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Figure 1. Stylization results. Given input pairs (a fixed content and three references), we compare our method (a) with both attention-based

transfer methods (b-f) and global statistic-based methods (g-h). While previous works fail to generate plausible results with various style,

our model successfully conducts artistic style transfer well regardless of different style pattern. (Best viewed in zoomed and color.)

Abstract

To deliver the artistic expression of the target style, re-
cent studies exploit the attention mechanism owing to its
ability to map the local patches of the style image to the
corresponding patches of the content image. However, be-
cause of the low semantic correspondence between arbi-
trary content and artworks, the attention module repeatedly
abuses specific local patches from the style image, result-
ing in disharmonious and evident repetitive artifacts. To
overcome this limitation and accomplish impeccable artis-
tic style transfer, we focus on enhancing the attention mech-
anism and capturing the rhythm of patterns that organize
the style. In this paper, we introduce a novel metric, namely
pattern repeatability, that quantifies the repetition of pat-
terns in the style image. Based on the pattern repeatabil-
ity, we propose Aesthetic Pattern-Aware style transfer Net-
works (AesPA-Net) that discover the sweet spot of local and
global style expressions. In addition, we propose a novel
self-supervisory task to encourage the attention mechanism
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to learn precise and meaningful semantic correspondence.
Lastly, we introduce the patch-wise style loss to transfer
the elaborate rhythm of local patterns. Through qualita-
tive and quantitative evaluations, we verify the reliability of
the proposed pattern repeatability that aligns with human
perception, and demonstrate the superiority of the proposed
framework. All codes and pre-trained weights are available
at Kibeom-Hong/AesPA-Net.

1. Introduction
Style transfer aims to render the content of a source im-

age using the elements of a style image. Although the

concepts of content and style cannot be rigorously defined,

the research community has been building agreeable ideas,

considering repeating elements such as brush strokes, color

maps, patterns, and certain dominant shapes to be style [11].

Since Gatys et al. [11] pioneered the Neural Style Trans-

fer by using the Gram matrix of deep feature activations

as the style representation, previous works have shown sur-

prising performance in Artistic Style Transfer (AST) by em-

ploying the global transformation methods [22, 15, 2] and

patch-wise swapping approaches [5, 33, 17] that leverage
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the similarity between patches in the content and style in-

puts. However, a major challenge for these methods is the

lack of semantic information on the content images, which

often leads to distortion artifacts (Fig. 1 (g-h)).

To handle this, recent advances in AST methods [28, 10,

24, 25, 9, 40] have incorporated the attention mechanism

which aggregates elements from a style image to render the

content of a source image according to semantic correspon-

dence between local patches of the images. While the prin-

ciple of attention networks has shown the great potential

in guiding detailed expression and maintaining content in-

formation, they often produce abnormal patterns or evident

artifacts, e.g., smudges or floating eyes (Fig. 1 (d-f)). Al-

though several works [9, 4, 37] have attempted to alleviate

this problem by employing transformer or external learning

strategies, achieving detailed textures such as pointillism or

brush strokes remains challenging (Fig. 1 (b-c)).

In order to overcome above issues, we conjecture pit-

falls of the attention mechanism for AST. Firstly, we point

out that the low semantic correspondence between arbitrary

content and style images induces attention mechanisms to

focus on limited regions of the style image. This can hin-

der attention-based methods from accurately capturing and

expressing the entire style of the reference images. Conse-

quently, this obstacle leads to disharmonious artifacts since

they heavily rely on few style patches such as eyes instead

of a representative style e.g., a pencil sketch in a portrait

(2nd row of Fig. 1). Furthermore, attention mechanisms

utilize only small patches from the style image where large

patches would be more suitable. This leads to overly repet-

itive patterns, even with less-repetitive styles. For instance,

despite a simple stripe style, global regions such as the sky

are prone to contain artifacts and objects can be painted with

excessively repetitive stripes (1st row of Fig. 1).

To this end, we introduce remedies for more delicate

artistic expression and improving the attention mechanism.

