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Abstract

Traditionally, monocular 3D human pose estimation em-
ploys a machine learning model to predict the most likely
3D pose for a given input image. However, a single im-
age can be highly ambiguous and induces multiple plau-
sible solutions for the 2D-3D lifting step, which results in
overly confident 3D pose predictors. To this end, we pro-
pose DiffPose, a conditional diffusion model that predicts
multiple hypotheses for a given input image. Compared
to similar approaches, our diffusion model is straightfor-
ward and avoids intensive hyperparameter tuning, complex
network structures, mode collapse, and unstable training.
Moreover, we tackle the problem of over-simplification of
the intermediate representation of the common two-step ap-
proaches which first estimate a distribution of 2D joint lo-
cations via joint-wise heatmaps and consecutively use their
maximum argument for the 3D pose estimation step. Since
such a simplification of the heatmaps removes valid infor-
mation about possibly correct, though labeled unlikely, joint
locations, we propose to represent the heatmaps as a set of
2D joint candidate samples. To extract information about
the original distribution from these samples, we introduce
our embedding transformer which conditions the diffusion
model. Experimentally, we show that DiffPose improves
upon the state of the art for multi-hypothesis pose estima-
tion by 3-5% for simple poses and outperforms it by a large
margin for highly ambiguous poses.'

1. Introduction

Human pose estimation from monocular images is an
open research question in computer vision with many ap-
plications, e.g. in human-machine interaction, autonomous
driving, animation, sports, and medicine. Recent ad-
vances in deep learning-based human pose estimation show
promising results on the path to highly accurate 3D recon-
structions from single images. Typically, a neural network
is trained to reconstruct the most likely 3D pose given an in-

'0ur code and trained models will be made available at:
https://github.com/bastianwandt/DiffPose/
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Figure 1. Comparison of our approach to Sharma et al. [40] and
Wehrbein et al. [52]. While [40] produces very similar poses, even
for uncertain detections, [52] achieves a higher diversity. However,
they oversimplify heatmaps as a Gaussian and, thus, struggle with
different uncertainty distributions. Note that the densest region of
samples (red) for [40] and [52] is very similar and at a point with
low certainty. By contrast, DiffPose produces 3D poses that cover
the full uncertainty in the heatmap leading to a lower error.

put image. However, the projection from 3D to a 2D plane,
which is performed by a camera capturing a person, results
in an inevitable loss of information. This lost information
cannot be uniquely reconstructed, and therefore we argue
that a meaningful 3D human pose estimator must be able to
recover the full distribution of possible 3D poses for a given
2D pose, e.g. as a set of poses with different likelihoods.
Moreover, downstream tasks can be built to benefit from un-
likely poses; for example, consider an autonomous vehicle
making decisions based on a single output versus being able
to see all possible, though less likely, outcomes. Conse-
quently, interest in this field, called multi-hypothesis human
pose estimation, is increasing [16, 25, 35, 40, 23, 52, 29].
Some approaches estimate a small fixed-size set of poses
[16, 25,35, 29] which are not able to fully represent the real
output distribution. Others are based on variational autoen-
coders [40] or normalizing flows [23, 52] and can predict an
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infinite set of poses that provides a stronger approximation
for the 3D pose distribution. However, they require com-
plex architectures and lack diversity in their output, since
the 2D input data is simplified, as shown in Fig. 1.

Our goal is a multi-hypothesis human pose estimator that
is easy to train and produces high-quality pose hypothe-
ses covering the full range of possible and plausible out-
put poses. To this end, we make three major contributions:
we 1) are the first to represent a 3D human pose distribu-
tion with a conditional diffusion model which, in its sur-
prisingly simple architecture and training, achieves state-
of-the-art results, 2) use the full 2D input information from
heatmaps without any simplifications by our novel sampling
strategy, and 3) propose a transformer architecture that han-
dles these samples without losing information about joint
uncertainties.

Neural diffusion models recently gained huge interest
due to their impressive performance in image generation
[37, 38, 39]. We exploit their capability to generate even
subtle details that formerly were only achievable by hard-
to-train GANSs [49, 8] or normalizing flows [53, 23, 52, 48].
Even in its simplicity, our diffusion model creates mean-
ingful human poses, and, unlike VAEs and GANSs, it does
not suffer from mode collapse, posterior collapse, vanish-
ing gradients, and training instability [20]. Although pose
representations via normalizing flows also do not show such
phenomena, they require a sophisticated model of the hu-
man kinematic chain [53], a kinematic chain prior [52],
and additional care during training. By contrast, our diffu-
sion model is robust during training and creates meaningful
poses without requiring further constraints.

Our second major contribution reveals a problem in cur-
rent two-step approaches that first predict 2D joint positions
in an image and consecutively use these predictions as in-
put to the 3D reconstruction step. While this enables the
3D estimator to be agnostic to the input image and con-
sequently promises generalization across image domains,
it removes valid structural and depth information that can
only be seen in the images. We exploit that most 2D hu-
man pose detectors employ heatmaps encoding joint occur-
rence probabilities as an intermediate representation. Tradi-
tionally, the maximum argument of these heatmaps is used
as input to the second stage, which removes all informa-
tion about the uncertainty of the detector. Few approaches
extract additional information, such as confidence values
[50] or Gaussian distributions fitted to the heatmap [52].
However, they still oversimplify the heatmap as shown in
Fig. 1, thus missing important details. To this end, we pro-
pose to condition the diffusion model with an embedding
vector computed from a set of joint positions directly sam-
pled from the heatmaps. We build a so-called embedding
transformer which combines joint-wise samples and their
respective confidences into a single embedding vector that

encodes the distribution of the joints.

