. Speech-Driven Emotional 3D Facial Animation

After acquiring sufficient synthesized 4D training data,
we can train the audio2mesh module for animation. We
use FaceFormer [20], a Transformer-based model to drive
3D face vertices with speech embeddings. FaceFormer [20]
is the first work to apply Transformer to 3D facial anima-
tion. It has achieved better performances in both realism
and lip synchronization than prior methods owing to the
Transformer’s ability to learn long-term audio dependen-
cies. Specifically, FaceFormer predicts the vertices’ move-
ment in an autoregressive manner as follows:

ŷt = FaceFormer(ŷ<t, in,S), (13)

where ŷt represents the predicted vertices offset at time step
t, and in represents the identity code. Although FaceFormer
has achieved remarkable animation results, its performance
highly depends on the data quality, since it is trained in a
fully supervised scheme where the only supervision is the
MSE loss between predicted and ground-truth meshes:

LMSE =

T∑
t=1

V∑
v=1

∥ŷt,v − yt,v∥2 . (14)

In such a way, it’s hard to capture some facial details due
to the registration loss of the scanned 4D training data. To
this end, during pre-training with the synthesized data, we
further introduce a pixel-level constraint by computing the
photometric loss between the rendered images and corre-
sponding real images as follow:

R (MT + ŷt,θt,αt, lt, ct) → ItRe, (15)

where MT is the template face mesh (the mean of all faces
in the training set as in FaceFormer). Note that, when per-
forming differentiable rendering, since the output meshes
of the FaceFormer network are all aligned, i.e., without any
rotation or camera transform, we borrow θt1,αt, lt, ct esti-
mated by our 3D reconstruction encoders to render the ver-
tices to 2D images. Except for the pixel-to-pixel loss, we
also calculate landmark-related losses as in the reconstruc-
tion part.

Furthermore, due to the insufficiency of emotional 4D
data, current audio2mesh methods generally lack emotion
controllability. To make our meshes more lifelike, we intro-
duce a one-hot emotion code to explicitly control the emo-
tional state. Specifically, during pre-training on the emo-
tional 2D video dataset, we embed the emotion category
into the FaceFormer network as follows:

ŷt = FaceFormer(ŷ<t, in, em,S), (16)

1With slight abuse of notation, the θt here does not include the jaw
rotation.
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Figure 3: Comparison of the reconstruction results on MEAD (left) and VoxCeleb2 (right) datasets. The first column on
the left is the original RGB images. The reconstructed faces from the second to the sixth column are from 3DDFA-V2,
Deep3DFace (Pytorch), DECA (coarse), EMOCA (coarse), and ours, respectively. More qualitative results could be found in
the supplementary materials.

where em is the one-hot vector projected to a higher di-
mension space. In this way, during the inference stage, we
can achieve speaker-independent emotion-controllable 3D
facial animation by embedding different emotion vectors
into FaceFormer.

To sum up, by employing the self-supervised differen-
tiable rendering scheme and emotion code, our modified
FaceFormer model can generate not only more realistic but
also emotion-controllable animated face meshes.

5. Experiments
5.1. Dataset

In this paper, we leveraged RGB video data and 4D mesh
data for training the reconstruction module and fine-tuning
the audio2mesh module, respectively. A brief introduction
of the datasets we used is as follows.
2D Training Data: MEAD [64], VoxCeleb2 [10]. The
MEAD dataset is a talking head corpus with different in-
tensities of emotions. It has a total of 281,400 video clips
collected from 60 English-speaking actors and actresses un-
der 8 common emotions with 3 levels of intensity. Note that
although the dataset contains videos from different views,
we only took the front-face data for training to keep more
visible details. VoxCeleb2 is a large-scale talking head
video dataset collected from open-source media which cov-
ers a huge range of identities, races, languages, and head
poses. In practice, we randomly sampled 2,000 identities
for training. The images were extracted under 30 and 25 fps
for MEAD and VoxCeleb2 videos, respectively. We used
wav2vec 2.0 [1] to exact the audio embeddings, in which
the output frequency is 49 Hz. To ensure temporal align-
ment of the image and audio, we interpolate the audio em-
beddings to 50 Hz for the VoxCeleb2 dataset and to 60 Hz

for the MEAD dataset.
4D Fine-Tuning Data: VOCASET [13]. VOCASET is
a 4D dataset composed of consecutive scanned 3D heads
which are all registered to a 5023 vertices mesh. It contains
a total of 480 talking motion sequences from 12 subjects
under the frame rate of 60 fps. The training, validation, and
testing splits are directly adopted from [20].

5.2. Training Setup

The reconstruction part was trained for a maximum of
20 epochs, using the Adam optimizer and a learning rate of
5e − 5. In one iteration, we used 4 mini-batches of data,
each of which contains 16 frames randomly sampled from
a single video. We further implied distributed data-parallel
technique to collect data from 4 GPUs to enlarge the pool
of training pairs for contrastive learning.

The audio2mesh network was trained using the Adam
optimizer with a learning rate of 1e − 4 for a total of 100
epochs. The parameters of the encoder were initialized with
the pre-trained wav2vec 2.0 weights and the parameters of
TCN were fixed during training. The period p for the biased
causal multi-head self-attention was set to 30.

