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Abstract

Learning-based registration for large-scale 3D point
clouds has been shown to improve robustness and accuracy
compared to classical methods and can be trained without
supervision for locally rigid problems. However, for tasks
with highly deformable structures, such as alignment of
pulmonary vascular trees for medical diagnostics, previous
approaches of self-supervision with regularisation and
point distance losses have failed to succeed, leading to
the need for complex synthetic augmentation strategies
to obtain reliably strong supervision. In this work, we
introduce a novel Differentiable Volumetric Rasterisation
of point Clouds (DiVRoC) that overcomes those limitations
and offers a highly efficient and accurate loss for large-
scale deformable 3D registration. DiVRoC drastically
reduces the computational complexity for measuring point
cloud distances for high-resolution data with over 100k
3D points and can also be employed to extrapolate and
regularise sparse motion fields, as loss in a self-training
setting and as objective function in instance optimisation.
DiVRoC can be successfully embedded into geometric
registration networks, including PointPWC-Net and other
graph CNNs. Our approach yields new state-of-the-art
accuracy on the challenging PVT dataset in three different
settings without training with manual ground truth: 1)
unsupervised metric-based learning 2) self-supervised
learning with pseudo labels generated by self-training and
3) optimisation based alignment without learning.
https://github.com/mattiaspaul/
ChasingClouds

1. Introduction

Learning-based point cloud or shape registration has
seen increasing interest in computer vision and medical
imaging over recent years [56] due to its ability to model
3D motion for sequences of (multi-view) depth images or
LiDAR measurements within a dynamic scene as well as for
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Figure 1. Overview of our key contributions for unsupervised
learning of highly deformable 3D point cloud registration.

surface and tree-like representations in medical 3D scans.
Point clouds offer benefits of representing a 3D scene more
sparsely and efficiently than voxelised volumes and they im-
mensely reduce privacy concerns of data sharing since iden-
tifying intensity information is removed. However, they
come with the difficulty of defining convolutional opera-
tors, neighbourhood information and loss functions without
a regular grid. Many recent works define graph convolu-
tional operators to solve point cloud classification and se-
mantic segmentation tasks [4, 19, 45, 48, 57].

For scene flow estimation of predominantly rigid ob-
jects that move dynamically a number of geometric network
approaches for self-supervised and supervised learning of
correspondences have been proposed: flow embedding lay-
ers (FlowNet3D) [21], bilateral convolutions [13], optimal
transport based solutions (FLOT) [34], cost volume based
methods with multiple warping steps (PointPWC-Net) [49],
iterative approaches (PV-RAFT) [47].

While scene flow estimation usually requires high frame
rate throughput on moderately sized point clouds, 3D med-
ical imaging for diagnosis mandates registration accuracies
at millimetre-scale on high-resolution clouds but may al-
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low for computation times of hundreds of milliseconds to
around 1 second even in interventional procedures. For re-
lated work in medical registration and lung imaging the use
of instance optimisation as a refinement to a robust network
prediction has thus become imminent [14, 39, 38] to com-
pensate subtle domain shifts that are introduced by the pa-
tient specific anatomy, e.g. the topology of vascular trees is
highly varying across a population.

To date, few methods have successfully addressed the
registration of highly deformable geometric structures e.g.
the lungs, as discussed in the recent NeurIPS paper on ro-
bust optimal transport (RobOT) [38]. The authors in par-
ticular state that a key lesson from their experiments and
ablation studies on the new pulmonary vascular tree (PVT)
dataset on respiratory motion estimation was that metric-
based unsupervised learning did not yield to a competitive
level of accuracy despite exploring a variety of point cloud
metrics, including local Laplacian matching [49] as well
as Chamfer and Wasserstein distances [10, 28]. They ar-
gue that this is due to the complex geometric structure of
the lung anatomy and the significant differences in shape
found between inspiration and exhale scans that are usually
not present in surface meshes or other clean point clouds
that unsupervised methods were primarily designed for and
evaluated on. RobOT therefore resorts to a sophisticated
synthetic simulation of deformable lung motion to provide
strong supervision. They propose a multistep approach that
comprises affine pre-alignment, PointPWC flow prediction
and robust optimal transport with post-processing to set a
state-of-the-art accuracy of 2.86mm, which clearly outper-
forms classical optimisation based methods.

Motivation: We argue that the difficulties of previous
attempts to learn point cloud registration of intrinsically
deformable structures without stronger supervision stems
from three problems of related works. First, using a geo-
metric network that can freely predict sparse displacements
with only a soft penalty on the regularity of the deforma-
tion makes unsupervised learning with a cost function that
exhibits many local minima nearly infeasible. Hence, a
stronger link between regularisation and network prediction
has to be established. Second, point-based metrics can be
prone to sparse differentiability with respect to the hyper-
parameter choice, e.g. the nearest neighbours for the Cham-
fer distance or blur in the sinkhorn metric used in optimal
transport [ 1 1]. Third, the importance of highly efficient in-
stance optimisation to compensate differences between the
learned population model and patient-specific graph topol-
ogy has so far been partially overlooked.