2. Related Work

Monocular 3D human pose estimation is a huge field
with vast and diverse approaches. Hence, this section fo-
cuses on the closest related work, namely two-stage ap-
proaches’ and competing multi-hypothesis methods. In
contrast to approaches that estimate a 3D human body shape
[3,18,21,22,27,36,53,55], we focus on predicting the 3D
locations of a set of predefined joints.

Lifting 2D to 3D. We follow the vast body of work that
estimates 3D poses from the output of a 2D pose detector
[33,6,7,9,12,14,28,41,49, 50, 51, 54]. These two-stage
approaches decouple the difficult problem of 3D depth es-
timation from the easier 2D pose localization. With the
3D lifting step being agnostic to the image data, it is eas-
ily transferable to other image domains, e.g. in-the-wild
data. Moreover, in contrast to 3D training data, 2D images
are significantly easier to annotate, and, therefore, a huge
amount of labeled in-the-wild images are already readily
available, which reduces bias towards indoor scenes that are
common in 3D datasets. Early work in learning-based pose
estimation is done by Akhter and Black [ 1] who learn a prior
to restricting invalid 3D pose reconstructions. The simplest
and very influential approach that commonly serves as a
baseline is proposed by Martinez et al. [31], who employ
a fully-connected residual network to lift 2D detections to
3D poses, surprisingly outperforming previous approaches
by a large margin.

The above approaches predict a single most likely pose
for a given input. By contrast, we predict a set of plausible
3D poses from a single 2D pose. Additionally, we leverage
the full output heatmap of the 2D pose detector, which was
previously simplified to its maximum, an uncertainty label
[5, 50, 54], or Gaussian distributions [52]. With our novel
heatmap sampling strategy, we are able to reflect the full
uncertainty of the 2D predictor in our 3D pose hypotheses.

Multi-hypothesis 3D human pose estimation. Ambi-
guities of monocular 3D human pose estimation and sam-
pling multiple 3D poses by heuristics are discussed in early
work [24, 42, 44, 45]. Recently, few approaches have
been proposed that use generative machine learning mod-
els which generate multiple diverse hypotheses to cover
the ambiguous nature of 3D human pose estimation. Ja-
hangiri and Yuille [16] uniformly sample the learned oc-
cupancy matrices [ 1] to generate multiple hypotheses from
a predicted seed 3D pose. They use a rejection sampling
approach based on a 2D reprojection error in combination
with bone lengths constraints. Li and Lee [25] learn the
multimodal posterior distribution using a mixture density
network (MDN) [4]. They define a 3D hypothesis by the

2 A 2D joint detection step is followed by a 3D lifting step.
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conditional mean of each Gaussian kernel. Oikarinen et
al. [35] improve [25] by utilizing the semantic graph neural
network of [56]. A major limitation is the requirement of an
a priori decided number of hypotheses. In contrast, Sharma
et al. [40] condition a variational autoencoder with 2D pose
detections that is capable of producing an unlimited number
of hypotheses. They rank the 3D pose hypotheses by esti-
mated joint-ordinal depth relations from the image. Kolo-
touros et al. [23] estimate parameters of the SMPL body
model [30] using a conditional normalizing flow. Wehrbein
et al. [52] also propose a normalizing flow to model the
posterior distribution of 3D poses. They stabilize the train-
ing by a multitude of losses, including a pose discrimina-
tor network similar to generative adversarial networks [11].
By contrast, our diffusion-based 3D pose estimator requires
only a single loss and converges stably while improving
upon previous approaches, especially on a selected subset
of very ambiguous poses. Moreover, we show that our ap-
proach generates more physically plausible poses. Unlike
[52] we do not simplify the 2D heatmaps as a Gaussian dis-
tribution, but instead leverage the entire heatmap enabling
3D pose predictions that fully reflect the uncertainty in the
2D predictions. Li et al. [29] employ a transformer to learn
a distribution from temporal data that is represented by 3 hy-
potheses which are later merged to predict a single one. In
contrast, DiffPose can predict an infinite number of poses,
therefore, representing the distribution more accurately and
does not require temporal data.

3. Method

Our aim is to generate a set of realistic and accurate 3D
human poses which approximates the full posterior distri-
bution by utilizing a generative model. Similar to normal-
izing flows, which have previously been used for multi-
hypothesis pose generation [52], we model the ambiguity
caused by the loss of information when projecting 3D data
into the image plane by conditioning a diffusion model on
the 2D detections. Our model is inspired by Denoising Dif-
fusion Probabilistic Models (DDPMs) [ 13] because of their
recent impressive performance and stable training in image
generation compared to previous generative models. We
formulate the diffusion process as the iterative distortion of
a vector containing 3D joint coordinates into a Gaussian dis-
tribution A/ (0, I). The denoising process is conditioned on
joint-wise heatmaps that are generated by the 2D joint de-
tector HRNet [46] using our novel embedding transformer.
Fig. 2 shows the full model.

We follow the huge body of prior work by using a two-
stage approach that decouples the 2D pose estimation from
the 3D lifting step. With such an approach, the 3D pose es-
timator is agnostic to the image features and, therefore, does
not overfit to a specific scenario, such as scene lighting or
similar background, which is very common in motion cap-

ture datasets. However, while this behaviour is beneficial
for generalization of the 3D pose estimator, it removes valu-
able uncertainty information when mapping from heatmaps,
which most 2D pose estimators predict, to joint positions.
Previous work has primarily either utilized the maximum
likelihood estimate from the 2D joint detector, included
confidence values for individual joints [50], or fitted a Gaus-
sian to approximate the heatmaps [52]. However, while the
heatmap for simple poses without occlusions can be well
represented as a Gaussian, it can be misleading for more
complex situations, e.g. heatmaps with multi-modal distri-
butions that often occur for occluded joints, as shown in
Fig. 1. Other common uncertain cases are left-right flips
and a cluttered background. As such, we directly utilize the
predicted joint position likelihoods to sample the heatmap
and utilize both the samples themselves as well as their in-
dividual likelihoods to condition the reverse diffusion pro-
cess.