First, we revisit the definition of style considering its unique

repeatability. As shown in Fig. 2, our motivation is based

on the observation that every style can be expressed as a

repetition of appropriate patches which could describe the

entire style. To this end, we propose a novel metric pat-
tern repeatability which quantifies the frequency of repeat-

ing patches in a style image. Then it indicates whether we

should bring more effects from attention-based stylization

whose advantage lies in details, or global statistic-based

stylization whose advantage lies in the smooth reflection

of entire styles. Accordingly, we introduce the Aesthetic

Pattern-Aware style transfer Networks (AesPA-Net) which

calibrate the stylized features from the two approaches upon

the pattern repeatability.

In addition, we propose the self-supervisory task for en-

couraging the attention module to capture the broader cor-

responding regions of style images even for arbitrary pairs.

Can each patch represent the whole style ?

Pattern Repeatability ( ) 

Figure 2. Illustration of our motivation. We show whether each

local pattern with various scale could represent the entire style im-

ages or not. Motivated by this, we introduce a new metric to quan-

tify the repetition of local patches, i.e., pattern repeatability.

This auxiliary task amounts to maximizing the similarity

between the augmented input and its original at the feature

level. As a result, it effectively reinforces the attention mod-

ules to conduct the artistic stylization. Last but not least, we

modify the style loss to be computed between patches with

the proper size. Our patch-wise style loss induces the styl-

ized results to reflect the rhythm of local patterns according

to the proposed pattern repeatability.

In experiments, we qualitatively show that our networks

are capable of articulate artistic stylization with various pat-

terns of style. Besides, through quantitative proxy metrics

and the user study, we demonstrate that our framework,

AesPA-Net, outperforms the state-of-the-art AST studies:

five attention-based methods [28, 10, 24, 4, 9] and two

global statistics-based methods [22, 15]. Furthermore, we

verify that the reliability of pattern repeatability closely

aligns with human perception, and provide ablation studies

to validate the effect of individual components.

2. Related works

2.1. Artistic Style Transfer

Global transformation and patch-wise swapping-based.
Since Gatys et al. [11] opened up the research of Neural

Style Transfer (NST), NST studies have been explored in

various domains such as photo-realistic [42, 39, 3], video

[14, 36, 6, 8], and 3D [12, 27]. Among others, Artistic Style

Transfer (AST) [22, 15, 5, 33] has drawn huge and broad at-

tention by sublimating daily photos into artistic expressions.

Recently, Li et al. [22] and Huang et al. [15] introduce

the Whitening and Coloring Transformation (WCT) and the

Adaptive Instance Normalization (AdaIN) to achieve ar-

bitrary style transfer by washing away the global feature

statistics and replacing them with the target ones. Mean-

while, Chen et al. [5] swap the patches of content features

and Sheng et al. [33] propose the style decorator to nor-

malize feature with the most correlated style features. Jing

et al. [17] have improved semantic matching by employing

techniques such as Graph Neural Networks. However, these

AST methods have difficulty in preserving the original con-

text due to the lack of cues from content images, resulting in

unrealistic stylization as well as content distortion. To over-
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come this limitation, attention-based local patch stylization

methods [41, 28, 10, 24, 4, 40, 37, 9] are proposed.

Attention mechanism-based. AAMS [41] and SANet [28]

first employ the self-attention mechanism to derive the se-

mantic mapping for artistic style transfer. MAST [10]

adopts the attention mechanism to not only stylized fea-

tures but also to content and style features itself. In ad-

dition, AdaAttN [24] proposes the fusion strategy that ex-

ploits both the attention mechanism and the global feature

statistic-based method. Besides, StyTr2 [9] introduces the

Transformer and the content-aware positional encoding for

delicate style expression. Nonetheless, they suffer from pe-

culiar repetitive artifacts when they confront a style image

with irregular patterns, producing abnormal stylization re-

sults. IEcontraAST [4], CAST [40], and AesUST [37] have

tackled this problem by exploiting the contrastive and ad-

versarial learning but still fail to express the detailed texture.