In this work, we overcome those difficulties by pre-
senting a novel differentiable volumetric rasterisation (Di-
VRoC) for 3D point cloud losses, which substantially re-
duces the sparsity of the loss gradients and avoids quanti-
sation errors (e.g. found in occupancy grids [24]) and can

achieve new state-of-the-art accuracy in unsupervised reg-
istration when embedded in a more explicit regularisation
strategy again realised with DiVRoC. The new measure also
excels at rapid instance optimisation that can for one be
used in self-supervised learning (as pseudo ground truth)
and helps to achieve highly accurate alignment of detailed
point clouds while remaining competitive in inference run
times.

1.1. Contribution

Our newly presented differentiable volumetric rasterisa-
tion (DiVRoC) technique is the core strength of our method
that constitutes the following key contributions:

1. Unsupervised learning of highly deformable point
cloud registration. For the first time we demonstrate that
geometric registration of vascular trees can be trained in
an unsupervised fashion and more effectively than with
stronger supervision through synthetically generated pairs.

2. A novel and highly scalable differentiable volumet-
ric rasterisation technique for point clouds. This mod-
ule enables a robust, accurate and fast computation of point
cloud distances or losses with respective gradients for the
corresponding displacement vectors. It can also be em-
ployed to densify and implicitly regularise sparse point
cloud motion and helps to substantially stabilise training.

3. Sub-second large-motion instance optimisation on
point cloud pairs with over 100k 3D points each that can
correct residual errors of network predictions and provide
pseudo ground truth for self-training of larger models.

4. New state-of-the-art performance on the challeng-
ing PVT dataset. Ablation studies that demonstrate the
benefits of DiVRoC for loss function, implicit regularisa-
tion and instance optimisation over previous research.

5. A new dataset for out-of-domain evaluation with a
total of 1500 manual landmark pair annotations for 30 scans
and further large-scale point cloud data of cancer screening
scans is created and will be made public.

2. Related work

Deep learning on point clouds. Geometric deep learning
[4] is ubiquitously used for effective visual 3D data analy-
sis. The major challenge consists in processing sparse and
unordered 3D points without grid structure, prohibiting the
use of ordinary convolutions. The pioneering PointNet [35]
addressed the problem by extracting point-wise spatial em-
beddings with a shared MLP, which are aggregated with
a permutation-invariant global max-pooling operation. To
include local geometric information, PointNet++ [36] pro-
posed hierarchical grouping, and various subsequent works
introduced generic convolution operations applicable to ir-
regular domains [19, 45, 48, 57, 51, 22, 44, 18, 52, 16].
Among these, we employ the Dynamic Graph CNN [45]
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as backbone in our work, which formulates graph convo-
lutional networks to learn a feature extractor for suitable
neighbourhood representations. Specifically, the authors
employ a kNN-neighbourhood and define EdgeConvolu-
tions that concatenate feature information from two nodes
that are connected by an edge and symmetrically aggregate
the information from nonlinear (local) MLPs using a max-
pooling over all k neighbours. Basis point sets [33] use pro-
totype point sets to encode each point of an irregular cloud
by its vector to the closest keypoint and thus embed the in-
formation into a regular structure that can be used as input
to a normal MLP.

Medical image analysis: On the contrary, medical im-
age analysis is predominantly addressed using 3D convo-
lutional neural networks [20, 37, 6] as the data is already
acquired in a dense voxelised grid. Out of 65 method sub-
missions to the comprehensive 3D medical image registra-
tion challenge Learn2Reg [14] only a single approach was
based on sparse graph-based analysis. This also highlights
an apparent gap in research for applying geometric learning
to 3D data in the medical domain.

Point-voxel representations: Notable recent works
have proposed the benefits of combining sparse and dense
3D point representations, e.g. by voxelising multi-view
depth images into a relatively coarse volume for seman-
tic scene understanding or classification [24, 50]. The
Point-voxel CNN (PVCNN) [23] even interleaves sparse
and voxel-based point operators for an optimal trade-off
between accuracy and computational efficiency (mainly to
avoid unpredictable, irregular memory access that e.g. slow
down DGCNNs).

