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Abstract

This paper describes an attention-driven approach to 3-D

point cloud sampling. We establish our method based on

a structure-aware attention discriminant analysis that ex-

plores geometric and semantic relations embodied among

points and their clusters. The proposed attention discrim-

inant sampling (ADS) starts by efficiently decomposing a

given point cloud into clusters to implicitly encode its struc-

tural and geometric relatedness among points. By treating

each cluster as a structural component, ADS then draws on

evaluating two levels of self-attention: within-cluster and

between-cluster. The former reflects the semantic complex-

ity entailed by the learned features of points within each

cluster, while the latter reveals the semantic similarity be-

tween clusters. Driven by structurally preserving the point

distribution, these two aspects of self-attention help avoid

sampling redundancy and decide the number of sampled

points in each cluster. Extensive experiments demonstrate

that ADS significantly improves classification performance

to 95.1% on ModelNet40 and 87.5% on ScanObjectNN and

achieves 86.9% mIoU on ShapeNet Part Segmentation. For

scene segmentation, ADS yields 91.1% accuracy on S3DIS

with higher mIoU to the state-of-the-art and 75.6% mIoU on

ScanNetV2. Furthermore, ADS surpasses the state-of-the-art

with 55.0% mAP50 on ScanNetV2 object detection.

1. Introduction

Point cloud sampling is an essential step for designing

practical solutions to the respective 3-D computer vision

applications. While existing such techniques mostly rely

on utilizing distance-based geometric information to yield

efficient sampling, their main drawback is the lack of con-

sideration of both the semantic and the structural aspects

of the underlying point cloud distribution, as shown in Fig-

ure 1. We aim to introduce a cluster-based formulation that

leverages the proposed discriminant attention analysis to

implicitly achieve structure-aware point cloud sampling.

With the great success of deep learning in solving 2-D

computer vision problems, many studies now have turned
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Figure 1. Overview. Unlike distance-based sampling strategies,

e.g. Farthest Point Sampling (FPS), the proposed structure-aware

Attention Discriminant Sampling (ADS) explores both geometric

and semantic information to improve representation learning and

sampling efficiency for 3-D point clouds.

to dealing with realistic and challenging 3-D tasks. It is

known that 3-D data can often be represented in various

formats, including depth images, volume grids (voxels), mul-

tiple flat polygons (meshes), and point clouds. Among them,

point clouds are raw data obtained by scanning objects with

instruments, e.g., LiDAR scanners and multibeam sonars.

Depending on the functionality of the instrument, the point

coordinates can be accompanied with other useful informa-

tion such as colors and normal vectors. As the point cloud

representation retains original geometry information with-

out any distortion, it is suitable for various applications that

require 3-D scene understanding, including autonomous nav-

igation, virtual reality, robotics, etc. However, the irregular

and unstructured data format often makes learning directly

from raw 3-D point clouds inefficient. Previous approaches

have addressed this issue of vast computation via prepro-

cessing, for example, by projecting point clouds to depth

images [37, 38] and enabling CNNs to tackle the resulting

tasks. The other feasible reduction is to consider voxelization

by simplifying the data into rasterized grid [27, 8, 49], which

is applicable to 3-D convolutional networks. Although such

attempts could ease the computation demand, they may still

lead to unstable performance when dealing with intricate
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Figure 2. The proposed Attention Discriminant Sampling (ADS) framework comprises three main processes: clustering, attention, and

sampling. Unlike the conventional Set Abstraction (SA) module, ADS initially groups the points via clustering, which serves to implicitly

identify parts or objects within the entire scene. The subsequent sampling step is then cluster-wise performed by taking account of the

attention responses from within-cluster and between-cluster evaluations, the size, and the complexity of each cluster to determine the

respective sampling ratio. Taking, for example, sampling with ADS as input for part segmentation, we show the performance gain (yellow

bar) and a performance upper bound (orange bar) when replacing the clustering outcome in ADS with exact information of part labels.

scenes or objects of complex shapes.

As one of the pioneer frameworks on learning with point

clouds, PointNet [30] is developed to extract point features

directly from the raw data. It overcomes the unordered prop-

erty of a point cloud via the use of a simple symmetric func-

tion (i.e., max pooling), and yields invariant representation

through the proposed T-net with coordinates transformation.

However, PointNet does not model local context well and

may not capture objects of various scales properly. The im-

proved version, PointNet++ [32], is therefore introduced; it

employs hierarchical learning architecture that consists of

several set abstraction layers. Such layers apply sampling

and grouping to abstract local regions and achieve the bal-

ance between efficiency and performance. From the two

frameworks and their related applications, the effective use

of point cloud sampling to the end results of downstream

tasks has emerged as a crucial factor. While the majority

of point cloud techniques, including [30, 32], adopt farthest

point sampling (FPS) [29], we are motivated to develop

a point-cloud sampling strategy beyond the perspective of

distance-based reasoning.

The main idea behind our approach is motivated by the

observation that point cloud sampling could better repre-

sent the original raw data if information about the structural

components and complexities of the underlying object has

been made available. Suppose that for each object part we

know its corresponding points, the semantic complexity, and

relatedness to other components. Such information can then

be used to decide how to apportion the specified number

of points for sampling, while retaining its object structure

properly. In practice, the structural information is often

not present; however, it is reasonable to group the points

into clusters and design an efficient cluster-based sampling

scheme that is designed to conceptually approximate the

above-mentioned ideal case. To simultaneously explore se-

mantic and geometric properties of a point cloud, we intro-

duce attention discriminant sampling (ADS) that leverages

feature similarities with spatial relationships to select those

points that are representative in both aspects and induce less

redundancy. As shown in Figure 1, the proposed ADS first

divides a point cloud into clusters, and enables the algorithm

to consider sampling at point-wise and cluster-wise levels.

Our method then calculates self-attention relations of the

points within each cluster and between clusters to determine

how the sampled points are distributed among the clusters.

Unlike other attention-based 3-D approaches [52, 59] that

only consider the points within each subset obtained by far-

thest point sampling (FPS) [29], ADS assesses semantic

and geometric relations of the points locally (within each

cluster) and globally (between clusters) and utilizes these

self-attention responses to achieve effective and representa-

tive point-cloud sampling. Figure 2 illustrates the advantage

of the ADS scheme for the downstream task of part segmen-

tation, compared with the performance upper bound obtained

when part information is provided for the sampling step.