In this paper, we delve into the relation between the styl-

ization result and the degree of pattern repetition and utilize

this relation to better translate the artistic rhythm of the style

image, achieving elaborate and aesthetic style transfer.

2.2. Relation between Pattern and Style

A pattern appears in various scales in a single image.

In other words, a pattern could be described as an entire

image or as a very small local patch. Based on this no-

tion, there are a few studies [18, 19, 16, 35, 29] investigat-

ing the correlation between pattern and style. Julez et al.
[18, 19] introduce the texton theory that the human vision

system is related to the frequency of repeated patterns. Jing

et al. [16] and Virtusio et al. [35] propose controllable artis-

tic style transfer networks by manipulating the resolution

of reference images. They demonstrate that features ex-

tracted from various resolutions of the target image can be

interpreted as having different styles, which in turn change

the stylization result. In addition, SwappingAE [29] pro-

poses the patch discriminator to criticize the texture based

on multi-scale patterns and conduct the texture translation.

Furthermore, Cheng et al. [7] statistically analyze the de-

gree of stylization and introduce the normalized style loss

to express proper repeatability. Our motivation is also in the

continuation of these studies: “The unique pattern repeata-
bility in each image defines its own style”. In this paper, we

aim to capture not only the elements of the style (e.g., color

or texture) but also their unique repeatability in organizing

the artistic rhythm and expression.

3. Proposed Method
In this section, we describe the proposed pattern re-

peatability and Aesthetic Pattern-Aware style transfer net-
works (AesPA-Net) in detail. Notably, our goal is to render

a stylized image (Ics) from the content image (Ic) and the

style image (Is) by transferring the atmosphere of repeata-

bility as well as elements of style. The overview of our

method is illustrated in Fig. 3.

3.1. Pattern Repeatability

Motivation. Despite the advances of attention-based AST

methods, there still exists a fundamental limitation of atten-

tion networks in artistic style transfer. Due to the low se-

mantic correspondence between the content and the artistic

style images, the attention module tends to map the content

to only a few local patches. Hence, a specific local patch

pattern of the style image is repeatedly expressed in the styl-

ized results. These stylization results would be visually sat-

isfactory when the small local patches have high similarity

to each other as well as the global style, e.g., pointillism

artworks. Otherwise, the results become unnatural and im-

plausible especially when the local patches cannot represent

the overall style, e.g., portraits. Intrinsically, the degree of

local pattern repetition and the minimal patch size, which

can represent the whole image, vary across different styles

as shown in Fig. 2. To this end, we propose a novel metric,

pattern repeatability, to quantify the rhythm and repetition

of local patterns in the style image.

Method. In order to measure the degree of pattern repeata-

bility in the style image Is, we consider two perspectives:

1) Similarity between each patch and the whole image, i.e.,

intra-image patch repeatability, and 2) Similarity between

patches, i.e., inter-patch repeatability.

Given an image I , we gather features fl ∈ R
Cl×Hl×Wl

from the lth convolutional layer of encoder φ, and then ob-

tain N feature patches {P i
l,r}Ni=1 by spatially dividing each

features with ratio r, i.e., P i
l,r ∈ R

Cl×Hl
r ×Wl

r . To estimate

how much local styles resemble the global style, i.e., intra-

image patch repeatability αintra, we measure the cosine-

similarity between the Gram matrix of each feature patch

P i
l,r and the entire feature fl as follows.

αintra =
1

L

L∑

l=1

1

N

N∑

i=1

G(P i
l,r) · G(fl)

‖G(P i
l,r)‖‖G(fl)‖

, (1)

where G(·) depicts the Gram matrix calculation and L indi-

cates the number of convolutional layers in the encoder φ.

A high αintra indicates that the global style appears consis-

tently in its local patches, whereas a low αintra means local

styles are distinguishable from the global style.

In addition, we calculate the similarity between textures

of different patches, i.e., inter-patch repeatability αinter, to

estimate whether particular local patterns appear frequently.

This process is formulated as follows.