Point cloud distances: A number of recent learning-
based works have aimed to overcome the shortcomings of
the Chamfer distance and Earth Mover’s distance (EMD). In
Occupancy Networks [25] and DeepSDF [30], the bound-
ary between the inner and outer parts of a model is rep-
resented by an indicator function or signed distance func-
tion respectively, whereas Deep Point Distances (DPDist)
[43] learn an implicit neural functions and a 3D modified
Fisher vector representation to estimate the surface locally
with reduced complexity. While providing improvements
in robustness with respect to different samplings of point
clouds, these methods, nevertheless, all rely on a separately
learned model of the shapes and cannot be used as plug-in
replacement for Chamfer and EMD and might not gener-
alise well to highly deformable objects such as pulmonary
vessels.

Computer graphics: Differentiable rendering [29] or
rasterisation are frequently used in computer graphics for
shape reconstruction, but has so far been mainly focused on
surfaces (either represented as vertices or splatting points)
[53] and not yet used in the context of deformable 3D reg-
istration.

Learning deformable point cloud registration: In
this work we focus on self-supervised learning approaches,
since manual or synthetic ground truth is extremely diffi-
cult to obtain for high-resolution pulmonary vessel trees
in large numbers. Following seminal classic optimisation
based point cloud registration approaches such as coherent
point drift [27], subsequent deep learning based work aimed
at extending the successful Gaussian distribution modelling
of two point clouds in DeepGMR [54] into a supervised set-
ting. Finding soft correspondences for large point clouds
by optimising a transport energy (Earth Mover’s or Wasser-
stein distance [28]) often by means of the sinkhorn algo-
rithm [40, 8, 32] (and its variants) lies at the core of (deep
learning based) optimal transport registration [38, 34]. The
key objective of FLOT [34] is to learn geometric features
from two point clouds that enable a suitable similarity met-
ric for the cost of the optimal transport solver given ground
truth correspondences. RobOT [38] extends this concept to
synthetic supervision and implicit regularisation using LD-
DMM or B-splines. FlowNet3D [21] and PointPWC-Net
[49] on the other hand, borrow ideas from their 2D opti-
cal flow counterparts and learn to (locally) embed the geo-
metric relations of two point clouds to infer their flow us-
ing graph convolutions. PV-RAFT [47] leverages the suc-
cessful iterative strategy of classical methods with trainable
step to update the sparse flow. Test-time optimisation (or
instance optimisation) was also considered in [12] that it-
eratively minimises the point distances for pointwise rigid
scene motion.

Importantly, we do not claim a new standalone registra-
tion architecture but a versatile method that can enhance
several recent algorithms. The DiVRoC loss function could
be used for rigid motion estimation or shape reconstruction,
whereas the implicit regularisation that is based on a dif-
ferentiable densifying of sparse displacements is useful to
stabilise training in many other 3D registration scenarios.

3. Methods

We address the problem of unsupervised sparse point
cloud registration. Our input are two point clouds, source
S € RMs*3 and target T € RN+*3, comprising arbitrary
numbers N, and NV; of 3D coordinates and no additional
features. Our goal is to predict a sparse displacement field
1 € RN=*3 that geometrically aligns the source towards
the target point cloud. We assume that one-to-one cor-
respondences do not necessarily exist and therefore pose
the registration as regression task. N, and N, can be of
very high cardinality i.e. point cloud sizes of over 100
thousands are common, which poses computational prob-
lems for many graph-based algorithms. To enable learn-
ing with the commonly employed registration networks, we
also compute coarser but similarly distinctive clouds with
equally reduced number of points Ng,; through local den-
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Figure 2. Overview of our proposed concept for learning-based unsupervised large-scale point cloud registration. Given two point clouds a
geometric registration model predicts a sparse motion field, which is regularised and densified using differentiable volumetric rasterisation
of point clouds (DiVRoc). The new coordinates of the transformed source cloud are then rasterised in a 3D volume and a Huber loss
against the fixed target cloud rasterisation is used to train the network (again making use of the stable differentiation of DiVRoc). During
inference or for self-supervised learning a subsequent instance optimisation using Adam and the two novel DiVRoC modules is employed.
The alternative solution of prior work that employs k-NN smoothing and a Chamfer loss in the irregular domain is shown as comparison.

sity estimation and non-maximum suppression (NMS). The
reduced point clouds (and displacements) are denoted with
a superscript *. We retain the high-resolution clouds for
loss computation and fine-tuning with instance optimisa-
tion. Nevertheless our method could also be employed di-
rectly to larger point clouds.

Our approach comprises three main parts: 1) a geo-
metric neural network that receives the two point clouds
as input and predicts an estimated field v, 2) an implicit
regularisation that smoothes the raw network predictions
and enables the interpolation from the coarse to the high-
resolution cloud, achieved by an intermediate densification
onto a regular grid and 3) our novel unsupervised DiVRoC
loss function that measures the similarity of the transformed
source and target clouds. To obtain optimal results these
steps are prepended to a final fine-tuning using instance
(test-time) optimisation on the full-resolution clouds with-
out employing the network but only steps 2) and 3). In the
following, the DiVRoC module and each individual step of
the registration framework is explained in more detail.