2. Related work

3-D point cloud representation. High-quality represen-

tation is crucial to achieve good performance for 3-D point

cloud tasks. According to the central data format, rel-

evant literature can be divided into image-based, voxel-

based, and point-based. Image-based approaches, such as

MVCNN [39], SimpleView [11], and MVTN [12], trans-

fer a 3-D point cloud into various 2-D views to learn their

underlying model. On the other hand, 3DShapeNet [49],

VoxNet [27], Subvolume [31] and O-CNN [43] map

points into voxels for solving the tasks with 3-D convo-

lutional networks. To alleviate representation constraints,

point-based methods, e.g., PointNet++ [32], RepSurf [35],

PointMLP [26], PointNeXt [33] and MaskPoint [21], deal
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with original unordered points. Our work also learns the

representation directly from point clouds in that the raw data

include all the available information and can be coupled with

a task-specific head for end-to-end training.

Point cloud sampling. Due to the computational demand,

subset sampling for point cloud applications is a key step for

practical implementations. The FPS [29], which is agnostic

to downstream tasks, is considered the de facto technique,

and has been widely used in mainstream frameworks, e.g.,

PointNet++ [32]. Chen et al. [5] further consider semantic

features to improve FPS. To couple the sampling procedure

with specific downstream tasks, learnable sampling mod-

els have been established to account for the task-specific

objectives. Take, for example, that Dovrat et al. propose

a data-driven sampling model that yields sampled subsets

by optimizing with respect to the reconstruction error and

the downstream task loss [9]. In [19], Lang et al. introduce

the SampleNet model that explores differentiable relaxation

to produce sampling points from the weighted average of

input points. Cheng et al. [6] develop a meta-sampler that

can rapidly adapt to various datasets or tasks with a meta-

learning technique. Still, the lack of sampling techniques to

comprehensively take account of both geometric and seman-

tic relations of a point cloud could be an issue for further

advancing the progress of this emerging research field.

Self-attention on point clouds. Transformer-based tech-

niques have been recently applied in solving various point

cloud applications, including object detection [13, 3, 57, 45],

segmentation [18, 46] and registration [53, 34]. The Point-

Transformer series [59, 48] utilizes a subtraction-based at-

tention block to improve classification and segmentation.

PAT [52] proposes group shuffle attention to replace multi-

head attention for learning point-wise relationship efficiently.

To expand the receptive field of the transformer, He et al. [13]

develop a voxel-based set transformer that achieves linear

complexity to the number of points. In [18], the authors

introduce a hierarchical structure to enlarge the receptive

field and shift windows to attain interactive information be-

tween windows. Our method instead considers establishing

within-cluster and between-cluster self-attention blocks for

retaining local and global features of a point cloud, and

achieves structure-aware representative sampling from the

geometric and semantic perspectives.

3. Our method

Different from the widely adopted FPS, the proposed

sampling method considers not only the Euclidean distance

based geometric relation between 3-D points but also the self-

attention induced semantic relation from their features. More

importantly, to implicitly retain the structural information,

ResidualSet Attention Module (asymmetric)

SAM

Figure 3. The architecture of Set Attention Module (SAM). The

asymmetric version of SAM is also included and marked in green.

we consider a cluster-based formulation where in the ideal

scenario the resulting point clusters would correspond to the

parts of an underlying object. To this end, we first group

a given point cloud into clusters and then compute within-

cluster and between-cluster self-attention to determine the

number of points to be sampled and the selection outcome

in each cluster. This way we establish attention discriminant

sampling (ADS) and achieve a compact and representative

reduction of a dense point cloud for downstream tasks.

3.1. Problem setting

We represent a given point cloud as a set of 3-D points,

P = {pi}ni=1 ∈ R
n×3, and n is the total number of points.

As n is typically large for most applications of interest, our

goal is to establish a general and effective sampling scheme

to extract from P an m-point representative subset,

P̂ = {pî1
, . . . ,pîm

} ⊆ P, (1)

where |P̂| = m≪ n and the subscript î 7→ j ∈ {1, . . . , n}
is specified by the resulting one-to-one index mapping.

Among the numerous ways to carry out point cloud sam-

pling, a sampling scheme and the resulting P̂ are preferable

if they respect the following useful properties.

• The m sampled points in P̂ are obtained by preserving

object structure and reducing redundancy in the context

of both geometric and semantic perspectives.

• For each reasonable value of m, the more effective a

sampling scheme is, the better reconstruction result can

be achieved from P̂ to the original point cloud P .

• The design of point cloud sampling is generic and can

be readily plugged into various network models for a

broad spectrum of downstream tasks.

3.2. Set attention module

As the self-attention mechanism is the key operation

throughout our network model, we begin by describing our

set attention module (SAM), and the details can be found

in Figure 3. Analogous to [42], SAM first projects a set

of input features X = {xi}Ni=1 ∈ R
N×d to three different
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embeddings, namely, Q = {qi}Ni=1, K = {ki}Ni=1, and

V = {vi}Ni=1 in R
N×d. (Note that xi is the feature vector

of point pi.) The self-attention over X and the resulting

features are computed by

attn(X) =
QKT

√
d

+B ∈ R
N×N , (2)

SAM(X) = softmax(attn(X))V ∈ R
N×d, (3)

whereB = [bij ] includes relative bias factors bij between pi

and pj . Inspired by [23], we add a two-layer MLP, denoted

as g(·), to predict the bias factor instead of adopting a lookup

table. To fully explore the relative geometric information

between each pair of points, the input to the bias network

module g includes their relative position and the included

angle between the normal vectors. We have

B = g( log(∆x,∆y,∆z,∆θ) ) ∈ R
N×N , (4)

where ∆x,∆y,∆z and ∆θ represent all the pairwise off-

sets of relative positions and relative normal angles, i.e.,

arccos(Normal(pi),Normal(pj)), respectively.

3.3. Point cloud clustering

The first step of our approach is to divide a point cloud

into clusters. We consider mean shift clustering [7] to group

the point set into distinct modes and take these cluster centers

as the initial seeds for subsequent analysis. At each iteration

of clustering, the algorithm calculates the so-called mean-

shift vector m(p) for each point p by

m(p) =

∑
pi∈N (p)G(pi − p)pi∑
pi∈N (p)G(pi − p)

, (5)

where G is a Gaussian kernel with the bandwidth parameter

h, and N (p) comprises a specified neighborhood of point p.