αinter =
1

L

L∑

l=1

1

|B|
∑

∀(i,j)∈B

G(P i
l,r) · G(P j

l,r)∥∥∥G(P i
l,r)

∥∥∥
∥∥∥G(P j

l,r)
∥∥∥
. (2)
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(a) Architecture overview (b) Pattern Repeatability
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Figure 3. The overview of the aesthetic pattern-aware style transfer networks (AesPA-Net). (a) shows the architecture of AesPA-Net and

training procedures, i.e., stylization task (blue box) and reconstruction task (yellow box). (b) depicts the detail of pattern repeatability.

Here B is the selected pair set out of NC2 pairs with a prob-

ability of p for efficient calculation, i.e., |B| = p · NC2.

Moreover, we compute the pattern repeatability with the

grayscaled style image in a similar way to capture the pat-

tern repeatability of the regional structure. Finally, the pat-

tern repeatability is computed as:

αstyle =
1

4
· (αRGB

inter + αRGB
intra + αgray

inter + αgray
intra). (3)

We depict the conceptual illustration of pattern repeatability

in Fig. 3 (b). Detailed analysis on the reliability of pattern

repeatability is provided in Sec. 4.1.1.

3.2. Aesthetic Pattern-Aware Style Transfer

We design a novel style transfer networks (AesPA-Net)

that can fully reflect the target style by taking its pattern

repeatability into account. In order to achieve impecca-

ble artistic stylization with the styles of arbitrary pattern

rhythm, the stylization transformer is the key component

that adaptively transfers local and global textures in accor-

dance with the pattern repeatability αstyle. Intuitively, the

ideal solution for the style with low pattern repeatability

would be directly increasing the input patch size of atten-

tional style transfer. Nevertheless, this is impractical be-

cause the memory requisition increases quadratic according

to the patch scale. As a result, attention maps for stylization

are computed at limited levels i.e., 4th and 5th levels of the

encoder. To overcome this limitation, we implicitly employ

a statistics-based transformation as a practical complement

to global stylization. Concretely, the global stylized feature

f cs
global can capture unattended local patterns by matching

global statistics to style features of Is. Meanwhile, the fea-

tures f cs
attn from attentional style transfer module emphasize

important local patterns and compensates for the distorted

content that is caused during whitening.

Consequently, our stylization transformer is composed

of an attentional style transfer module and a global feature

statistic transformation module. From the patch-wise atten-

tional style transfer module, we obtain the stylized feature

f cs
attn based on local patch-wise correspondence [24] as:

f cs
l = AdaAttN(f c

l , f
s
l , f

c
1:l, f

s
1:l),

f cs
attn = h(f cs

4 + ψ↑(f cs
5 )),

(4)

where l denotes the index of layer, h(·) and ψ↑ indicate the

convolutional layer and upsampling function, respectively.

To acquire f cs
global, we apply the global statistic transfor-

mation [22] on conv4 1 features. After that, we obtain the

final stylized feature f cs as:

f cs = αstyle · f cs
attn + (1− αstyle) · f cs

global, (5)

where f cs
attn and f cs

global represent the attended stylized fea-

tures and global statistic transformed features, respectively.

αstyle is the overall pattern repeatability obtained in Eq. 3.

Finally, our decoder inverts the stylized feature maps to an

artistic result Ics. In the supplementary material, we show

that our stylization transformer also works effectively with

another global transformation i.e., AdaIN [15].

As illustrated in Fig. 3 (a), AesPA-Net consists of an en-

coder, a stylization transformer, and a decoder. We employ

the pre-trained VGG-19 [34] as an encoder, while the de-

coder is designed to mirror the architecture of the encoder

by replacing down-sampling operations with up-sampling

ones.

3.3. Patch-wise Style Loss

To further convey the aesthetic expression of style into

the content, we design the patch-wise style loss (Lpatch
style ).

Compared to the conventional style loss (Limage
style ) that tar-

gets to bring the global style, the proposed patch-wise style

loss aims to transfer the elaborate rhythm of local pat-

terns. As shown in Fig. 4, we patchify the images into
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Figure 4. The illustration of patch-wise style loss Lpatch
style .