We pre-trained our audio2mesh network on 4D data pro-
duced by our monocular 3D reconstruction network from
the MEAD dataset. While it contains 3 levels of emo-
tional intensity, we only use the mildest first level to train.
We created 8 one-hot emotion codes (angry, contempt, dis-
gusted, fear, happy, sad, surprised, or neutral) and 42 one-
hot speaker identity codes. For each pair of image and
its 3D reconstruction in the MEAD dataset, we embedded
its corresponding emotion code and speaker ID code to a
higher dimension and then concatenated and projected it to
the audio2mesh network.

We fine-tuned the audio2mesh network on VOCASET
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which contains high-resolution 4D scans. During training,
we randomly chose 8 kinds of speaker ID codes defined in
the pre-train phase and set the emotion code to neutral.

5.3. Analysis of 3D Face Reconstruction Results

Subjective Evaluation: Visualization of the reconstruction
results is demonstrated in Fig. 3. We randomly sampled
several frames from MEAD and VoxCeleb2 datasets for
comparison. For clear observation of the expression details,
we did not apply texture on the face. The sampled frames
contain a variety of talking heads with various lip motions,
extreme emotions, different genders, head poses, ages, and
races. From Fig. 3, we can find that our method appar-
ently outperforms the 3DDFA-V2 and DECA regarding the
lip motion as well as the overall appearance. The curly lips
and emotional expressions cannot be recovered by these two
baselines. EMOCA is an expert in capturing extreme emo-
tions. However, some mild expressions will be significantly
exaggerated by EMOCA, which causes unnatural artifacts
and inaccurate lip shapes in the reconstruction results. More
comparison results with EMOCA could be found in supple-
mentary materials. Note that, we used the Pytorch version
of Deep3DFace for comparison, which is claimed to be bet-
ter than the Tensorflow implementation. As shown in the
third column in Fig. 3, the recovered faces by Deep3DFace
reveal impressive identity consistency compared with the
original RGB image. This may attribute to the identity ag-
gregation mechanism and a different parametric face model
(i.e., Basel Face Model [43]). However, the lower face ex-
pressiveness is still lower than our proposed method.

We further conducted a user study to make a perceptual
evaluation between our and the competitors’ reconstruction
results. Specifically, 150 participants were asked to judge
a side-by-side image composed of the original image, our
reconstruction result, and the competitor’s result. The par-
ticipants can select their favorable one or choose the equal
option if they cannot distinguish the difference. 50 samples
were randomly selected from the MEAD and Voxceleb2
datasets. The result of the study is summarized in Tab. 1.

As we can see from Tab. 1, the result demonstrates an
obvious inclination to support our results. It is worth men-
tioning that about 80 percent of our reconstructed samples
are deemed better than or equal with 3DDFA-V2 and DECA
methods regarding both full and lower face. EMOCA im-
proves the perception of the results due to its emotion prior.
Deep3DFace also achieves better performance as we dis-
cussed above. However, owing to the audio-visual align-
ment, our method achieves better performance at both full-
face and the low-face region according to the user study.
Objective Evaluation: Our reconstruction model’s abil-
ity to capture lip shapes is measured using the lip vertex
error as the objective metric, which has been extensively
leveraged to evaluate the precision of lip synchronization

Ours vs. Competitor Face region
Favorability(%) ↑

Equal Comp. Ours
Ours better

or equal
Full 5.4 19.4 75.2 80.6

Ours vs. 3DDFA-V2
Lower 5.4 21.3 73.3 78.7
Full 11.4 18.8 69.8 81.2

Ours vs. DECA
Lower 9.8 18.5 71.7 81.5
Full 8.4 38.3 53.3 58.9

Ours vs. EMOCA
Lower 8.3 37.2 54.5 62.8
Full 5.9 41.1 53.1 58.9

Ours vs. Deep3DFace
Lower 8.7 34.2 57.0 65.8

Table 1: A user study of the reconstruction results. We
compare the participants’ favorability of our reconstructions
with the competitors’ w.r.t. different regions of the face.

Metric Ours EMOCA
Lip Vertex Error ↓ 0.995e−2 1.359e−2

Table 2: Reconstruction error on VOCASET.
[20, 47]. To calculate this error, we determine the maximal
L2 distance between the lip vertices of the reconstructed
meshes and their corresponding ground truth in the VO-
CASET. We compared Speech4Mesh with EMOCA, which
performs the best in the subjective evaluation. As presented
in Table 2, our method outperforms EMOCA in terms of
lower lip vertex error, demonstrating our superior ability to
capture accurate lip shapes. On the contrary, EMOCA per-
forms poorly on this metric due to its exaggerated facial
expression with contorted mouth movements.