With the expression of mean-shift vector in (5), the iterative

clustering updates each point p as follows:

p← p+m(p). (6)

The algorithm iterates the above two steps (5) and (6) until

the convergence of a mean-shift vector. For a given point

cloud P = {p1, ...,pn}, the mean-shift clustering divides P
into K clusters with the center set,O = {po1 , . . . ,poK}. In

all the experiments, our implementation sets the bandwidth h
to 1.5 cm and the maximum number of mean-shift iterations

to 300. For simplification, we restrict the maximum number

of clusters of a point set P to be less or equal to m/4.

In an ideal scenario that the point clusters by mean shift

did correspond to object parts or instances of thing and stuff

in a scene, the effectiveness of sampling could then be signif-

icantly boosted by taking account of such useful information,

as depicted in Figure 2. The practical outcome is far from

the ideal case in that these clusters are obtained solely based

on the geometric relation of distances between points, but

neglecting the semantic relation from the underlying fea-

tures. Nevertheless, the procedure of point grouping enables

our cluster-based formulation and plays a central role in the

proposed attention discriminant sampling (ADS).

3.4. Cluster discriminant attention

The resulting K clusters empower designing attention-

driven sampling beyond the point level. Specifically, we con-

nect the sampling strategy with two aspects of self-attention:

within-cluster and between-cluster. The former reflects the

semantic complexity entailed by the learned features of

points within each cluster, while the latter reveals the se-

mantic similarity between clusters. It turns out that the two

kinds of attention responses are informative for deciding

how our algorithm achieves point cloud sampling.

Within-cluster self-attention. Discriminant attention

analysis within each cluster is to determine its semantic com-

plexity from the distribution of self-attention responses. To

efficiently carry out such evaluation, we consider, for each

cluster center poc , a k-point neighborhood Nk(poc) and

compute its set attention matrix attn(Nk(xoc)) ∈ R
k×k as

in (2). By taking average pooling along the column direction,

we obtain a within-cluster attention vector AW (poc) of k
entries, each of which reflects a point’s average semantic

relatedness to all points in Nk(poc). To quantitatively mea-

sure the semantic complexity of cluster c, we compute from

AW (poc) the standard deviation σc for the distribution of

self-attention responses. In the ADS scheme, σc is positively

correlated to the number of points to be sampled from cluster

c. Notice that although the above computation is performed

cluster-wise, we deploy a weight-sharing SAM module over

the K clusters to retain a compact network model.

Between-cluster self-attention. We first need to come up

with a representative feature vector for each cluster c. Instead

of simply using the feature vector xoc of the cluster center

poc , we prefer a more robust feature representation that

accounts for the underlying feature distribution. To this end,

we exploit the available within-cluster evaluation and obtain

k aggregated feature vectors from SAM(attn(Nk(xoc))) ∈
R

k×d. We then perform average pooling over the k features

to yield the global feature vector fc ∈ R
d for cluster c.

To compute between-cluster self-attention, we again ap-

ply the SAM operation over the set of K global feature

vectors and derive the set attention matrix attn({fc}Kc=1) ∈
R

K×K . We assess the semantic similarity of cluster c to

other clusters by summing the self-attention values in row

c of the between-class attention matrix. This step results in

a set of semantic similarity measures {sc}Kc=1. Opposite to

the effect of σc, the value of sc is negatively correlated to
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the number of points to be sampled from cluster c since it

reflects the degree of semantic redundancies among clusters.

The robustness of learning within-cluster and between-

cluster self-attention can be consolidated by adding a regular-

ization effect on the K cluster-wise (global) feature vectors

{fc}Kc=1 as they form the bridge between the two aspects of

computation. Our motivation is that if these feature vectors

are sufficiently representative, it should be possible to ob-

tain from them a reasonable reconstruction P̃ to the original

point cloud P . To realize this intuition, we average the K
feature vectors to yield f̄ and then generate P̃ by projecting

and reshaping. These steps can be expressed by

{fc}
ψ−−−→ {ψ(fc)} mean−−−→ f̄ ∈ R

3n reshape−−−−→ P̃ ∈ R
n×3

(7)

where ψ : RK×d → R
K×3n is 1-D depthwise convolution.

With (7), we apply Earth Mover’s Distance (EMD) as in [10]

to establish the following reconstruction loss:

LEMD = EMD(P̃,P). (8)

3.5. Attention discriminant sampling

We are now ready to describe how ADS performs effec-

tive sampling over the given point cloud P . Recall that P
is of size n and the sampling process yields P̂ of size m.

Based on our analyses of cluster discriminant attention, we

determine the number of points to be sampled from each

cluster c via calculating the following sampling ratio,

wc =
1

Σ
(nc × σc × 1/sc) (9)

where nc is the size of cluster c and Σ is the normalization

factor to ensure
∑
wc = 1. The number of points to be

sampled from cluster c can be denoted as mc = m× wc.

ADS cluster-wise sampling. We carry out cluster-wise

sampling according to a decreasing order of mc. Consider

now for cluster c, themc points to be sampled will be chosen

from Nk(poc). Our formulation implicitly assumes k ≥ mc

and purposely sets the value of k to ensure the assumption

is valid. Even when mc is larger than k, we could simply

sample k points from the underlying cluster and add mc − k
to the mc′ of the succeeding cluster c′. (Such an exception

has not been encountered in all our experiments.)

To determine which mc points are to be sampled from

cluster c, we additionally extend the SAM to an asymmetric

form. (See Figure 4.) In particular, besides Nk(poc) of clus-

ter c, we randomly select the other set of k points, denoted

as X ′
c, from other clusters. While all the 2k points are used

to generate keys and values, only the k points in Nk(poc)
are taken as queries. We express the resulting asymmetric

attention matrix by

Âc = âttn(Nk(poc) ∪X ′
c) ∈ R

k×2k (10)

where âttn symbolizes the asymmetric set attention (weight

sharing across K clusters). Each row in Âc corresponds to

the outcomes of using a point in Nk(poc) as the query to all

2k keys. Expanding the keys to exceeding cluster c is ad-

vantageous as it globally evaluates each query and produces

more robust attention evidence. It is worth mentioning that

part of the calculation in (10) has already been completed

in evaluating the within-class attention when keys are gen-

erated by the points within cluster c . We obtain aggregated

attention of each row by summing all these 2k attention

values. The steps to sample the mc points are listed below.