3.1. Diffusion Model

The diffusion model consists of two parts, each defined
as a Markov chain: 1) the forward process which iteratively
adds Gaussian noise of pre-defined mean and variance to the
original data, gradually distorting the data and 2) the reverse
process which is performed by a neural network trained on
a step-wise version of the degradation.

The forward process is the approximate posterior
q(x1.7|xo) modeled by a Markov chain that gradually adds
Gaussian noise to the original data x( to transform it into
a Gaussian distribution A/(0, I'). It is performed by a pre-
defined noise schedule which adds noise parameterized by
B¢ depending on the step t, to the original signal xy. We
adopt the cosine-schedule proposed by [34], which adds a
smaller amount of noise near { = 0 compared to a linear
schedule. At each step ¢ the noise is added incrementally to
the signal according to

q(xi|ei—1) == N(xe; /1 — Bree—1, Bed). (D

This formulation allows for sampling of degraded samples
at any given time-step in closed form by

q(xi|xo) == N (245 VAo, (1 — ay)I), (2)

_ t
where ay ;=1 — 3y and &, == [[,_; a.

The reverse process is the joint distribution pg (.7 and
iteratively reverts the degradation by estimating a Gaussian
distribution,

po(@i—1|xe) := N(xi—1; po(xe, t,¢), Bo (2, 1)), (3)
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Figure 2. Overview of our proposed method. It consists of two parts: the diffusion model and the conditioning. The diffusion model alone
is able to generate meaningful 3D poses. To generate multiple hypotheses for the 2D to 3D lifting process the conditioning on the 2D
heatmaps in each step of the denoising process is a crucial part. Using our proposed heatmap sampling in combination with our embedding
transformer that predicts an embedding for all sampled joints we achieve diverse and meaningful 3D pose predictions.

We follow DDPM by setting Yg(x;,t) = f;——=— 1= O‘t LT and
parameterizing the predicted mean in terms of the current
data x; and the predicted noise ey conditioned on c,

wo(xy, t,c) = Eg(:ct,t,c)) . @

1 < Bt
— |z - —
NG V1—ay
For a derivation and more details, we refer to [13].

The noise is predicted using a neural network, param-
eterized by 6, which takes as input a single input vector
built by concatenating the preprocessed conditioning vec-
tor ¢ which is an embedding of the joint-wise heatmaps,
the current 3D pose x; and the current time-step ¢. Details
about the construction of the condition vector and the ex-
act network architecture are described in Sec. 3.3 and 3.4,
respectively.

3.2. Sampling from Heatmaps

In order to represent a heatmap in a compact yet concise
way, we interpret it as an independent, multinomial distri-
bution over possible detections in a 64 x 64-grid (the out-
put dimension of each heatmap from HRNet [46]) and draw
n samples with replacement for each joint. For uncertain
joints, e.g. when they are occluded, the distribution can be
highly asymmetric, and previous methods struggle to ap-
proximate them as shown in Fig. 1. The sampled 2D poses
are mean centered and normalized by their standard devia-
tion. In addition to the sampled poses, we include the most
likely 2D pose as one of the samples.

3.3. Conditioning the Diffusion Model

While integrating a condition into a diffusion model can
be done in many ways [47, 43], there are two key as-
pects that need to be considered: 1) the individual joint
heatmaps are independent, i.e. they do not contain any
cross-correlation between the joints, and 2) directly averag-

ing individual joint samples will result in a loss of the multi-
modal information contained in them. We address both with
our embedding transformer which is split into two steps as
illustrated in Fig. 2. In a first step, we embed all samples
for each joint non-linearly into a single vector, thus, main-
taining their multi-modality. Subsequently, to account for
inter-joint relationships, these embeddings are used as the
input for a transformer network.

The joint-wise embedding needs to preserve the posi-
tional information and the likelihood from the heatmap of
each joint sample. We use channel embeddings [10] to en-
code both into a soft histogram which maintains the posi-
tional information when averaging multiple samples. The
channel embedding is created by using a kernel-basis to
spread each sample over multiple of the K-bins, constitut-
ing the embedding. We utilize the truncated cos?-basis,

2(zz) <h
bz) = cos®(5F) for|z| < 3 5)
0 else,

where the bandwidth is h = K, to let each basis accu-
mulate information from all samples within a distance of
4 bins from the center location. The channel embedding is
first applied to each spatial dimension independently to cre-
ate a non-linear embedding which is then concatenated to
a single vector per sample. Each embedding is scaled by
the likelihoods of the corresponding individual joint sam-
ples, which forces the following steps to not ignore it. The
scaled embedding is passed through a linear layer to intro-
duce sample-wise cross-spatial dependencies. Finally, the
individual joint samples are combined into a single joint

embedding e; with
K
2
} ) ()
s=— &

ZMLP (zn { Zg%
n=0 Y
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where " is the likelihood of the sampled joint position.

Inter-joint dependencies are introduced by adding
learned positional encodings to the embeddings in order to
distinguish the joints and passing them to a transformer net-
work. The outputs of the transformer are joint-wise em-
beddings that can now also contain information about other
joints. To create the final combined conditioning vector c,
the embeddings are concatenated and passed through a lin-
ear projection layer.

3.4. Implementation Details

Optimization. Both the denoiser and the conditioning are
optimized jointly by minimizing the simplified loss objec-
tive from Ho et al. [13]

L :=Eq e [ll€ — eo(v/Arxo + \/1—707#7@0)”2} O

sampled at uniform time steps, ¢, where ¢ ~ N(0,7). In
contrast to previous work in multi-hypothesis 3D human
pose estimation, we only require a single loss term and one
neural network, which makes training simple and stable for
a wide range of hyperparameters.