M patches {Īm}Mm=1 by spatially dividing them with the

scale s, i.e., Īm ∈ R
3×H

s ×W
s . We define the scale s as

s = max(28·αstyle−5, 1) to reflect the pattern repeatabil-

ity. Afterward, we calculate the L2 distance between the

Gram matrices of patches from style and stylized results as

follows.

Lpatch
style =

1

M

M∑

m=1

5∑

l=4

∥∥G(φl(Ī
cs
m ))− G(φl(Ī

s
m))

∥∥
2
, (6)

where φl(·) denotes the activation maps after ReLU l 1 lay-

ers of encoder. Note that we utilize the centered-Gram ma-

trix [35] which could capture the channel-wise negative cor-

relation. We verify the effectiveness of the proposed loss

function in Sec. 4.4.

3.4. Improving Attention Module for AST

We investigate the training procedure of attention mech-

anisms employed in previous AST methods [28, 10]. They

train the attention networks to solve the reconstruction task

by satisfying the identity loss. However, we insist that this

loss design is inappropriate for AST since the content, style,

and reconstruction target images are totally identical. As the

query features from the content already contain sufficiently

rich information for reconstruction, key features from the

style are likely to be ignored, thus hindering the attention

module from learning useful semantic correspondence be-

tween the content and the style.

To alleviate this problem, we introduce an effective self-

supervisory task for correspondence learning. We input

the original image I and its grayscaled version Igray as

the style (key) and the content (query) images, respec-

tively. In this way, due to the reduced amount of informa-

tion comes from the augmented query, the attention module

is required to precisely capture the contextual relationship

from reference images. Finally, the loss functions of the

self-supervisory reconstruction path are formulated as fol-

lows.

Lrec = λidentityLidentity + λcxLcx, where

Lidentity =

5∑

l=2

∥∥∥φl(Ĩ)− φl(I)
∥∥∥

2
,

Lcx = CX(Ĩ , I),

(7)

where Ĩ is the reconstructed image with I and Igray . φl(·)
describes the activation maps after ReLU l 1 layers of the

encoder, i.e., VGG-19. Lcx depicts the contextual similarity

loss [26].

Note that, we modify the reconstruction loss Lrec to be

computed with deep features for relieving blurriness and

amplifying perceptual quality. The overall reconstruction

path is depicted in Fig. 3 (a). In Sec. 4.1.2 and 4.4, we show

the validity of the proposed strategy via ablations studies.

3.5. Training

As illustrated in Fig. 3, the decoder and the stylization

transformer are trained to perform two different tasks (i.e.,

reconstruction and stylization) in an end-to-end manner. In

the reconstruction path, our networks are encouraged to re-

construct the original RGB images when their grayscaled

ones are given as the content. Recapitulating the improved

attention module in Sec. 3.4, we induce the stylization trans-

former to learn semantic correspondence between the con-

tent and the style images.

In the stylization path, the style loss for aesthetic style

representation is derived by the weighted sum of losses as:

Lstyle = λimageLimage
style + λpatchLpatch

style + λlfLlf

+ λcontentLcontent + λcolorLcolor + λtvLtv.
(8)

Notably, the style loss Limage
style and the proposed patch-wise

style loss Lpatch
style contribute to global and local target texture

expression, respectively. Besides, the content loss Lcontent

is adopted for the content as well as context preservation.

In addition, we adopt the local feature loss Llf [24] to en-

courage feature consistency. Moreover, we utilize the color

loss Lcolor [1] to follow the color palettes of the style im-

age, and the total variation loss Ltv to encourage pixel-wise

smoothness. Each loss is described as follows.

Limage
style =

5∑

l=4

‖G(φl(I
cs))− G(φl(I

s))‖ ,

Lcontent =

5∑

l=4

‖φl(I
cs)− φl(I

c)‖ ,

Llf =
5∑

l=4

‖φl(I
cs)− f cs

attn‖ ,

Lcolor =
1√
2

∥∥∥(Hs)1/2 − (Hcs)1/2
∥∥∥ ,

(9)

where H1/2 denotes the element-wise square root of the

color histogram. To further elevate the stylization perfor-

mance, we employ the multi-scale discriminator with the

adversarial loss (Ladv) [13].