1. The first point to be sampled is the one with the largest

value of aggregated attention from Âc.

2. Let S include the indices for those points that have

already been sampled, the next point to be sampled is

decided by the following returned index:

i∗ ← min
i/∈S

∑
j∈S

Âc(i.j). (11)

The step 2 by (11) is repeated until ADS has sampled the

required mc points for cluster c. We now justify the rea-

soning of the proposed sampling method. In estimating the

number of points to be sampled, ADS considers the cluster

size nc, the within-cluster semantic complexity σc, and the

between-cluster semantic similarity sc as in (9). In addition,

the sampling within each cluster begins with the most at-

tending point (of the largest aggregated attention value) and

then proceeds in a least attended point fashion (as in (11)).

Finally, we include a second regularization loss LSample to

facilitate feature consistency between the cluster feature vec-

tor f̄ and the average feature vector from the sampled points

of each cluster. We have

LSample =
∑K

c=1
∥fc −mean(f̂Sc

)∥2 (12)

where Sc and f̂Sc
respectively represent the set of sampled

points from cluster c and their feature vectors generated by

the asymmetric set attention described in (10).

Total loss. We express the total loss of learning ADS as

LTotal = LEMD + LSample + LTarget (13)

where LTarget is the loss to be specified by the targeted

downstream task.

3.6. Model architecture

As shown in Figure 4, the network architecture of ADS

is similar to PointNet++ [32], which adopts staked modules.

In this work, we provide three practical designs of ADS for

solving three types of downstream tasks, including classifi-

cation, part/semantic segmentation, and object detection.
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between-cluster self-attention to decide the sampling outcome. Note that the asymmertric version of set attention module is marked in black.
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Figure 5. The two network architectures with ADS for point-cloud classification and segmentation. The classification model consists of

three ADS modules, and the segmentation architecture includes four ADS modules and feature propagation modules.

We illustrate the two respective network architectures for

the downstream tasks of classification and segmentation in

Figure 5, while the network model for the detection task is

only slightly different from the one for segmentation.

Classification model. The point cloud classification net-

work comprises three ADS modules, with n/2, n/8, and n/16

sampled points, and feature dimensions of 128, 256, and

512, respectively. The numbers of selected points k in ADS

are 16, 32, and 64. After global average pooling, the features

pass through a linear layer that projects the dimension from

512 to C, the number of classes, to predict the label.

Segmentation model. The part/semantic segmentation net-

work includes four ADS modules with n/4, n/16, n/64, and

n/128 sampled points, and feature dimensions of 64, 128,

256, and 512, respectively. The numbers of selected points

k in ADS are 8, 16, 32, and 64. The features then pass

through a decoder with four feature propagation modules, as

in PointNet++, to achieve the up-sampling operation.

Detection model. For the detection task, we adopt Group-

Free [25] as the framework and replace the backbone with

ADS to obtain the detection outcomes on ScanNetV2. The

proposed object detection architecture comprises four ADS

modules with 2048, 1024, 512, and 256 sampled points from

50,000 points. The numbers of selected points k in ADS are

8, 16, 32, and 64, respectively.

4. Experimental results

We justify the usefulness of ADS with the classification,

segmentation and detection tasks. For classification, we
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Method # points input
ModelNet40

OA (%) mAcc (%)

MVCNN [39] - Image 90.1 -

SimpleView [11] - Image 93.0 90.5

MVTN [12] - Image 93.5 92.2

3DShapeNet [49] - Voxel 77.3 84.7

VoxNet [27] - Voxel 85.9 83.0

Subvolume [31] - Voxel 89.2 87.2

O-CNN [43] - Voxel 90.6 -

PointNet [30] 1024 Points 89.2 86.0

PCNN [2] 1024 Points 92.3 -

PointCNN [20] 1024 Points 92.5 88.8

DGCNN [44] 1024 Points 92.9 90.2

RS-CNN [22] 1024 Points 93.6 -

PointNeXt-S [33] 1024 Points 93.2 90.8

PointMLP [26] 1024 Points 94.1 91.3

ADS 1024 Points 94.3 91.7

PAT [52] 1024 Points w/ Normals 91.7 -

PointNet++ [32] 1024 Points w/ Normals 91.9 90.3

PointConv [47] 1024 Points w/ Normals 92.5 -

PointASNL [51] 1024 Points w/ Normals 93.2 -

PointTransformer [59] 1024 Points w/ Normals 93.7 90.6

RepSurf-T [35]† 1024 Points w/ Normals 94.0 91.1

RPNet-W9 [36] 1024 Points w/ Normals 94.1 -

PointTransformer-V2 [48] 1024 Points w/ Normals 94.2 91.6

RepSurf-U [35]† 1024 Points w/ Normals 94.4 91.4

ADS 1024 Points w/ Normals 95.1 92.3

Table 1. Classification on ModelNet40: ADS versus others. OA

denotes overall accuracy, mAcc represents the mean of per-class

accuracy, and † indicates without using multiscaling inference.

Method # points input
ScanObjectNN

OA (%) mAcc (%)

SimpleView [11] - Image 79.5 -

MVTN [12] - Image 82.8 -

PointNet [30] 1024 Points 68.2 63.4

DGCNN [44] 1024 Points 78.1 73.6

PointCNN [20] 1024 Points 78.5 -

PointMLP [26] 1024 Points 85.4 83.9

PointNeXt-S [33] 1024 Points 87.7 85.8

PointNet++ [32] 1024 Points w/ Normals 77.9 75.4

RepSurf-T [35] 1024 Points w/ Normals 84.1 81.2

RepSurf-U [35] 1024 Points w/ Normals 84.3 81.3

ADS 1024 Points w/ Normals 87.5 85.1

Table 2. Classification on ScanObjectNN: ADS versus others.

consider a CAD-based dataset (ModelNet40 [49]) and a real-

world dataset (ScanObjectNN [41]). We then evaluate ADS

for part segmentation on ShapeNet [54] and semantic seg-

mentation on the Stanford 3-D Large-Scale Indoor Spaces

(S3DIS) [1]. We also conduct semantic segmentation and

3-D object detection experiments on ScanNetV2. In the

ablation study, we demonstrate that ADS is less sensitive

to low sampling ratios in the classification and reconstruc-

tion experiments on ModelNet40. ADS achieves competi-

tive computation of FLOPs and parameter sizes with other

attention-based methods. Experiment settings and model

complexities are described in Appendixes A.1 and A.2.