The denoiser is a linear layer followed by two residual
blocks, each containing two fully connected layers of di-
mension 1024 with a LeakyReLU as activation function,
similar to [31]. For inference efficiency, our proposed
method only samples the heatmap and calculates the con-
dition vector once per forward-pass instead of generating
new samples at each time-step t.

2D detector. We use the state-of-the-art and publicly
available model HRNet [46], pretrained on MPII [2] and
fine-tuned on Human3.6M [52]. Although any model that
produces a heatmap of each individual joint would be possi-
ble to use, we chose this one specifically for comparability
with previous methods [52]. For completeness we also in-
clude the results based on the non-finetuned HRNet model
in the supplementary.

Data preprocessing. The raw 64 x 64-pixel heatmaps are
generated from cropped square regions as in [52]. The sam-
pled 2D joint positions are mean-centered and normalized
by the standard deviation. The 3D poses are processed in
decimeters and mean centered individually.

Training. The network is trained for 700k iterations using
Adam [19], a learning rate of 1 x 10~%, and a batch size of
64. We set K = 64 for the channel embedding and project
the final condition into a 2 x 64 x J = 2048-dimensional
vector before concatenating it with the time step ¢ and o, 1.

During training, we randomly drop individual joints by set-
ting the joint embedding, e; = 0, with a fixed probability of
0.01. We noticed that this further improves the symmetry of
generated poses and decreases the PA-MPJPE on H36MA
(cf. Tab. 4). Training on a single NVIDIA A40 takes ap-
proximately 7 hours.

4. Experiments

Following previous work, we evaluate our method on
the well-known benchmark datasets Human3.6M [15] and
MPI-INF-3DHP [32] using their established training and
test splits. For the Human3.6M dataset, we follow standard
protocols and evaluate on every 64th frame of the test set.

Since our main focus is highly ambiguous poses, we
evaluate on the H36MA subset of Human3.6M as defined
by Wehrbein et al. [52]. It contains data samples where at
least one Gaussian that is fitted to the heatmaps has a stan-
dard deviation larger than 5 px. This subset contains 6.4%
of all samples present in the Human3.6M test set. These
samples are extremely challenging since the joint detector
gives inaccurate or wrong results. The results on this dataset
can be seen as the main target of our approach.

In addition to Human3.6M and MPI-INF-3DHP, we use
the Leeds Sports Pose extended (LSPe) dataset [17] for
qualitative evaluation.

Metrics. For Human3.6M we follow the standard proto-
cols. Protocol I calculates the mean Euclidean distance be-
tween the root-aligned reconstructed poses and ground truth
joint coordinates which is commonly known as mean per
joint position error (MPJPE). Protocol II first employs a
Procrustes alignment between the poses before calculating
the MPJPE, also known as PA-MPJPE. For 3DHP, we addi-
tionally report the Percentage of Correct Keypoints (PCK).
It is the percentage of predicted joints that are within a dis-
tance of 150mm or less from their corresponding ground
truth joint. Following Wandt et al. [50] we additionally
evaluate the Correct Poses Score (CPS) which, unlike the
PCK, classifies a pose as correct if all joints of the pose are
correctly estimated for a given threshold, therefore, yield-
ing a stronger metric than the PCK. To be independent of a
threshold value, the CPS calculates the area under the curve
in a range from 1mm to 300mm. Compared to most prior
work that reports the performance of a single model, we re-
port the mean and variance over five different random seeds
for each metric.

4.1. Quantitative Evaluation

We report metrics for the best 3D pose hypothesis gen-
erated by our network, which is in line with previous work.
This evaluation reflects how well the learned 3D poses cover
the actual ground truth distribution, which is particularly

15981



interesting for ambiguous examples. Therefore, instead of
validating whether the predictions are equal to a specific so-
lution, we assess whether that specific solution is contained
in the set of predictions. Note that we do not aim to predict
a single best pose but instead predict a set of poses that ap-
proximates the posterior distribution, which enables down-
stream tasks to consider the uncertainty of the predictions.

Evaluation on Human3.6M. Following [40] and subse-
quent work, we produce M = 200 hypotheses for each im-
age. The samples drawn from the heatmaps corresponding
to one image remain constant for all 200 hypotheses. Ta-
ble 1 compares our approach with others and shows that
we improve upon the state of the art by 3.2% and 4.9% for
protocols 1 and 2, respectively. Note that we match Li et
al. [29] in MPJPE and outperform them by 10.5% in PA-
MPIJPE although they use temporal data.

However, our main target is highly ambiguous cases.
Therefore, our core result is the evaluation on H36MA, the
hard subset of Human3.6M, shown in Table 2. On average,
we significantly outperform the state of the art by 8.0mm
(11.1%) and 7.5mm (13.8%) in MPJPE and PA-MPJPE,
respectively. Furthermore, we improve the PCK by 1.6%
and the CPS by 24.5. Figure 1 shows an example of the
increased diversity that results in predictions closer to the
ground truth, leading to these large improvements.

Generalization to other datasets. We evaluate on the
MPI-INF-3DHP dataset to show the generalization abilities
of our model. The 2D detector and the diffusion model re-
main the same as for the Human3.6M dataset and are not
trained or refined for the experiments in this section. Table 3
shows that, on average, we perform on par with the closest
competitor Li et al. [26] as shown in the last column. For
challenging outdoor scenes (column Outdoor) our method
improves by 5.4% and 1.3% on [26] and [52], respectively.
Similarly to the results on H36MA, this highlights that Diff-
Pose is well suited for more complicated scenes. Although
we follow previous work and only evaluate 200 3D pose hy-
potheses, an increased number of hypotheses significantly
improves performance, as also shown in Fig. 4. The per-
formance reaches a PCK of 87.6 at 2000 hypotheses, which
is a large improvement over our result with 200 hypotheses
and thus also over state of the art. Results for other met-
rics for the 3DHP dataset are reported in the supplemental
document.

