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Figure 1: Depth prediction (center) and absolute relative error (right) from a model trained on KITTI for images from KITTI
(top, left; in-distribution: ID) and virtual KITTI (bottom, left; out-of-distribution: OOD): The depth prediction for virtual
KITTI, which is not represented in the training distribution, is incorrect; therefore, the error is too high.

Abstract

In monocular depth estimation, uncertainty estimation
approaches mainly target the data uncertainty introduced
by image noise. In contrast to prior work, we address the
uncertainty due to lack of knowledge, which is relevant for
the detection of data not represented by the training distri-
bution, the so-called out-of-distribution (OOD) data. Mo-
tivated by anomaly detection, we propose to detect OOD
images from an encoder-decoder depth estimation model
based on the reconstruction error. Given the features ex-
tracted with the fixed depth encoder, we train an image de-
coder for image reconstruction using only in-distribution
data. Consequently, OOD images result in a high recon-
struction error, which we use to distinguish between in-
and out-of-distribution samples. We built our experiments
on the standard NYU Depth V2 and KITTI benchmarks as
in-distribution data. Our post hoc method performs aston-
ishingly well on different models and outperforms existing
uncertainty estimation approaches without modifying the
trained encoder-decoder depth estimation model.

1. Introduction
Despite the astonishing performance of deep neural net-

works in monocular depth estimation, image irregularities,
e.g., reflections or occlusions, as well as unknown objects or

completely unknown environments, lead to incorrect depth
predictions. Figure 1 shows example predictions (center)
from a depth estimation model trained on KITTI [14] for
test images from the same dataset (top, left) as well as vir-
tual KITTI [4] (bottom, left). Since virtual KITTI con-
sists of synthetically generated data, the test image is not
included in the training data and presents an unknown envi-
ronment. The error plot (right) corresponding to the depth
prediction (center) shows that the depth estimate for the
truck, whose surface has reflections, is incorrectly estimated
to be too high. Therefore, the truck’s position is incorrect
based on the depth estimates, highlighting the importance of
identifying inputs for which the depth predictions are unre-
liable. This is a crucial aspect for the usage in safety-critical
applications such as automated driving or robotics.

The erroneous predictions, in general, can be due to dif-
ferent types of uncertainty. The main distinction is between
data uncertainty (aleatoric), which results from noise in the
data, and model uncertainty (epistemic), which is due to
lack of knowledge and therefore addressable with more di-
verse training data [29]. Recent works [22, 29, 41, 46] al-
ready target uncertainty estimation for depth estimation in
the context of deep neural networks. Moreover, they eval-
uate whether the uncertainty corresponds to the actual er-
ror in the test data drawn from the same distribution as
the training data. However, the current evaluation proto-
col only addresses the aleatoric uncertainty but not the epis-
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temic uncertainty. Since epistemic uncertainty results from
the lack of knowledge, it is relevant to detecting data not
represented by the training distribution, so-called out-of-
distribution (OOD) data. While OOD detection is an ac-
tive research area in image classification [23, 24, 37, 44], it
is rarely explored for complex and high-dimensional tasks
like monocular depth estimation. Therefore, we specifically
address the detection of OOD samples for depth estimates.
Motivated by the image anomaly detection approaches that
rely on the reconstruction error [2, 7] of autoencoders to de-
tect anomalous data, we propose to detect OOD inputs from
depth estimation models also with the reconstruction error.

In fact, we train a decoder to reconstruct the input im-
age from the features of an already trained and therefore
fixed depth estimation model. Since we train the decoder
in a post hoc fashion, the depth estimation performance of
the underlying model is not affected. More precisely, our
image decoder takes the features extracted with the depth
encoder of the fixed depth estimation model as input and
is trained to predict the original input image. To develop
our decoder, we rely on a similar model architecture as the
depth decoder. As a result, our method is applicable to vari-
ous depth estimation models and independent of some spe-
cific architecture, i.e., whether the depth estimation model
is fully convolutional or transformer-based does not play
any role. During inference, the reconstruction error between
the predicted and input images serves as the OOD detection
score. Our extensive experiments with the OOD detection
evaluation protocol show promising results for our method
compared to existing uncertainty estimation approaches.

Our contributions can be summarized as follows: To
the best of our knowledge, we are the first to propose an
OOD detection method for monocular depth estimation.
For this, we do not use OOD examples but rely only on
in-distribution training data. In our simple and effective
method, we present a second model, represented by an im-
age decoder, to learn image reconstruction post hoc with
features extracted by the depth encoder as input. We lever-
age the reconstruction error as our OOD detection score.
We introduce an epistemic uncertainty evaluation protocol
that addresses OOD detection with extensive experiments
using the standard benchmarks NYU Depth V2 [38] and
KITTI [14] as in-distribution data and up to three different
OOD datasets. Models and code are publicly available.1

2. Related Work

Monocular Depth Estimation The first neural networks
for monocular depth estimation are designed to use infor-
mation from local and global features [12] or as a fully-
convolutional architecture [31]. To reduce the need for
expensive ground truth generation, further works [15, 50]