4.1. 3D Object classification

ModelNet40. The CAD-based dataset includes 12,311 ob-

jects (9,843 for training and 2,468 for testing) categorized

Method
S3DIS Area-5 (%) S3DIS 6-fold (%) ScanNetV2 (%)

OA mAcc mIoU OA mAcc mIoU Val mIoU Test mIoU

PointNet [30] - 48.9 41.1 78.5 66.2 47.6 - -

PointNet++ [32] 86.4 61.2 56.0 87.3 76.2 66.7 53.5 55.7

PointCNN [20] 85.9 63.9 57.3 88.1 75.6 65.4 - 45.8

PAT [52] - 70.8 60.1 - 76.5 64.3 - -

PointASNL [51] 87.7 68.5 62.6 88.8 79.0 68.7 63.5 66.6

RepSurf-U [35] 90.2 76.0 68.9 90.8 82.6 74.3 - 70.0

PointNeXt-XL [33] 90.6 70.5 - 90.3 74.9 - 71.5 71.2

PointTransformer [59] 90.8 76.5 70.4 90.2 81.9 73.5 70.6 -

PointTransformer-V2 [48] 91.1 77.9 71.6 - - - 75.4 75.2

ADS 91.1 77.8 71.8 91.7 83.7 75.1 75.6 75.2

Table 3. Semantic segmentation on area-5 and 6-fold of S3DIS:

ADS versus others. mIoU denotes the mean of per-class IoU.

Method mIoU (%) Method mIoU (%)

SpiderCNN [50] 85.3 SyncSpecCNN [55] 81.4

PointCNN [20] 86.1 PointNet [30] 83.7

PointASNL [51] 86.1 PointCNN [20] 84.6

PointMLP [26] 86.1 RSNet [16] 84.9

RS-CNN [22] 86.2 PointNet++ [32] 85.1

PointTransformer [59] 86.6 DGCNN [44] 85.1

PointNeXt-S [33] 86.7 Tsai [40] 85.1

ADS 86.9 Point2Sequence [40] 85.2

Table 4. Part segmentation on ShapeNetPart. We report only the

mean IoU and leave the result for each category in Appendix A.5.

into 40 classes. Following [32], we uniformly sample 1,024

points from each object mesh, along with the normal vectors

as the input. The overall accuracy (OA) and the mean of

per-class accuracy (mAcc) are adopted as evaluation metrics.

Table 1 shows ADS outperforms the SOTA by 0.7% and

achieves 95.1% OA without multi-scaling inference.

ScanObjectNN. To further investigate the performance of

our method, we evaluate on more realistic and challenging

dataset, ScanObjectNN, which comprises 2,902 real-world

point clouds over 15 classes. Compared to CAD objects, the

point clouds are messy (e.g., background) without alignment.

We select the hardest perturbed variant (PB T50 RS variant)

for fair comparison. The OA and mAcc results in Table 2

show that ADS obtains 2.1% and 1.2% improvements in

more challenging cases and manifests its general purpose.

Although PointNeXt-S [33] achieves the best results, they

are obtained mostly due to extended training on tuning the

optimization parameters, rather than algorithmic design.

4.2. 3D segmentation

Semantic segmentation. The evaluations are done on the

S3DIS and ScanNetV2 datasets. The S3DIS consists of 271

scenes from six different areas, with a total of 13 semantic

labels. To validate the performance of ADS on S3DIS, we

first conduct experiments on Area 5 using three evaluation

metrics: OA, mAcc, and mIoU. As shown in Table 3, com-

pared with the SOTA method, ADS achieves comparable

OA with a higher mIoU of 0.2%. To further evaluate the ef-

fectiveness of our method, we conduct experiments on other

areas of S3DIS using the 6-fold cross-validation setting. The

outcomes show that ADS surpasses the previous SOTA by

1.5%, 1.6%, and 1.6% on OA, mAcc, and mIoU, respectively.
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Method Backbone
ScanNetV2 (%)

mAP@0.25 mAP@0.5

VoxNet [27] PointNet++ [32] 62.9 39.9

VoxNet [27] LG3D [17] 65.1 43.0

H3DNet [58] PointNet++ [32] 64.4 43.4

H3DNet [58] PointNet++ (4×) [32] 67.2 48.1

3DETR [28] Transformer 65.0 47.0

GroupFree(L12, O256) [25] PointNet++ (w2×) [32] 69.1 52.8

GroupFree(L12, O256) [25] LG3D [17] 70.9 54.1

GroupFree(L12, O256) [25] RepSurf-U [35] 71.2 54.8

GroupFree(L12, O256) [25] ADS 71.8 55.0

Table 5. Detection on ScanNetV2: ADS versus others. mAP@γ
denotes the mean average precision with IoU threshold set to γ.

Furthermore, on the ScanNetV2, which comprises 1,513 in-

door scenes with 20 semantic labels, ADS attains a val mIoU

of 0.2% higher than the previous SOTA in comparison.

Object part segmentation. The part segmentation experi-

ment is done on the ShapeNet dataset, which contains 16,880

models (14,006 for training and 2,874 for testing) over 16

classes. There are 50 types of the part semantic label and

each object consists of between 2 to 6 parts. We follow [32]

to sample each object with 2,048 points for fair comparison.

Regarding the evaluation metrics, we provide the mIoU of

each category and the overall mIoU. Table 4 shows that ADS

yields comparable performance with PointNeXt-S [33] in

overall mIoU and achieves top mIoU results for 12 categories

without adopting any class-balancing loss, e.g., Focal loss.

4.3. 3D object detection

ScanNetV2. To further demonstrate the general purpose

of ADS, we provide the experimental result on 3-D object

detection. As mentioned in Section 3.6, the detection ar-

chitecture is slightly different from the segmentation model.

Following [35], we adopt Group-Free [25] as the framework

and replace the backbone with ADS to obtain the detection

outcomes on ScanNetV2 with 18 object classes. We report

the mean Average Precision (mAP) as the standard evalua-

tion metric under two IoU thresholds: 0.25 and 0.5 in Table 5.