Finally, the full objective of our model is summation of

those loss functions: L = Lrec + Lstyle + λadvLadv .
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(a) Analysis on WikiArt dataset (b) Results of user study
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Figure 5. Analysis of the proposed pattern repeatability αstyle. (a)

presents the distribution of WikiArt [31] dataset and examples ac-

cording to αstyle. (b) shows the results of user study on correlation

of αstyle with the human perception.

4. Experiments

Implementation details. We train AesPA-Net on MS-

COCO [23] and WikiART [31] datasets, each containing

about 120K real photos and 80K artistic images. We use the

Adam [20] optimizer to train the attention module as well

as the decoder with a batch size of 6, and the learning rate

is set to 1e-4. During the training and inference, we rescale

the input images to have a spatial resolution of 256×256.

We set the weighting factors of loss functions as follows:

λidentity = 1, λcx = 1, λcontent = 1, λimage = 10,

λlf = 100, λpatch = 0.5, λcolor = 1, λadv = 0.1, λtv = 1.

We implement our framework with PyTorch [30] and train

our model using a single GTX 3090Ti.

4.1. Analysis

4.1.1 Reliability of the pattern repeatability

We analyze the proposed pattern repeatability (αstyle) in or-

der to validate its reliability. Firstly, we analyze the WikiArt

[31] dataset by computing the pattern repeatability of each

artwork to examine whether the extracted αstyle matches

well with the visual pattern rhythm of the image. We de-

pict the histogram of pattern repeatability in Fig. 5 (a). The

mean of pattern repeatability is about 0.79 and the standard

deviation is 0.1. The highest and lowest value of αstyle is

0.97 and 0.26, respectively.

For qualitative verification of pattern repeatability, we vi-

sualize randomly sampled images for every 0.1 range. As

shown in the upper part of Fig. 5 (a), images with high

αstyle have a uniformly repeated local pattern, and the lo-

cal patterns thus can express the global pattern regardless of

its scale. On the other hand, images with low αstyle tend to

have irregular local patterns, and their style hence should be

interpreted from the entire image.

To further demonstrate that the proposed pattern repeata-

bility aligns well with human perception, we conduct the

user study. We compose each questionnaire with three

randomly shuffled images of different pattern repeatability

αstyle from “Less repetitive” (0.1∼0.3) to “More repeti-

St
yl

iz
ed

 re
su

lts
A

tte
nd

ed
 re

gi
on

(a) Ours (b) AdaAttN [24] (c) MAST [10] (d) SANet [29]Content & Style

Figure 6. Visualization of attended region (first row) and stylized

results (second row) given a pair of content and style images.

tive” (0.8∼0.9). Then, we asked the participants to arrange

the images in ascending order to compare the responses

with the sequence according to the proposed metric. In

Fig. 5 (b), the answers mostly agree with the sequence of

the proposed metric, reporting the average matching rate of

84%. This verifies that αstyle reflects the pattern repetition

as the perception of the human vision system.

4.1.2 Effectiveness of improved attention module

We demonstrate the effectiveness of the improved attention

module compared to the previous attention-based baselines

[28, 10, 24]. The proposed self-supervisory task reinforces

the overall style transmission effect. As shown in Fig. 6, the

attention module from previous works [28, 10, 24] selects

some limited local patches (e.g., eyes), leading to dishar-

monious artifacts in stylized results. On the other hand,

our proposed grayscaled augmentation strategy helps the

attention module to capture meaningful and broader cor-

respondence between the content and the style image. Fi-

nally, AesPA-Net generates plausible artistic outputs with-

out disharmonious artifacts.