3.1. Differentiable volumetric rasterisation of point
clouds (DiVRoC)

Bi- or trilinear interpolation is ubiquitously used in im-
age processing and defines the process of sampling a value
in between regular grid points, which e.g. is necessary when
warping an image with a displacement field of sub-pixel ac-
curacy. Differentiable image sampling was introduced in
the concept of deep learning for spatial transformer net-
works [15] and has since been used by most learning-based

registration approaches (e.g. [26]). Following the notation
of [9] trilinear interpolation can be formulated as

y(p) = > G(q,p) z(q), 1)

where p = pg + Ap represent sampling coordinates pg €
N3 displaced with a sub-voxel offset Ap € R3, g € N3
is iterated over all integer coordinates (the whole grid) of
the image © € R"=*"v*"= and G defines the interpola-
tion kernel. For trilinear interpolation the kernel is three-
dimensional and can be decomposed into:

G(q,p) = 9(4z,pz) - 9(ay, Py) - 9(q=,p2), (2)

where g is defined as g(qy,p,) = max(0,1 — |¢z — pzl)-
This is usually only non-zero for exactly eight grid points.
In pytorch [31] this operation is called grid_sample and
efficiently implemented with respective Jacobians with re-
spect to the gradients of Ap. grid_sample enables us
to return a tensor of interpolated values given a gridded im-
age/volume and a tensor of sampling coordinates.

Now, let us think about the opposite situation where we
have a set of interpolated values and corresponding sam-
pling coordinates and want to rasterise an image/volume
on a grid. That means the information of each point with
non-integer (off-grid) coordinates is now distributed across
all eight immediate (integer) neighbours according to the in-
terpolation weight from before. We can thus simply reverse
the order of p and q in Eq. 2:

z(q) = G(p.q) y(p) 3)
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Figure 3. Detailed concept of proposed differentiable volumetric
rasterisation of point cloud that serves as core layer in our method.
In contrast to occupancy grids DiVRoC provides a well-defined
gradient for the relative displacement of point cloud coordinates.

and iterate over all elements of our value vector y and again
the summation is very sparse. The total sum (mass) of val-
ues in & and y will be equal.

Implementation of forward and derivative operators:
Since efficient (GPU) implementations should avoid cus-
tom loops and directly opt for the best available com-
putational backend (e.g. CuDNN) we use the follow-
ing mathematical reformulation to employ the built-in
jacobian from pytorch’s autograd tools. Differenti-
ating — Y 1(grid_sample(z,p) — y)? with respect to x
yields the desired result. This implementation enables us to
rapidly rasterise 3D volumes from very large point clouds.
In practice the value vector y is composed of only ones in
this case. Furthermore, the information can be smoothed
using a Gaussian kernel (that can efficiently be applied for
each dimension separately). Note that while the idea is in
principle similar to occupancy grids that are e.g. used in
VoxNet [24], it is crucially different. Occupancy grids use
nearest neighbour interpolation, which leads to less accurate
rasterisations (especially for smaller 3D grids) and they are
not differentiable with respect to the point positions. Yet,
this is necessary to use the rasterised volume as loss for a
deformable point cloud registration network.

To obtain the custom backward path, i.e. for z =
% through our DiVRoC layer we need two computa-
tions: the gradient with respect to the y is simply the
forward mode grid_sample(z,p). Gradients with re-
spect to p are obtained using the reverse (ie. the Jacobian)
of grid_sample(z,p) multiplied by the negated input
—y-N. Here N is the number of elements in y. When deal-
ing with multichannel point clouds and mini-batches some
specific care needs to be taken to use correctly shaped ten-
sors as detailed in our open source code.

3.2. Geometric registration networks

Our approach is in general agnostic to the geometric
registration architecture. We embed our method into two
graph-based learning frameworks for point registration.

First, we select PointPWC-Net [49], which was success-
fully employed within the RobOT approach that set state-
of-the-art performance for the PVT dataset. Through its
key components, a multi-scale architecture with interme-

diate point cloud warping steps, and a cost volume layer
adapted to sparse displacement candidates it enables good
coverage for large deformations. It comprises ~100 lay-
ers and 8 million trainable parameters. So far it relied on
stronger supervision for deformable point registration and
struggled with weak unsupervised losses'

Second, we also propose an adaptation of the general
purpose DGCNN (dynamic graph convolutional network).
DGCNNSs are widely used for global classification or point-
wise semantic segmentation for a single point cloud and fea-
tures that reside on the same coordinates [45]. For point
registration, a method to encode the target point cloud is
required. Inspired by the basis point set [33] and [I], we
propose to capture this information by assigning the geo-
metric 3D vector that maps a point from the source to its
closest spatial neighbour in the target cloud. For each of
these 3D vectors a 128D embedding is learned using local
MLPs with ShuffleNet [55] 1 x 1 convolutions. Together
this model comprises 1.7 million trainable parameters and
is also used with input cloud sizes of 8192.