5.4. Analysis of Speech-Driven Facial Animation
Results

Subjective Evaluation: We also performed a user study on
the speech-driven animation results. Similar to the recon-
struction user study, we recruited 150 participants to judge
the animation quality of our method and the vanilla Face-
Former from the realism and lip synchronization dimen-
sions. The speeches for evaluation are from FaceFormer’s
test data (the demo video of FaceFormer) and the Vox-
Celeb2 dataset. For each dataset, we sampled 56 speeches
(7 ids, 8 sentences for each id). Each participant evaluates
8 videos selected at random. The statistic of the user study
is shown in Tab. 3. From Tab. 3 we can find that the fa-
vorability rating of our Speech4Mesh is consistently higher
than that of FaceFormer, especially on the more challeng-
ing VoxCeleb2 speeches. We also visualize several repre-
sentative syllables and corresponding animations in Fig. 4
for demonstration. In Fig. 4, our animated faces are more
expressive and perceptually reasonable. We would like to
note that MeshTalk cannot be well-trained on VOCASET
which in a different topology, as mentioned in [61]. We
have refrained from presenting any quantitative or qualita-
tive comparison results here. However, we do incorporate a
straightforward comparison in the supplementary videos. It
is highly recommended to see those videos for more details.
Objective Evaluation: We evaluate the lip vertex error of
our proposed method and the vanilla FaceFormer on the test
set of VOCASET. For simplicity, the scale we used for eval-
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Test Speech Data Criterion
Favorability(%) ↑

Equal FaceFormer Speech4Mesh

Ours better

or equal

Realism 24.8 31.8 43.4 68.2Speech from

FaceFormer Demo Lip Sync 21.9 36.4 41.8 63.6

Realism 16.3 26.1 57.7 73.9Speech from

VoxCeleb2 Lip Sync 16.7 30.7 52.5 69.3

Table 3: A user study of the speech-driven results. We
compare the participants’ favorability of our results with the
FaceFormer with respect to realism and lip synchronization.

Method Lip Vertex Error ↓
VOCA 6.428e−3

FaceFormer 5.355e−3

Speech4Mesh 4.863e−3

Table 4: Comparison of the lip-sync error between VOCA,
the vanilla FaceFormer, and Speech4Mesh.

uation is the same as the FLAME model.
Tab. 4 displays the lip vertex errors of the vanilla Face-

Former method and our Speech4Mesh method. It can be
seen that more than a 9% improvement in lip synchroniza-
tion is brought by our training framework, which restates
the importance of data sufficiency for 4D tasks.

5.5. Emotion Control

As introduced in previous sections, our audio2mesh
module can be trained on the reconstructed meshes with
different emotions. By employing an emotion code, we can
manipulate the originally neural 4D talking heads to have
different emotions. As shown in Fig. 5, different emotions
(e.g., happy, surprised, sad) are embedded into the talking
face driven by the same speech. The result reveals the po-
tentiality of more diverse applications by exploiting the 2D
videos under the Speech4Mesh framework. More emotion
control results could be found in supplementary videos.

5.6. Ablation Studies

To understand the impact of the contrastive loss and the
photometric loss on speech-driven animation, we conducted
quantitative experiments as shown in Tab. 5. More ablation
studies could be found in supplementary materials. For the
ablation study of contrastive loss, we pre-trained our au-
dio2mesh module using 4D meshes reconstructed from the
MEAD dataset, without incorporating contrastive loss dur-
ing training. For the ablation study of photometric loss, we
simply removed it in the pre-training stage. The quantitative
results in Tab. 5. show that pre-training without contrastive
loss or photometric loss results in a higher lip vertex error.
These results underscore the importance of high-quality re-
constructed 4D meshes in our method. They also support
the notion that the photometric loss can encourage the au-
dio2mesh network to learn detailed information which can
not be captured solely from 4D meshes.

Figure 4: Representative syllables and corresponding ani-
mations. The animation results of our Speech4Mesh and
FaceFormer are displayed in the first and second columns.

Figure 5: Speech4Mesh samples with different emotions.

Metric Full wo. Pho. wo. Con. FaceFormer
Lip Vertex Error ↓ 4.863e−3 5.233e−3 5.271e−3 5.355e−3

Table 5: Ablation study on the photometric loss and con-
trastive loss w.r.t. the lip-sync error.

6. Conclusions and Future Work

In this paper, we propose a novel framework named
Speech4Mesh to train the audio2mesh network for speech-
driven 3D facial animation. In Speech4Mesh, the speech-
assisted monocular 3D face reconstruction module can
provide significantly more accurate 4D synthesized data
for pre-training by leveraging the audio-visual contrastive
alignment. By employing the differentiable rendering loss
and an emotion code, the modified audio2mesh network
can achieve more realistic animation performance and un-
precedentedly realize emotion manipulation. Empirical ex-
periments verify the effectiveness and superiority of the
Speech4Mesh framework both quantitatively and perceptu-
ally. We hope that the proposed Speech4Mesh framework
can bring inspiration for similar 4D tasks to address the data
scarcity problem.

In the future, we plan to replace the image-based recon-
struction backbone DECA with a video-based reconstruc-
tion backbone such as MICA [76], neural head avatar [26]
or [67]. We will also leverage more high-quality 2D video
data for better animation performance and devise a more
effective emotion modeling scheme to improve the expres-
siveness of expressions.
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Stephan Garbin, Toby Sharp, Ivan Stojiljković, et al. 3d face
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