4.2. Qualitative Evaluation

Fig. 5 shows visual results of our method for 3 differ-
ent datasets, Human3.6M, MPI-INF-3DHP, and LSPe. For
better visibility we only show 10 pose hypotheses with the
middle one in a stronger color. Note that the variance for
visible joints in common poses is low, whereas rare poses

with occluded joints show a high variance in the reconstruc-
tions. Even for MPI-INF-3DHP and LSPe we achieve plau-
sible reconstructions although these datasets were not used
for training. In cases where the reconstructed poses do not
completely match the ground truth, they still have plausible
joint angle limits and bone lengths, as also discussed in the
ablation studies in Sec. 4.3. Occasional failure cases occur
when joints are misdetected by the 2D joint detector (top,
right column), or poses are too far outside of the distribu-
tion of the poses in the training dataset (bottom right).

4.3. Ablation Study

We perform several ablation studies to evaluate our
method in different settings and validate our contributions.

Why diffusion models? Although diffusion models have
shown amazing results for highly detailed image genera-
tion, little is known about their capabilities to model human
skeletons. To verify that diffusion models are also capa-
ble to represent features at a higher abstraction level for
humans, we calculate a symmetry error as the mean bone
lengths difference between the left and right sides of the
human body. Table 2 shows the results in the column Sym.
Although [52] uses a kinematic prior that encourages sym-
metry, we achieve a significantly lower error (12.5mm or
46%) which means our generated poses are more plausi-
ble. We also outperform our closest competitor, accord-
ing to the symmetry metric, [40] by 9mm or 38%. This is
also reflected in the significantly lower PA-MPJPE shown in
Tab. 2. Additionally, the results of the Diffusion baselines
in Tab. 4 highlights that even a relatively simple diffusion
model outperforms the previous state of the art on H36MA.

Number of diffusion steps. The forward and backward
pass in a diffusion model is defined as a Markov process. To
ensure that the forward process results in a Gaussian distri-
bution, infinitely many steps are required. Commonly, this
is approximated with a large finite number of steps. Fig. 4
shows the performance of our model for different numbers
of total diffusion steps. Since fewer steps allows for faster
sampling and 25 appears to be close to the optimal value
we perform all our experiments with that number of steps.
A larger number of steps has a slight impact on the results
but it remains constant across a wide range of values while
still being significantly below our closest competitor.

Embedding transformer. Tab. 4 shows the performance
of our model using different ways to compute the condition
vector. The possibly simplest condition is directly using
the maximum argument of the heatmaps as the condition
shown in row Diffusion baseline - sample-free. To represent
the heatmap via samples, one could also use those directly
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Table 1. Results in millimeters for the H36M dataset for protocol 1 (MPJPE) and protocol 2 (PA-MPJPE). The row marked with dagger t
uses temporal information and is included for conciseness but not marked in bold even if it shows the best performance for some activities.

We report the average metric of five random seeds for our method and the variance.

Protocol 1 (MPJPE) Direct. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD  Smoke Wait WalkD Walk WalkT Avg.
Martinez et al. [31] (M = 1) 518 562 581 590 695 784 552 581 740 946 623 59.1 65.1 495 524 62.9
Li et al. [26] (M = 10) 620 697 643 736 751 848 687 750 812 1043 702 720 750 670  69.0 73.9
Lieral. [25] (M = 5) 438 486 49.1 498 576 61.5 459 483 620 734 548 506 560 434 455 527
Oikarinen et al. [35] (M = 200) 40.0 432 41.0 434 500 53.6 40.1 414 526 673 481 442 449 395 402 46.2
Sharma ez al. [40] (M = 10) 378 432 430 443 511 570 397 430 563 640 481 454 504 379 399 46.8
tMHFormer Li et al. [29] (M =3) 392  43.1 40.1 409 449 512 406 413 535 603 437 411 438 298 306 43.0
Wehrbein ef al. [52] (M = 200) 385 425 399 417 465 516 399 408 495 568 453 464 468 378 404 44.3
DiffPose (Ours M = 200) 377 415 387 416 459 519 388 378 484 540 433 441 466 378 349 429707
Protocol 2 (PA-MPJPE) Direct. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD  Smoke Wait WalkD Walk WalkT Avg.
Martinez et al. [31] (M = 1) 305 432 464 470 510 560 414 406 565 694 492 450 495 380 431 477
Li et al. [26] (M = 10) 385 417 39.6 452 458 465 378 427 524 629 453 409 453 386 384 44.3
Lieral. [25] (M = 5) 355 398 413 423 460 489 369 373 510 606 449 402 441 331 369 42.6
Oikarinen et al. [35] (M = 200) 308 347 336 342 396 422 310 319 429 535 381 341 380 296 3Ll 36.3
#Sharma ef al. [40](M = 200) 306 346 357 364 412 436 318 315 462 497 397 358 396 297 328 373
tMHFormer Li et al. [29] (M =3) 315 349 328 336 353 39.6 320 322 435 487 364 326 343 239 251 34.4
Wehrbein er al. [52] (M = 200) 279 314 297 302 349 371 273 282 390 461 342 323 336 261 275 32.4
DiffPose (Ours M = 200) 269 301 295 294 321 356 277 271 364 413 321 299 322 267 247 308%0%°
Table 2. Results for the hard subset H36MA as defined by 70
Wehrbein et al. [52]. We outperform all comparable methods by a m 65 = Lieral.[25]
. e . & 60 = Sharma et al. [40]
large margin. Additionally, the symmetry error shows that in aver- % 55 L | Wehrbein et al. [57]
age DiffPose produces more plausible poses. = 50 1 | ~e— DiffPose w/o ML-estimate
Method MPJPE| PA-MPJPE] PCK? CPS 1 Sym | & 45 © o— DiffPose
Li et al. [25] 811 66.0 857 119.9 - 40 w w w _
Sharma et al. [40] 78.3 61.1 88.5 136.4 23.9 0 20 40 60
Wehrbein et al. [52] 71.0 542 93.4 171.0 i 27.4 # heatmap samples per joint
DiffPose (Qurs)  63.1F%% 46701 949%001  1955%35  14,9%0-02

Table 3. Quantitative results on MPI-INF-3DHP. We outperform
all comparable methods which indicates a good generalizability of
DiffPose to other sequences without requiring additional training.