3.3. Implicit regularisation and densification

As pointed out before, unsupervised learning of highly
deformable point cloud registration may be prone to diffi-
culties in defining a stable gradient that avoids the inherent
local optima. E.g. two small local sub-parts of the pul-
monary vascular tree can look very similar leading to a high
risk of mixed-up correspondences. We argue that a strong
regularisation is necessary to empower the model to over-
come such problematic locations by filling in more reliable
information from neighbouring parts of the point cloud.

One strategy that was proposed for the PointPWC-Net
[49] is to use k-nearest neighbour smoothing (implicit reg-
ularisation) and an additional explicit regularisation penalty
to avoid differing motion vectors for spatially close points.
We found empirically that this strategy is insufficient to
tackle the specific challenges of the PVT dataset.

Consequently, we propose a stronger implicit regularisa-
tion by mapping the sparse displacement field into a dense
grid (densification) using DiVRoC and applying a spatial
B-spline smoothing in this voxelised 3D space. Our regu-
larisation implements a cardinal quadratic B-spline smooth-
ing by two iterative box filter steps of kernel size 5 X 5 x 5
with padding. The differentiable rasterisation function can
be used as before with the extension to a four-channel input
(3D coordinates plus unit vector). Once those homogenous
coordinates of the displacements ¢* (estimated by our net-
work) are extrapolated to a regular voxel grid (densified),
we can also resample the resolution to the original point
cloud size. Hence, we obtain i) and use our point distance
in the highest resolution.

Isee Sec. “Unsupervised loss functions” in the Supplement of ht t ps :
//dblp.org/rec/conf/nips/ShenFLCEEN21 for details.
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3.4. Novel point distance based on DiVRoC

The most important innovation that can be realised with
DiVRoC is a density based point distance that provides a
very reliable gradient for deformable 3D point registration
and is scalable to high-resolution clouds. Recall, the Cham-
fer distance that is e.g. minimised in iterative closest point
(ICP) [2] requires computing a nearest neighbour for every
source point in the target cloud and/or vice-versa. Because
the nearest neighbour (argmin) operation is not differen-
tiable itself the gradient will be obtained from its directional
offset. This has the disadvantage that the spatial proximity
to a higher density of points that are subsequent (second,
third, etc.) neighbours would be ignored.

Our approach works as follows: First, we rasterise the
high-resolution target point cloud 7" with its points pr us-
ing DiVRoC (cf. Eq. 3). This yields a voxelised represen-
tation 7 and does not track gradients. Second, we ob-
tain the network prediction v (densified and regularised,
see above) that represents the relative displacements Ap
for source points that align S towards T'. The forward path
rasterises the spatially warped cloud Sy, = § + ¢ as xg,,
into a comparable voxel grid. Here, we track gradients and
require differentiable operators. We use the Huber norm
Ly (a,b) =3, lr(a;, b;) (or SmoothL1Loss) with

if |ai — bz‘ <p
otherwise

1 2
35 (@i — bi)%,
Cr(ai,b;) = 25 )1
la; — bi| — 35,
as distance loss. As detailed in Sec. 3.1 it is possible to
obtain a derivative of Ly (S, T) with respect to ¢ using

our DiVRoC implementation.

3.5. Adam Instance Optimisation and Self-Training

The two previous steps (implicit regularisation and Di-
VRoC point distance) together can already be used for
optimisation-based point registration. When defining the
intermediate B-spline grid that reparameterises v as a train-
able parameter, we can directly employ the well-known
Adam optimiser [|7] to obtain competitive registration re-
sults. Here, the displacement vectors of ¢/ are sampled at
the points pg and subsequently optimised directly based on
L. This coarse regular grid is initialised with zeros. Due
to the intrinsic regularity of the B-spline transformation a
reasonable optimisation landscape is obtained. Neverthe-
less, using a single-scale is not sufficient to model the highly
complex lung motion and a robust coarse scale alignment,
either using the presented networks or another optimisation
based initialisation is necessary.

Self-Training: Due to the fact that the instance op-
timisation can directly optimise the alignment of high-
resolution point clouds it can also provide a reasonable
pseudo ground truth for a subsequent network refinement.
We propose a self-training setting that enables us to further

improve the PPWC network. We use pre-computed pre-
dictions from an earlier model (DGCNN) with Adam fine-
tuning on the training set as pseudo ground truth for su-
pervision (see ablation study 6 in Sec. 4.2). The loss now
becomes directly the registration error. Note, that more so-
phisticated techniques such as the mean teacher paradigm
could also be used [3].