4.2. Qualitative Results

As shown in Fig. 7, we qualitatively compare our

method with five state-of-the-art attention-based AST mod-

els [9, 4, 24, 10, 28] and two global statistic-based methods

[15, 22]. Specifically in the 1st and 2nd rows, most works

[9, 24, 10, 28, 15] generate repetitive artifacts in stylized re-

sults, e.g., wave stains on the sky region. Although these ar-

tifacts are rarely appearing in IEContraAST [4], it still pro-

duces disharmonious distortions of eyes around the Eiffel

tower and struggles to transfer detailed texture and strokes

of Van Gogh’s painting. On the other hand, AesPA-Net suc-

cessfully reproduces the contents respecting the texture and

color palette of the artworks without artifacts.

With style images of high pattern repeatability (3rd, 4th,

and 5th rows), our proposed methods infuse the delicate

rhythm of target patterns into the content images. Particu-

larly, the glass surface is expertly brushed with vivid yel-

low strokes of the bridge, and the urbanscape is adeptly

illustrated with Mondrian’s signature irregular rectangles.
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(a) Ours (e) MAST [10] (g) AdaIN [15](f) SANet [29](b) StyTr [9] (c) IEContraAST [4] (d) AdaAttN [24]
Content 
& Style (h) WCT [22]

Figure 7. Qualitative comparisons with state-of-the-art AST methods. Green and blue boxes indicate the content and reference images

respectively. We provide zoomed patches (dashed red boxes) for better comparison.

AesPA-Net (Ours) StyTr2 [9] IEContraAST [4] AdaAttN [24] MAST [10] SANet [28] AdaIN [15] WCT [22]

User preference 0.65∗ 0.65 / 0.35 0.70 / 0.30 0.67 / 0.33 0.58 / 0.42 0.68 / 0.32 0.57 / 0.43 0.72 / 0.28

Human deception rate 0.72∗ 0.63 / 0.37 0.68 / 0.32 0.63 / 0.37 0.77 / 0.23 0.74 / 0.26 0.70 / 0.30 0.87 / 0.13

Content fidelity (↑)[38] 0.690 0.685 0.698 0.645 0.554 0.567 0.609 0.437

Style loss (↓) [11] 0.258 0.305 0.316 0.278 0.274 0.313 0.284 0.345

Pattern difference (↓) 0.075 0.109 0.113 0.100 0.104 0.097 0.091 0.109

Inference time (Sec.) 0.065 0.445 0.381 0.054 0.020 0.015 0.349 1.071

Table 1. Quantitative comparisons with state-of-the-art AST methods. * denotes the average user responses.

Moreover, the hills and sky are represented through skillful

stippling. However, some methods produce photo-realistic

drawings (b-d) or fall short of representing local patterns of

the style image (e-h).

Lastly, with less-repetitive styles (6th and 7th rows), the

proposed method effectively describes the global represen-

tation without mottled artifacts. Notably, patches of the

stylized apple most closely resemble the style of a given sin-

gle brushstroke drawing. To summarize, AesPA-Net syn-

thesizes artistic stylized results with high fidelity in terms of

texture, color, and pattern repeatability across a wide range

of style patterns. We provide additional qualitative compar-

isons in the supplementary material.

4.3. Quantitative Results

User study. Since judging successful artistic stylization is

quite subjective, we conducted a user study to compare the

quality of artistic expression (i.e., user preference) and the

reality of stylized results (i.e., human deception rate). We

sampled 42 stylized results from random pairs of content

and style images, and conduct one-to-one comparisons with

representative AST models [28, 10, 24, 4, 9, 22, 15]. We

collected 2310 responses from 55 subjects.

As reported in the 1st and 2nd rows of Tab. 1, most par-

ticipants favored our AesPA-Net over competitors in terms

of artistic representation. Plus, when participants are asked



to choose more realistic artwork following previous works

[32, 21], AesPA-Net surpassed previous methods with the

evident gap in terms of the human deception rate.

Statistics. Following previous works [37, 38, 13], we re-

spectively compute degrees of artistic stylization and con-

textual preservation of content information via two proxy

metrics: style loss [11] and content fidelity (CF) [38, 37].