Method Studio GS T Studiono GS 1 Outdoor T AIIPCK T
Li et al. [26] 86.9 86.6 793 85.0
Li et al. [25] 70.1 68.2 66.6 67.9
Wehrbein et al. [52] 86.6 82.8 82.5 84.3
DiffPose (Ours) 87.4%04 82.7%02 83.6103  84.7%01

Table 4. Ablation study for different configurations of DiffPose on
H36MA. Each of our contributions leads to clear improvements.

Configuration MPJPE| PA-MPJPE| PCK7 CPS?1 Sym|
Diffusion baseline - sample-free 67.7 50.1 93.5 1784 257
Diffusion baseline - sample-based 66.4 50.0 93.5 180.4 26.9
Diffusion baseline - full heatmap 173.8 283.3 37.3 24.1 13.4
DiffPose w/o sampling 67.7 50.1 93.5 1789 218
w/o maximum-likelihood sample 62.5 46.2 95.2 196.9 14.6
w/o cross-spatial dependence 63.6 46.8 94.9 194.9 14.5
w/o likelihood scaling 624 46.8 95.0 194.3 14.3
w/o transformer 66.0 49.2 94.2 191.6 16.0
w/o dropout 65.0 479 94.2 188.7 17.4
DiffPose (Ours) 63.1 46.7 94.9 195.5 14.9

as the condition by ordering them according to likelihood
and concatenating them (row Diffusion baseline - sample-
based). An alternative to our embedding is to embed the
entire heatmap using a ResNetl8-network as seen in row
Diffusion baseline - full heatmap. However, these simple
conditions perform significantly worse than our full model.

The remaining rows show the performance when differ-
ent parts of the embedding transformer are removed. Re-
moving 1) the MLP in Eq. (6), which combines the chan-
nel embedded x- and y-position of the samples (w/o cross-
spatial dependency), 2) the likelihood scaling by setting
™ = 1 in Eq. (6) W/o likelihood scaling), 3) the random

Figure 3. Evaluation results on the H36MA dataset for an increas-
ing number of joint samples drawn from the heatmaps.

dropout of joints during training (w/o dropout), and 4) re-
placing the transformer by directly concatenating the joint
embeddings in Fig. 2 (w/o transformer) all lead to a slightly
worse performance compared to our full model.

The number of joint samples drawn from the heatmap
plays a crucial role for the representative power of the
embedding created by the embedding transformer. Fig. 3
shows the performance for different numbers of samples
per joint. Although a single sample is not enough, as also
shown in Tab. 4 (row w/o sampling), the performance in-
creases with more samples. We choose 32 samples in our
main experiments as a good trade-off between performance
and complexity. Note that the performance remains stable
over a wide range of values indicating the robustness of our
method against different choices of hyperparameters. Fig. 3
shows that removing the maximum likelihood (W/o maxi-
mum likelihood sample in Tab. 4), the performance deterio-
rates for a small number of joint-samples. However, the dif-
ference decreases as the number of samples increases. This
underlines that our embedding transformer indeed learns to
represent the full heatmap. In any configuration, we out-
perform other approaches with a large margin. Note that
the number of samples does not influence the number of 3D
pose hypotheses used for evaluation.
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Figure 4. Evaluation results on the subset H36MA. Left: increas-

ing number of timesteps in the denoising process. Right: increas-
ing number of generated 3D pose hypotheses.

Number of hypotheses. Fig. 4 shows the performance on
H36MA for an increasing number of 3D pose hypotheses
compared to others. As expected with more hypotheses,
the errors decrease. Notably, ours continues to improve
for more than 1000 hypotheses which is not the case for
[52] that appears to saturate around 500 hypotheses. For
2000 hypotheses, we reach an MPJPE of 56.5mm and a
PA-MPIJPE of 41.2mm, which is significantly below the re-
sults reported in Tab. 2.

5. Limitations

In general, all two-step approaches remove image infor-
mation in favor of being agnostic to the image domain, e.g.
indoor/outdoor, lighting, and image size. Although we ef-
fectively extract more information from the heatmaps, as
any other two-step approach, image information is still ig-
nored, which could possibly be used to further refine re-
sults. However, directly incorporating it into current pose
estimation methods mostly leads to degraded performance.
Therefore, we still strongly advocate two-stage approaches
and encourage the extraction of other valuable features from
the images for further research. In the extreme case, the pre-
dicted heatmaps are entirely wrong. Fig. 5 shows that our
model is only partially able to correct for these mistakes,
since it tries to generate plausible poses in terms of joint
angle limits and bone lengths by the strong representational
power of the diffusion model. However, we are not aware
of any other two-step approach that can handle these errors.
We argue that these errors already arise from uncommon
or difficult scenarios in the image domain, which are only
reflected in the heatmaps and cannot be easily solved by in-
cluding image information in the 3D lifting step.

6. Conclusion

We presented DiffPose, a conditional diffusion model
that estimates multiple hypotheses for 3D human pose es-
timation from a single image. Our diffusion model learns
plausible human poses, e.g. in terms of symmetry, that are
valid solutions for a given input image, not only outper-
forming previous methods by a large margin for highly am-
biguous poses, but also being simpler and more robust to

train using only a single loss term. Additionally, we pro-
pose a novel sampling method from 2D joint heatmaps in
combination with an embedding transformer to represent
the uncertainties in the heatmaps. We show that the embed-
dings predicted by the transformer are superior to simpler
embeddings used in prior work. We hope that our novel
embedding method enables future research to use the full
information in 2D joint heatmaps.