ADS achieves improvements (0.6% and 0.2%) from [32] and

the previous SOTA [25] under the same experiment setting

and the same detection framework.

4.4. Ablation study

Effect of sampling ratio. We define the sampling ratio

as r = m/N . To study its effect, we assess the changes in

the classification and reconstruction performances on Mod-

elNet40 with respect to different sampling ratios, where in

this case N = 1, 024. Following [6], we set 1/r to be within

the range of [1, 64]. The classification settings are the same

as those in Section 4.1 except that the number of sampled

points now could vary. In the reconstruction experiment, to

ensure fair evaluation, we adopt the decoder in Point Com-

pletion Networks (PCN) [56] to reconstruct points from the
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Figure 6. Classification (top row) and Reconstruction performance

(bottom row) versus sampling ratio: m/N on ModelNet40 (top

row). Top-left: Cls-Performance degradation (%): classification

accuracy reduction in percentage; Bottom-left: Rec-Performance

degradation (%): reconstruction error increase in percentage.

extracted features for all methods. We use the Chamfer Dis-

tance (CD) metric to measure the inefficiency between the

original and the reconstructed points. The comparison in-

cludes general frameworks (PointNet and PointNet++) and

specific methods, designed explicitly for sampling, (Sam-

pleNet [19] and MetaSampler [6]). Figure 6 shows that ADS

exhibits less performance degradation in both classification

and reconstruction experiments, when decreasing the sam-

pling ratio (i.e., increasing 1/r). The outcomes indicate that

the sampled points by ADS are more representative than

those by other techniques. Notice that here SampleNet and

MetaSampler adopt PointNet as the feature extractor.

Effect of each component. To verify the usefulness of the

various components in our method, we conduct an ablation

study and report the findings in Table 6. The reconstruc-

tion term (LEMD) is crucial in that it ensures the features of

the clusters are representative for reconstructing the original

point set. This is one of the main reasons that the perfor-

mance of ADS is more robust to the sampling ratio. In ad-

dition, the relative angle ∆θ is another indispensable factor

when calculating the self-attention relationship. The reason-

ing is that in 3-D space, the normal vectors of objects provide

additional geometric relations beyond the relative positions

from the object coordinates. Though the regularization term

(Lsample), the size of the cluster (nc) and the complexity

of the cluster (σc) are not as pivotal as the just-mentioned

two components, they all positively contribute to the perfor-

mance improvement. Finally, we see that our cluster-based

formulation to respect the structure-aware property yields a

substantial gain of 1.1% in OA.
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Model Cluster LEMD Lsample nc ∆θ σc OA(%)

I " " 93.9

II " " " 94.1

III " " " " 94.5

IV " " " " " 94.8

V " " " " 93.7

VI " " " " " 94.0

VII " " " " " " 95.1

VIII " " " " " 94.0

Table 6. Ablation of the key components in our method.

Classification (Model40)

k Scaling Ratio ∆ OA (%)

8 [×1.0,×2.0,×2.0] -0.6 94.5

8 [×1.0,×2.0,×4.0] -1.5 93.6

16 [×1.0,×2.0,×2.0] 0 95.1

16 [×1.0,×2.0,×4.0] -0.8 94.3

Segmentation (S3DIS)

k Scaling Ratio ∆ mIoU (%)

8 [×1.0,×2.0,×2.0,×2.0] 0 71.8

8 [×1.0,×2.0,×2.0,×4.0] -1.5 70.3

16 [×1.0,×2.0,×2.0,×2.0] -1.9 69.9

16 [×1.0,×2.0,×4.0,×4.0] -0.7 71.1

Table 7. Ablation of different k values and scaling ratios.

Model design: k-point neighborhood. The parameter k
in Nk(poc) is pivotal to ADS cluster-wise sampling and

affects the outcome of the targeted downstream task. Specif-

ically, we investigate the impact of k on the classification

and segmentation tasks and report the findings in Table 7. In

our formulation, similar to PointNet++ with the FPS scheme,

the k value for each ADS module is determined via multi-

plying the initial number by the scaling ratio. For example,

configuration 8 with [×1.0, ×2.0, ×2.0] indicates that the k
values in the three ADS modules are specified by [8, 16, 32]

in the classification architecture. We empirically find that the

optimal values of k for both classification and segmentation

tasks are 16, 32, and 64, and 4, 8, 32, and 64, respectively.

These results demonstrate the significance of appropriately

selecting the k value to achieve good performance for ADS.

Positional encoding. When the self-attention operation

does not take account of the information of relative position,

it is advantageous to consider positional encoding. Vaswani

et al. [42] consider a mapping function to encode the posi-

tion information in self-attention, while other approaches,

e.g., [4, 14, 15, 24], embrace the strategy of using a lookup

table with learnable parameters to better model the position

information. Similar to [23] we apply MLP to predict the

relative factors relevant to the underlying 3-D task. Table 8

shows that the proposed MLP formulation of positional en-

coding (with relative position ∆xyz and normal vector ∆θ)

Positional encoding type OA (%)

None 93.9

Fixed mapping function (cos,sin) 94.0

Look-up table for learnable value (Relative: ∆xyz) 94.0

MLP prediction (Relative: ∆xyz) 94.1

MLP prediction (Relative: ∆xyz +∆θ) 94.4

Table 8. Ablation of different positional encoding schemes.

Original 

Scene

Ground

Truth

PointNet

++

ADS

Figure 7. Qualitative comparison on Area 5 of S3DIS. Examples

of dense semantic segmentation by ADS and (baseline) PointNet++.

better explores the geometric relations in a point cloud.

Qualitative comparison. Figure 7 visually illustrates an

example of dense semantic segmentation from Area 5 of

S3DIS. The segmentation outcomes by ADS reveal more de-

tails about the scene than those by the standard PointNet++.

For example, ADS successfully segments the whole scene;

in contrast, the standard PointNet++ misses the wall region.

5. Conclusions

Driven by the cluster-based design, the proposed attention

discriminant sampling (ADS) implicitly achieves structure-

aware sampling by taking account of not only geometric

relations but also semantic relations in point clouds. Its ef-

fectiveness for deciding how the sampled points are cluster-

wise distributed results from exploring the within-cluster and

between-cluster self-attention responses that quantitatively

measure each cluster’s complexity and similarities to others.

We further consolidate the learning of ADS with an EMD

regularization loss to ensure the sampled points are represen-

tative. With its good performance, ADS provides a general

solution for 3-D point cloud sampling and applications.