4. Experiments and results

We apply our proposed method and variants thereof
on the pulmonary vascular tree (PVT) dataset published
under CC BY-NC-SA 3.0 licence in 2021 by [38] 2.
The PVT dataset comprises 1000 pairs of high-resolution
point clouds that were obtained from processing inspira-
tion and exhale CT scans of patient with chronic obstruc-
tive pulmonary disease (COPD) as part of the IRB-approved
COPDgene study (NCT00608764). The motion is particu-
larly challenging because subjects were asked to perform
forced inspiration and exhale with volume changes of a
factor of 2 or more. These point clouds depict the vascu-
lar tree of both lungs in high detail, making them ideal to
study local deformations that correlate with lung ventilation
for clinical assessment of COPD severity. But they com-
prise no manual ground truth making it a hard deep learn-
ing problem. For evaluation another ten vascular tree of the
DIRLAB-COPDgene [5] are provided for which anatomical
correspondences (300 per scan) of expert raters are avail-
able as ground truth.

We only train our models on the unsupervised 1000 pairs
and evaluate on the 10 DIRLAB cases using the target reg-
istration error (TRE) in millimetres. Our validation com-
prises a detailed ablation study that evaluates each of our
contributions and the important design choices that make
unsupervised learning possible on this complex data. All
our experiments contain both the network prediction alone
and the refined field with Adam instance optimisation.

4.1. Implementation details and run times

The point cloud registration networks were used as pro-
vided by public implementation, with the following mod-
ifications. The normalisation in PointPWC was replaced
from BatchNorm to GroupNorm to solve inconsistencies
across training and inference of the original implementa-
tion. The embedding of the target point cloud 7" in the co-
ordinate space of S as 128D input features for the DGCNN
was implemented as 6 Conv + GroupNorm + ReLLU blocks
- kernel size=1, group-size=4 and shuffle permutation [55]
- and a channel size of 512 except the first and last layer.
Each network received clouds of size 8192 as input. The
implicit regularisation employs DiVRoC with a fixed sized
grid of size 19x19x 19 and a Gaussian kernel with o = 3.5,

2https://qithub.com/uncbiaq/shapmaqn
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Table 1. Mean target registration error and std-dev of variants
of the proposed DiVRoC within our ablation experiments on
the PVT1010 dataset, evaluated each with and without Adam
fine-tuning (instance optimisation). TRE before registration was
23.62mm on average.

Q2 9 3 z £.| 3
< —
o e [agEs] a 8 2 < 2 <
kNN-smooth v v X 2224130 11.4+10
v Chamfer v X | 7.56+s8 4.49+ss6
v rasterise+STN v X | 9.18+s8 3.15+49
v Ve PPWC X 8.96+48 3.21440
v v v X | 7.35+146 271443
v v v V' | 5964150 2.39:34

followed by a quadratic B-spline smoothing kernel with a
size of 5. We experimented with higher resolution grids but
found it could destabilise training and result in no/little per-
formance gains. The DiVRoC metric is implemented with a
Gaussian kernel with o = 0.7 and a grid size of 76 x76x76
for the first stage (network training and prediction). The
grid size is doubled for the fine-tuning stage with Adam.
All networks were trained with Adam using an initial learn-
ing rate of 7 = 0.001 and step learning rate scheduling with
v = 0.5 after every 8 out of 64 epochs with a mini-batch
size of 6. We employ a (sigmoidal) ramp-up phase of 150
iterations in which a Euclidean norm is added to the pre-
dicted displacements and hence a zero-displacement is en-
couraged to avoid divergence at the early stage of training.
Each training was completed in approximately 2.5 hours
on a RTX A40 and our models require only 2-3 GByte of
VRAM. All feed-forward network run in less than 100 mil-
liseconds (PointPWC 90ms, DGCNN 50ms).

The Adam instance optimisation uses 50 iterations with
a learning rate of 0.01 and uses a displacement grid of size
38x38x38 and employs the highest resolution clouds. It re-
quires about 250ms, whereas a Chamfer based instance op-
timisation would require 1.7s, we thus achieve a more than
6-fold speed-up. Source code and a more detailed analysis
of the computational complexity for different point cloud
sizes, rasterisation grid spacings and metrics is given in the
supplementary material.

4.2. Ablation studies

Table | quantitatively compares alternatives that repre-
sent the current state-of-the-art solutions for unsupervised
point-cloud registration and can be seen as variants of our
method. Fig. 2 shows our concepts in contrast to those al-
ternate design and loss choices.