Our accurate 3D pose estimates have a wide range of
applications in downstream tasks, such as 3D pose tracking,
multi-view pose estimation, and likelihood estimation for
pose forecasting.

Acknowledgement

This work was partially supported by the Wallenberg
Artificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg
Foundation and the Swedish Research Council grant 2018-
04673. The computational resources were provided by the
National Academic Infrastructure for Supercomputing in
Sweden (NAISS), partially funded by the Swedish Research
Council through grant 2022-06725.

References

[1] Tjaz Akhter and Michael J. Black. Pose-conditioned joint an-
gle limits for 3d human pose reconstruction. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2015. 2

[2] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and
Bernt Schiele. 2d human pose estimation: New benchmark
and state of the art analysis. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2014. 5

[3] Benjamin Biggs, Sébastien Ehrhadt, Hanbyul Joo, Benjamin
Graham, Andrea Vedaldi, and David Novotny. 3d multi-
bodies: Fitting sets of plausible 3d human models to ambigu-
ous image data. In Advances in Neural Information Process-
ing Systems (NeurIPS), 2020. 2

[4] Christopher M. Bishop. Mixture density networks. Technical

report, Aston University, 1994. 2

Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter

Gebhler, Javier Romero, and Michael J. Black. Keep it SMPL:

Automatic estimation of 3D human pose and shape from a

single image. In European Conference on Computer Vision

(ECCV),2016. 2

[6] Ching-Hang Chen and Deva Ramanan. 3d human pose es-

timation = 2d pose estimation + matching. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR),2017. 2

Hai Ci, Chunyu Wang, Xiaoxuan Ma, and Yizhou Wang. Op-

timizing network structure for 3d human pose estimation. In

Proceedings of the IEEE International Conference on Com-

puter Vision (ICCV), 2019. 2

Andrey Davydov, Anastasia Remizova, Victor Constantin,

Sina Honari, Mathieu Salzmann, and Pascal Fua. Adversarial

[5

—

[7

—

(8

—_—

15984



MPI-INF-3DHP Human3.6M

LSPe

Figure 5. Qualitative results for different datasets. We achieve plausible 3D poses for a large variety of poses. The right most column
shows occasional failure cases with misdetected joints (top) and poses far outside the distribution of poses in the training dataset (middle
and bottom). For better visibility we only show a subset of the reconstructed poses.

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

parametric pose prior. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10997-11005, 2022. 2

Haoshu Fang, Yuanlu Xu, Wenguan Wang, Xiaobai Liu, and
Song-Chun Zhu. Learning pose grammar to encode human
body configuration for 3d pose estimation. In Proceedings
of the AAAI Conference on Artificial Intelligence, 2018. 2

Michael Felsberg, Kristoffer ijéll, and Reiner Lenz. Un-
biased decoding of biologically motivated visual feature de-
scriptors. Frontiers in Robotics and Al, 2:20, 2015. 4

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Commu-
nications of the ACM, 63(11):139-144, 2020. 3

Ikhsanul Habibie, Weipeng Xu, Dushyant Mehta, Gerard
Pons-Moll, and Christian Theobalt. In the wild human pose
estimation using explicit 2d features and intermediate 3d rep-
resentations. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019. 2

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840-6851, 2020. 3,4, 5

Mir Rayat Imtiaz Hossain and James J. Little. Exploiting
temporal information for 3d pose estimation. European Con-
ference on Computer Vision (ECCV), 2018. 2

Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3.6m: Large scale datasets and predic-
tive methods for 3d human sensing in natural environments.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (PAMI), 36(7), 2014. 5

Ehsan Jahangiri and Alan L. Yuille. Generating multiple di-
verse hypotheses for human 3d pose consistent with 2d joint
detections. [International Conference on Computer Vision
Workshops (ICCVW), 2017. 1,2

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

15985

Sam Johnson and Mark Everingham. Learning effective hu-
man pose estimation from inaccurate annotation. In Proceed-
ings of Computer Vision and Pattern Recognition (CVPR)
2011,2011. 5

Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and
Jitendra Malik. End-to-end recovery of human shape and
pose. In The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2018. 2

Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015. 5

Ivan Kobyzev, Simon Prince, and Marcus Brubaker. Normal-
izing flows: An introduction and review of current methods.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, pages 1-1, 2020. 2

Muhammed Kocabas, Nikos Athanasiou, and Michael J.
Black. Vibe: Video inference for human body pose and
shape estimation. In The IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2020. 2

Nikos Kolotouros, Georgios Pavlakos, Michael J. Black, and
Kostas Daniilidis. Learning to reconstruct 3d human pose
and shape via model-fitting in the loop. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV),
2019. 2

Nikos Kolotouros, Georgios Pavlakos, Dinesh Jayaraman,
and Kostas Daniilidis. Probabilistic modeling for human
mesh recovery. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 11605-11614,
2021. 1,2,3

Mun Wai Lee and Isaac Cohen. Proposal maps driven memce
for estimating human body pose in static images. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2004. 2

Chen Li and Gim Hee Lee. Generating multiple hypotheses
for 3d human pose estimation with mixture density network.