To calculate CF, we estimate the cosine-similarity be-

tween features of content and stylized images as follows:

CF (Ics, Ic) = 1
L

∑L
l=1

fcs
l ·fc

l

‖fcs
l ‖‖fc

l ‖ , where f c
l and f cs

l re-

spectively are content and stylized features extracted from

lth convolutional layer of an encoder. Additionally, we

compute the style loss [11] between artistic stylized out-

puts and reference samples over five crop patches, follow-

ing DSTN [13]. We sample 65 random pairs of content and

style references for quantitative evaluation.

The 3rd and 4th rows of Tab. 1 depict the quantitative re-

sults compared with previous AST methods. Noticeably,

they fall behind either in preserving the original context

(e.g., WCT [22], SANet [28], MAST [10]), or in expressing

artistic styles (e.g., IEcontraAST [4], StyTr2 [9]). In con-

trast, AesPA-Net achieves state-of-the-art results in terms

of the style loss while being competent in the content fi-

delity. To further investigate the scalability of our pro-

posed metric, pattern repeatability, we assess the quality

of AST by quantifying the L1-distance of pattern repeata-

bility between reference and stylized images as follows:

||αstyle − αstylization||1. As shown in the 5th arrow of

Tab. 1, AesPA-Net transfers the specific pattern well and

the pattern repeatability could be a new metric for AST.

Inference time. We record the inference time with a input

resolution of 512×512 compared with other methods in the

last row of Tab. 1. The inference speed of our AesPA-Net is

comparable to state-of-the-art methods, and therefore it can

be adopted in practice for real-time image stylization.

4.4. Ablation Studies

In Fig. 8, we demonstrate the effectiveness of each pro-

posed component of AesPA-Net qualitatively: the improved

attention module training (b), stylization transformer (c),

and the patch-wise style loss (d). Compared to the attention-

based baseline [24], our proposed self-supervisory recon-

struction task helps the attention module to capture mean-

ingful and broader correspondence regions from the style

image. For example in the first row, the baseline fills the

texture of a water tap with the stripe pattern, whereas the

improved baseline paints the water tap with black as the

style image. Also in the last row, artifacts of repetitive eye

patterns are removed in (b). As the proposed grayscale aug-

mentation strategy guides the attention module to find dense

semantic correspondence, the local textures in the style im-

age are delivered to the proper regions in the content.

Besides, the proposed stylization transformer removes

Content & Style (a) Baseline [24] (b) Improved
baseline

(c) Stylization
transformer

(d) Ours
baseline

(+ fl )
etransforme

( ‌ )
(+ fl )

Figure 8. Qualitative ablation studies of AesPA-Net. From the

baseline (a) to the full model (d), we show the effectiveness of

proposed components sequentially. The green box indicates the

input content image and red box depicts the zoomed patches.

defective artifacts caused by unnatural mapping from the

attention module. Particularly, the aliased outline of a wa-

ter tap is smoothed and the noisy patterns in the apple are

cleared out. As the stylization transformer adaptively fuses

the stylized features f cs
attn and f cs

global in accordance with the

αstyle, it relieves the artifacts by reflecting the global style

pattern. Also, the features from the attention module f cs
attn

prevent the exaggerated distortion of the original context.

Lastly, the patch-wise style loss boosts the overall style

expression and reduces hallucinations in the skin, as shown

in Fig. 8 (d). Since we utilize αstyle to find the minimal

patch Īsm that can express the global style image by its rep-

etition, its feature gram matrix G(φl(Ī
s
m)) represents a unit

style of the global pattern rhythm. Therefore, exploiting it

as a guideline results in delicate and aesthetic stylization.

5. Conclusion
In this paper, we revisit the definition of style with

pattern repeatability. The proposed pattern repeatability

quantifies the rhythm and repetition of local patterns in the

style images by taking into account inter-patch similarity

and intra-image patch similarity. Based on the pattern

repeatability, we designed a novel style transfer framework,

AesPA-Net, that can deliver the full extent of the target

style via the stylization transformer. Extensive experiments

show that our AesPA-Net successfully conducts elaborate

artistic style transfer with various style patterns. Our future

goal is to expand our method for more impeccable artistic

style transfer by considering not only repeatability but also

the context in the style image, such as relative locations of

style patches.
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