Acknowledgements. This work was supported in part by

NSTC grants 111-2221-E-001-011-MY2, 111-2221-E-001-

015-MY3 and 111-2634-F-007-010 of Taiwan. We are grate-

ful to National Center for High-performance Computing for

providing computational resources and facilities.

14437



References

[1] Iro Armeni, Ozan Sener, Amir Roshan Zamir, Helen Jiang,

Ioannis K. Brilakis, Martin Fischer, and Silvio Savarese. 3d

semantic parsing of large-scale indoor spaces. In 2016 IEEE

Conference on Computer Vision and Pattern Recognition,

CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages

1534–1543. IEEE Computer Society, 2016.

[2] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point

convolutional neural networks by extension operators. ACM

Trans. Graph., 37(4):71, 2018.

[3] Xuyang Bai, Zeyu Hu, Xinge Zhu, Qingqiu Huang, Yilun

Chen, Hongbo Fu, and Chiew-Lan Tai. Transfusion: Robust

lidar-camera fusion for 3d object detection with transformers.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 1090–1099, 2022.

[4] Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan Yang,

Xiaodong Liu, Yu Wang, Jianfeng Gao, Songhao Piao, Ming

Zhou, and Hsiao-Wuen Hon. Unilmv2: Pseudo-masked lan-

guage models for unified language model pre-training. In

Proceedings of the 37th International Conference on Ma-

chine Learning, ICML 2020, 13-18 July 2020, Virtual Event,

volume 119 of Proceedings of Machine Learning Research,

pages 642–652. PMLR, 2020.

[5] Chen Chen, Zhe Chen, Jing Zhang, and Dacheng Tao. SASA:

semantics-augmented set abstraction for point-based 3d ob-

ject detection. In Thirty-Sixth AAAI Conference on Artificial

Intelligence, AAAI 2022, Thirty-Fourth Conference on Inno-

vative Applications of Artificial Intelligence, IAAI 2022, The

Twelveth Symposium on Educational Advances in Artificial

Intelligence, EAAI 2022 Virtual Event, February 22 - March

1, 2022, pages 221–229. AAAI Press, 2022.

[6] Ta Ying Cheng, Qingyong Hu, Qian Xie, Niki Trigoni, and

Andrew Markham. Meta-sampler: Almost-universal yet task-

oriented sampling for point clouds. CoRR, abs/2203.16001,

2022.

[7] Yizong Cheng. Mean shift, mode seeking, and clustering.

IEEE transactions on pattern analysis and machine intelli-

gence, 17(8):790–799, 1995.

[8] Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin

Chen, and Silvio Savarese. 3d-r2n2: A unified approach

for single and multi-view 3d object reconstruction. In Bas-

tian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors,

Computer Vision - ECCV 2016 - 14th European Conference,

Amsterdam, The Netherlands, October 11-14, 2016, Proceed-

ings, Part VIII, volume 9912 of Lecture Notes in Computer

Science, pages 628–644. Springer, 2016.

[9] Oren Dovrat, Itai Lang, and Shai Avidan. Learning to sam-

ple. In IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20,

2019, pages 2760–2769. Computer Vision Foundation / IEEE,

2019.

[10] Haoqiang Fan, Hao Su, and Leonidas J. Guibas. A point

set generation network for 3d object reconstruction from a

single image. In 2017 IEEE Conference on Computer Vision

and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,

July 21-26, 2017, pages 2463–2471. IEEE Computer Society,

2017.

[11] Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, and

Jia Deng. Revisiting point cloud shape classification with

a simple and effective baseline. In Marina Meila and Tong

Zhang, editors, Proceedings of the 38th International Con-

ference on Machine Learning, ICML 2021, 18-24 July 2021,

Virtual Event, volume 139 of Proceedings of Machine Learn-

ing Research, pages 3809–3820. PMLR, 2021.

[12] Abdullah Hamdi, Silvio Giancola, and Bernard Ghanem.

MVTN: multi-view transformation network for 3d shape

recognition. In 2021 IEEE/CVF International Conference

on Computer Vision, ICCV 2021, Montreal, QC, Canada,

October 10-17, 2021, pages 1–11. IEEE, 2021.

[13] Chenhang He, Ruihuang Li, Shuai Li, and Lei Zhang. Voxel

set transformer: A set-to-set approach to 3d object detection

from point clouds. CoRR, abs/2203.10314, 2022.

[14] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen

Wei. Relation networks for object detection. In 2018 IEEE

Conference on Computer Vision and Pattern Recognition,

CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages

3588–3597. Computer Vision Foundation / IEEE Computer

Society, 2018.

[15] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local

relation networks for image recognition. In 2019 IEEE/CVF

International Conference on Computer Vision, ICCV 2019,

Seoul, Korea (South), October 27 - November 2, 2019, pages

3463–3472. IEEE, 2019.

[16] Qiangui Huang, Weiyue Wang, and Ulrich Neumann. Re-

current slice networks for 3d segmentation of point clouds.

In 2018 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-

22, 2018, pages 2626–2635. Computer Vision Foundation /

IEEE Computer Society, 2018.

[17] Yaomin Huang, Xinmei Liu, Yichen Zhu, Zhiyuan Xu,

Chaomin Shen, Zhengping Che, Guixu Zhang, Yaxin Peng,

Feifei Feng, and Jian Tang. Label-guided auxiliary training

improves 3d object detector. CoRR, abs/2207.11753, 2022.

[18] Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang

Zhao, Shu Liu, Xiaojuan Qi, and Jiaya Jia. Stratified trans-

former for 3d point cloud segmentation. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 8500–8509, 2022.

[19] Itai Lang, Asaf Manor, and Shai Avidan. Samplenet: Differen-

tiable point cloud sampling. In 2020 IEEE/CVF Conference

on Computer Vision and Pattern Recognition, CVPR 2020,

Seattle, WA, USA, June 13-19, 2020, pages 7575–7585. Com-

puter Vision Foundation / IEEE, 2020.

[20] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,

and Baoquan Chen. Pointcnn: Convolution on x-transformed

points. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
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Markus H. Gross. A network architecture for point cloud

classification via automatic depth images generation. In 2018

IEEE Conference on Computer Vision and Pattern Recog-

nition, CVPR 2018, Salt Lake City, UT, USA, June 18-22,

2018, pages 4176–4184. Computer Vision Foundation / IEEE

Computer Society, 2018.