1) We use 3-fold KNN-smoothing as alternative to our
proposed DiVRoC regularisation - that performs B-spline

smoothing on a coarse regular grid and densifies the corre-
spondence field. We use k=150 and an MSE-Loss between
this smoothed network output and a B-spline regularised
version of it. Its accuracy is very poor (TRE=22.2/11.4mm)
and shows the importance of DiVRoC’s differentiable reg-
ularisation that stabilises the unsupervised learning.

2) Next, we employ the Chamfer distance with a loss
weighting of 0.01 (hyper-parameter empirically chosen on
a single test scan pair) and applied it to the reduced point
cloud sizes Ny, = 8192 (denoted with superscript * in
Sec. 3), because otherwise the gradient would become less
stable and the optimisation very memory and resource in-
tensive. It yields worse performance in particular for in-
stance optimisation (Adam) with TRE=7.56/4.49mm. We
also experimented with different versions of the Sinkhorn
loss [8] and Earth Mover’s distance [28] but could not find
any successful setting. This mirrors the analysis of [38] that
found the lung geometry to complex for those losses. In
addition, we tried using the local curvature as proposed in
[49] but again found the loss to be unsuitable for the PVT
dataset.

3) Furthermore, we evaluate the benefit of our proposed
direct differentiability of our point cloud loss with respect
to motion vectors in contrast to using a spatial transformer
loss [15], denoted as rasterise+STN (see also Fig. 3), which
yields 15-20% higher TRE than our method. For this variant
both initial clouds are rasterised statically (without gradi-
ent), but the target cloud volume is now spatially warped for
improved alignment and thus the derivative can be obtained
from a forward grid_sample operation as done e.g. in
[26] for 3D images.

4) To evaluate the influence of architecture choice, we
compare our registration adaptation of the DGCNN with
the widely used PointPWC-Net (abbreviated as PPWC). We
decided to keep the additional implicit DiVRoC regulariser
after the output of PPWC to enforce more smoothness and
found it was necessary to avoid diverging training runs.
Also, all other hyperparameters for the training and infer-
ence procedure are kept the same. Our baseline model is
listed as row 5) in Table 1 and performs 15-20% better.

6) When using self-training to enable a further fine-
tuning of the network, the DiVRoC distance is no longer
used and replaced by a Euclidean error of predictions ver-
sus pseudo ground truth. The pseudo ground truth was
generated using our baseline unsupervised DGCNN model
with Adam instance optimisation. To make the most out
of this now stronger supervision, we train the PointPWC
that has more capacity and add augmentation to the target
point clouds for which we draw a new random subset of size
8192 from the high-resolution cloud in each iteration. To
deal with a potential shift in the geometry of the randomly
sub-sampled clouds compared to the local density and NMS
strategy used before, we run the PointPWC 8x at inference

8032



Chamfer (DGCNN) + Adam
Case #5 TRE=4.04mm
08
05 S

. o«
R *4
'315\5_.
N

PR

2 K{N\\\ ﬁﬁ\\\\_\ "
o2 BN \ % W
- ﬁ\g\%\ S

-08 -06 -04 -02 00 02 04 06 08

ours Self-train PPWC + Adam StdlLogJac=0.043
frac. Jac<0=0.000

StdLogJac=0.045
frac. Jac<0=0.000 Case #5 TRE=1.75mm

08

04

-08 -06 -04 -02 00 02 04 06 08

08

Chamfer (DGCNN) + Adam  StdLogJac=0.047 ours Self-train PPWC + Adam  StdLogJac=0.043 12
Case #8 TRE=3.47mm frac. Jac<0=0.000 Case #8 TRE=148mm frac. Jac<0=0.000
et 08 10
A:_ e 06
¢\ NS 04 s
A "'\? 02
4 6

-08 -06 -04 -02 00 02 04 06 08

target registration error (TRE) mm

-08 -06 -04 -02 00 02 04 06 08

Figure 4. Visual comparison of results from our representative implementation of prior work (Chamfer loss) compared to our DiVRoC
loss with self-training (more detailed renderings and more cases in supplementary material) demonstrates the robustness of our approach
to handle even cases of challenging motion. Gray lines show predicted displacements on the points of the moving cloud, and coloured dots
and lines show the moving landmarks and the flow interpolated to them, with the colour encoding the error magnitude (TRE). Blue arrows

indicate high agreement with manual ground truth.

with new target cloud samples (test time augmentation) and
average the results. With this we obtain substantial further
improvements: 3.21—2.39 mm and overall best results.