[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 1,2,3,7

Chen Li and Gim Hee Lee. Weakly supervised generative
network for multiple 3d human pose hypotheses. British Ma-
chine Vision Conference (BMVC), 2020. 6, 7

Jiefeng Li, Chao Xu, Zhicun Chen, Siyuan Bian, Lixin Yang,
and Cewu Lu. Hybrik: A hybrid analytical-neural inverse
kinematics solution for 3d human pose and shape estimation.
In CVPR, 2021. 2

Shichao Li, Lei Ke, Kevin Pratama, Yu-Wing Tai, Chi-Keung
Tang, and Kwang-Ting Cheng. Cascaded deep monocular
3d human pose estimation with evolutionary training data.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 2

Wenhao Li, Hong Liu, Hao Tang, Pichao Wang, and Luc
Van Gool. Mhformer: Multi-hypothesis transformer for 3d
human pose estimation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 13147-13156, 2022. 1,3, 6,7

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J Black. Smpl: A skinned multi-
person linear model. ACM transactions on graphics (TOG),
34(6):1-16, 2015. 3

Julieta Martinez, Rayat Hossain, Javier Romero, and
James J. Little. A simple yet effective baseline for 3d human
pose estimation. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV),2017. 2, 5,7
Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal
Fua, Oleksandr Sotnychenko, Weipeng Xu, and Christian
Theobalt. Monocular 3d human pose estimation in the wild
using improved cnn supervision. In International Confer-
ence on 3D Vision (3DV), 2017. 5

Francesc Moreno-Noguer. 3d human pose estimation from a
single image via distance matrix regression. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR),2017. 2

Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In International
Conference on Machine Learning, pages 8162-8171. PMLR,
2021. 3

Tuomas P. Oikarinen, Daniel C. Hannah, and Sohrob Kaze-
rounian.  Graphmdn: Leveraging graph structure and
deep learning to solve inverse problems. arXiv preprint
arXiv:2010.13668, 2020. 1, 3,7

Georgios Pavlakos, Luyang Zhu, Xiaowei Zhou, and Kostas
Daniilidis. Vibe: Video inference for human body pose and
shape estimation. In The IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2018. 2

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gen-
eration with clip latents. arXiv preprint arXiv:2204.06125,
2022. 2

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684—-10695, 2022. 2

(39]

(40]

(41]

(42]

(43]

[44]

[45]

[46]

(47]

(48]

[49]

(50]

(51]

15986

Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, et al. Photorealistic text-to-image
diffusion models with deep language understanding. arXiv
preprint arXiv:2205.11487,2022. 2

Saurabh Sharma, Pavan Teja Varigonda, Prashast Bindal,
Abhishek Sharma, and Arjun Jain. Monocular 3d human
pose estimation by generation and ordinal ranking. In Pro-
ceedings of the IEEE International Conference on Computer
Vision (ICCV),2019. 1,3,6,7, 8

Soshi Shimada, Vladislav Golyanik, Weipeng Xu, and Chris-
tian Theobalt. Physcap: Physically plausible monocular 3d
motion capture in real time. ACM Transactions on Graphics,
39(6), 2020. 2

E. Simo-Serra, A. Ramisa, G. Alenya, C. Torras, and F.
Moreno-Noguer. Single image 3d human pose estimation
from noisy observations. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2012. 2
Abhishek Sinha, Jiaming Song, Chenlin Meng, and Stefano
Ermon. D2c: Diffusion-decoding models for few-shot con-
ditional generation. Advances in Neural Information Pro-
cessing Systems, 34:12533-12548, 2021. 4

Cristian Sminchisescu and Bill Triggs. Covariance scaled
sampling for monocular 3d body tracking. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2001. 2

Cristian Sminchisescu and Bill Triggs. Kinematic jump
processes for monocular 3d human tracking. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2003. 2

Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep
high-resolution representation learning for human pose esti-
mation. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019. 3,4, 5

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Er-
mon. Csdi: Conditional score-based diffusion models for
probabilistic time series imputation. Advances in Neural In-
formation Processing Systems, 34:24804-24816, 2021. 4
Bastian Wandt, James J Little, and Helge Rhodin. Elepose:
Unsupervised 3d human pose estimation by predicting cam-
era elevation and learning normalizing flows on 2d poses. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 6635-6645, 2022. 2
Bastian Wandt and Bodo Rosenhahn. Repnet: Weakly super-
vised training of an adversarial reprojection network for 3d
human pose estimation. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019. 2
Bastian Wandt, Marco Rudolph, Petrissa Zell, Helge Rhodin,
and Bodo Rosenhahn. Canonpose: Self-supervised monoc-
ular 3d human pose estimation in the wild. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR),2021. 2,3,5

Jue Wang, Shaoli Huang, Xinchao Wang, and Dacheng Tao.
Not all parts are created equal: 3d pose estimation by mod-
elling bi-directional dependencies of body parts. Proceed-
ings of the IEEE International Conference on Computer Vi-
sion (ICCV), 2019. 2



[52]

(53]

[54]

[55]

[56]

Tom Wehrbein, Marco Rudolph, Bodo Rosenhahn, and Bas-
tian Wandt. Probabilistic monocular 3d human pose es-
timation with normalizing flows. In Proceedings of the
IEEE/CVF international conference on computer vision,
pages 11199-11208, 2021. 1,2,3,5,6,7, 8

Hongyi Xu, Eduard Gabriel Bazavan, Andrei Zanfir,
William T Freeman, Rahul Sukthankar, and Cristian Smin-
chisescu. Ghum & Ghuml: Generative 3d human shape and
articulated pose models. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2020. 2
Jingwei Xu, Zhenbo Yu, Bingbing Ni, Jiancheng Yang, Xi-
aokang Yang, and Wenjun Zhang. Deep kinematics analy-
sis for monocular 3d human pose estimation. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020. 2

Andrei Zanfir, Eduard Gabriel Bazavan, Hongyi Xu, Bill
Freeman, Rahul Sukthankar, and Cristian Sminchisescu.
Weakly supervised 3d human pose and shape reconstruction
with normalizing flows. European Conference on Computer
Vision (ECCV), 2020. 2

Long Zhao, Xi Peng, Yu Tian, Mubbasir Kapadia, and Dim-
itris N. Metaxas. Semantic graph convolutional networks for
3d human pose regression. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019. 3

15987