[38] Kripasindhu Sarkar, Basavaraj Hampiholi, Kiran Varanasi,

and Didier Stricker. Learning 3d shapes as multi-layered

height-maps using 2d convolutional networks. In Vittorio Fer-

rari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss,

editors, Computer Vision - ECCV 2018 - 15th European Con-

ference, Munich, Germany, September 8-14, 2018, Proceed-

ings, Part XVI, volume 11220 of Lecture Notes in Computer

Science, pages 74–89. Springer, 2018.

[39] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik G.

Learned-Miller. Multi-view convolutional neural networks for

3d shape recognition. In 2015 IEEE International Conference

on Computer Vision, ICCV 2015, Santiago, Chile, December

7-13, 2015, pages 945–953. IEEE Computer Society, 2015.

[40] Meng-Shiun Tsai, Pei-Ze Chiang, Yi-Hsuan Tsai, and Wei-

Chen Chiu. Self-supervised feature learning from partial point

clouds via pose disentanglement. CoRR, abs/2201.03018,

2022.

[41] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua,

Duc Thanh Nguyen, and Sai-Kit Yeung. Revisiting point

cloud classification: A new benchmark dataset and classifi-

cation model on real-world data. In 2019 IEEE/CVF Inter-

national Conference on Computer Vision, ICCV 2019, Seoul,

Korea (South), October 27 - November 2, 2019, pages 1588–

1597. IEEE, 2019.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-

eit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In Isabelle Guyon,

14439



Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob

Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors,

Advances in Neural Information Processing Systems 30: An-

nual Conference on Neural Information Processing Systems

2017, December 4-9, 2017, Long Beach, CA, USA, pages

5998–6008, 2017.

[43] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,

and Xin Tong. O-CNN: octree-based convolutional neural net-

works for 3d shape analysis. ACM Trans. Graph., 36(4):72:1–

72:11, 2017.

[44] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,

Michael M. Bronstein, and Justin M. Solomon. Dynamic

graph CNN for learning on point clouds. ACM Trans. Graph.,

38(5):146:1–146:12, 2019.

[45] Yikai Wang, TengQi Ye, Lele Cao, Wenbing Huang, Fuchun

Sun, Fengxiang He, and Dacheng Tao. Bridged transformer

for vision and point cloud 3d object detection. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 12114–12123, 2022.

[46] Ziyi Wang, Yongming Rao, Xumin Yu, Jie Zhou, and Jiwen

Lu. Semaffinet: Semantic-affine transformation for point

cloud segmentation. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

11819–11829, 2022.

[47] Wenxuan Wu, Zhongang Qi, and Fuxin Li. Pointconv: Deep

convolutional networks on 3d point clouds. In IEEE Con-

ference on Computer Vision and Pattern Recognition, CVPR

2019, Long Beach, CA, USA, June 16-20, 2019, pages 9621–

9630. Computer Vision Foundation / IEEE, 2019.

[48] Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, and Heng-

shuang Zhao. Point transformer V2: grouped vector attention

and partition-based pooling. CoRR, abs/2210.05666, 2022.

[49] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d shapenets:

A deep representation for volumetric shapes. In IEEE Con-

ference on Computer Vision and Pattern Recognition, CVPR

2015, Boston, MA, USA, June 7-12, 2015, pages 1912–1920.

IEEE Computer Society, 2015.

[50] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.

Spidercnn: Deep learning on point sets with parameterized

convolutional filters. In Vittorio Ferrari, Martial Hebert, Cris-

tian Sminchisescu, and Yair Weiss, editors, Computer Vision

- ECCV 2018 - 15th European Conference, Munich, Ger-

many, September 8-14, 2018, Proceedings, Part VIII, volume

11212 of Lecture Notes in Computer Science, pages 90–105.

Springer, 2018.

[51] Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, and Shuguang

Cui. Pointasnl: Robust point clouds processing using nonlocal

neural networks with adaptive sampling. In 2020 IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 5588–

5597. Computer Vision Foundation / IEEE, 2020.

[52] Jiancheng Yang, Qiang Zhang, Bingbing Ni, Linguo Li, Jinx-

ian Liu, Mengdie Zhou, and Qi Tian. Modeling point clouds

with self-attention and gumbel subset sampling. In IEEE Con-

ference on Computer Vision and Pattern Recognition, CVPR

2019, Long Beach, CA, USA, June 16-20, 2019, pages 3323–

3332. Computer Vision Foundation / IEEE, 2019.

[53] Zi Jian Yew and Gim Hee Lee. Regtr: End-to-end point

cloud correspondences with transformers. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 6677–6686, 2022.

[54] Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen,

Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Shef-

fer, and Leonidas J. Guibas. A scalable active framework

for region annotation in 3d shape collections. ACM Trans.

Graph., 35(6):210:1–210:12, 2016.

[55] Li Yi, Hao Su, Xingwen Guo, and Leonidas J. Guibas. Sync-

speccnn: Synchronized spectral CNN for 3d shape segmen-

tation. In 2017 IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-

26, 2017, pages 6584–6592. IEEE Computer Society, 2017.

[56] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and

Martial Hebert. PCN: point completion network. In 2018

International Conference on 3D Vision, 3DV 2018, Verona,

Italy, September 5-8, 2018, pages 728–737. IEEE Computer

Society, 2018.

[57] Yanan Zhang, Jiaxin Chen, and Di Huang. Cat-det: Con-

trastively augmented transformer for multi-modal 3d object

detection. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 908–917,

2022.

[58] Zaiwei Zhang, Bo Sun, Haitao Yang, and Qixing Huang.

H3dnet: 3d object detection using hybrid geometric primi-

tives. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and

Jan-Michael Frahm, editors, Computer Vision - ECCV 2020

- 16th European Conference, Glasgow, UK, August 23-28,

2020, Proceedings, Part XII, volume 12357 of Lecture Notes

in Computer Science, pages 311–329. Springer, 2020.

[59] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip H. S. Torr, and

Vladlen Koltun. Point transformer. In 2021 IEEE/CVF Inter-

national Conference on Computer Vision, ICCV 2021, Mon-

treal, QC, Canada, October 10-17, 2021, pages 16239–16248.

IEEE, 2021.

14440