4.3. Comparison to state-of-the-art

Visual results with high-resolution point cloud render-
ings before and after alignment are shown in Fig. 5 and
our supplementary material. We quantitatively compare
our results to the best published methods from the litera-
ture in Table 2 based on manual landmarks and demonstrate
clear advantages over the recent D-RobOT (LDDMM) [38]
method outperforming it by as much as 16.4% (2.39 vs 2.86
mm) without the need for training with synthetic deforma-
tions. In addition, we also restrict ourselves to the raw point
clouds without further geometric features ([38] use also the
vessel radius) and are substantially faster. To highlight the
challenges of the dataset one can see that CPD (non-rigid),
still a competitive method for many other benchmarks, re-
duces the TRE only by 60% versus initial whereas we reach
an 88% error reduction. To explore the capability of our
DiVRoC method to be used directly for optimisation of 3D
registration without any trainable network, we add another
variant that uses Adam instance optimisation twice. First,
as initialisation for which we use a coarser scale and halve
both displacement and rasterisation grid. And then second
as done for the network variants. We can show that this
method itself almost reaches state-of-the-art performance
owing to the robust novel point distance that it optimises.

4.4. Longitudinal Cancer Screening Dataset

To evaluate the performance of our approach for out-of-
domain (OOD) examples (PVT1010 comprises only point
cloud pairs with identical scanning and breathhold proto-
col), we have created a new point cloud dataset for longi-
tudinal cancer screening by searching for public low-dose
CT acquisitions in TCIA of cancer patients with follow-up
scans after one year [7, 41, 42]. We automatically extract
lung vessel segmentations using the TotalSegmentator [46]
and convert those into sparse clouds with approximately

Table 2. Mean target registration error, percentiles, and inference
times of our method for point cloud registration on the PVT1010
dataset compared to the state of the art. Note that all our methods
use Adam instance optimisation with DiVRoC.

TRE 25% 75% Time
Method [mm] [mm] [mm] [s]
initial 23.30 13.18 31.65 -
ICP (affine) [2] 15.05 9.60 20.01 0.52
CPD (non-rigid) [27] 9.30 595 11.83 332.60
RobOT (raw) [38] 941 4.89 13.04 0.15
S-RobOT (LDDMM) [38] 548 2.86 7.14 42.30
D-RobOT (LDDMM) [38] 2.86 1.25 3.11 1.92
2x Adam (not learned) 293 097 224 053
ours DGCNN 271 099 231 0.30
ours PPWC (self-train) 239 097 219 1.02

90k points each. Note, that these steps are different to [38]
leading to a substantial domain gap. To avoid simplistic
point cloud pairs we measure the lung volume overlap af-
ter rigid pre-alignment and select only cases with large mo-
tion. A medical expert annotated 15 CT scans (baseline +
follow-up) with 100 manual landmarks pairs each, that are
only used for test evaluation. More details are in the supple-
mentary material and a larger dataset with 500 point cloud
pairs will be made publicly available to the community.
Our results demonstrate how well our method gen-
eralises without any further training or hyperparame-
ter optimisation on the OOD-data.  Given an TRE
of 10.16+2.29 mm after rigid alignment, we achieve
5.91+1.83 mm (PPWC self-train) and 2.454+0.49 mm
(PPWC self-train + Adam) respectively, which is substan-
tially better than the Chamfer distance based baseline with
9.03+2.84 mm and 5.114+1.09 mm (w/o or with Adam).
Limitations: Our unsupervised 3D registration model
relies more on instance optimisation than other methods that
were trained with stronger supervision. This is owed to the
fact that the complexity of the deformation can make the
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(DGCNN/Chamfer + Adam)
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Figure 5. High-resolution point cloud renderings before and after alignment one exemplary Case #4 demonstrating the large extent of
motion that has to be compensated. The advantages of our approach compared to using the Chamfer distance for training the DGCNN and
instance optimisation are visible in the lower part of the lungs. For this case our best setting (PPWC with self-training) and the simpler

DGCNN with DiVRoC perform on par.

training of an unconstrained highly parameterised network
unstable for the challenging lung registration task as de-
scribed in [38]. Furthermore, our networks use a restricted
point cloud size of 8192, whereas the instance optimisation
efficiently processes clouds with over 100k points. In future
work, a coarse-to-fine approach during training can further
reduce the reliance on instance optimisation. In addition,
our experiments do not include (multi-)rigid motion bench-
marks since this is considered to be an easier task and out
of the direct scope of the presented solution for deformable
motion estimation. However, we created a new lung point
cloud dataset as additional out-of-domain validation and
demonstrated the generalisation of our models.

5. Conclusion

We have presented a novel Differentiable Volumetric
Rasterisation of point Clouds (DiVRoC) technique that pro-
vides an accurate loss and regularisation for large-scale
point cloud alignment and overcomes the challenges for un-
supervised learning for highly deformable structures. Em-
bedded into PointPWC or DGCNN, DiVRoC yields new
state-of-the-art accuracy on the challenging PVT dataset
without training with manual ground truth for 1) unsu-
pervised metric-based learning 2) self-supervised learn-
ing with pseudo labels and 3) optimisation based align-
ment.
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