1https://github.com/jhornauer/mde_ood

train their models using stereo pair supervision to lever-
age the scene geometry. In [56, 16], the photometric loss
is designed to require only monocular sequences, which
is more difficult since camera position and scale are un-
known and therefore learned together with the depth pre-
diction. With the recent success of attention-based trans-
former architectures in vision tasks, Ranftl et al. [42] are
the first to propose using vision transformers [9] instead of
convolutional backbones to make use of a global receptive
field in the encoder. Bhat et al. [3] phrase depth estima-
tion as a classification-regression task where they predict
the depth as a linear combination of discretized depth val-
ues and probabilities. In [52], the decoder uses energy mod-
eling and multi-head attention to obtain depth predictions.
Recently, Agarwal et al. [1] propose attention-based skip
connections between encoder and decoder. While previous
transformer approaches are trained with ground truth super-
vision, Zhao et al. [54] introduce a transformer architecture
for self-supervised monocular depth estimation. In this pa-
per, we perform OOD detection for already trained convo-
lutional and transformer-based depth estimation models.

Depth Estimation Uncertainty In general, a distinction
is made between aleatoric and epistemic uncertainty. The
first one targets the noise inherent in the data, such as oc-
clusions. In contrast, the latter is the model uncertainty
targeting the uncertainty arising from missing knowledge,
which is reducible by leveraging more diverse training data
and, therefore, relevant for OOD detection [29]. More pre-
cisely, OOD samples are usually either unknown objects
or data represented in a different form, e.g., synthetic im-
ages compared to real images [24]. Epistemic uncertainty
estimation approaches place a distribution over the model
weights, while aleatoric uncertainty estimation approaches
assume a prior distribution over the model output [29].

A straightforward method to obtain the aleatoric un-
certainty with the distribution over two outputs is post-
processing as proposed by Godard et al. [15]. In [22], gra-
dients of the model are extracted with this post-processing
step to improve uncertainty estimation by using informa-
tion from output space and gradient space. Another pre-
dictive method infers a prior distribution over the model
output by log-likelihood maximization [39]. In [46], the
prior output distribution is learned with a second model
from a fixed and already trained image-to-image transla-
tion model. In contrast, we train a second decoder in a
post hoc fashion to reconstruct the input image from the
features of a depth encoder and thus learn its output dis-
tribution. Two well-known epistemic uncertainty estima-
tion approaches are Deep Ensembles [32] and Monte Carlo
Dropout [13]. While the first approach generates a distri-
bution over the model weights by training N models with
different initialization, the second approach performs N in-
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ferences with the same model and dropout [43] applied. To
reduce the effort of training N models, Snapshot Ensem-
bles [25] use cyclic learning rate scheduling.

Existing uncertainty estimation approaches for depth es-
timation [22, 41] mainly target the aleatoric uncertainty by
evaluating whether the predicted uncertainty corresponds to
the actual error on the in-distribution test set. In contrast, we
target epistemic uncertainty by proposing an evaluation pro-
tocol for detecting OOD inputs with extensive experiments
using multiple OOD datasets and different depth estimation
models. In this context, we assess the performance of exist-
ing uncertainty estimation approaches of both uncertainty
types for OOD detection while proposing a new OOD de-
tection method.

Out-of-Distribution Detection Many works explore
OOD detection for classification [19, 23, 37]. While the
first baseline is the built-in maximum softmax score [19],
different approaches propose improvements by tempera-
ture scaling [36], the energy function [37] or the group-
based softmax [27]. Another line of research not only re-
lies on in-distribution data but introduces real [20] or syn-
thetic [33, 53] outliers during training. In this work, on
the other hand, we do not use outliers for OOD detec-
tion and only rely on the available in-distribution training
data. Furthermore, the OOD detection score must not be
defined in the output space but can also rely on the weight
space [45, 26], activation space [34, 44, 8] or both, acti-
vation and output space [48]. Cao and Zhang [5] directly
target the factorization of the different types of uncertainty,
namely data, model, and distribution uncertainty, and apply
the latter to OOD detection. Moreover, Wang and Aitchi-
son [49] use the finding that many uncertainty estimation
approaches that predict aleatoric uncertainty [19, 20, 33]
are effective for OOD detection. Therefore, they integrate
aleatoric uncertainty in Bayesian approaches. This work
also considers existing aleatoric uncertainty estimation ap-
proaches for OOD detection but for monocular depth esti-
mation. In contrast, Hendrycks et al. [21] leverage repre-
sentation learning by predicting image rotations, whereas
Pei et al. [40] detect OOD data with a boundary-aware dis-
criminator. Zhou et al. [57] apply autoencoders for OOD
detection. Because it is known that autoencoders also gen-
eralize well to unknown inputs, their approach focuses on a
maximally compressed latent space while preserving the re-
construction ability. Yang et al. [51] synthesize images for
OOD detection from the feature space of a classifier with in-
put masking. Similarly, we leverage the reconstruction loss
for OOD detection but train a decoder based on the feature
space of an already trained depth estimation model for im-
age reconstruction. Recent works expand OOD detection
to the more complex tasks object detection [11, 10, 35] and
semantic segmentation [6, 28, 18]. Nevertheless, OOD de-

tection for computationally intensive regression tasks such
as monocular depth estimation is still underexplored.

3. Out-of-Distribution Detection

Consider a deep neural network d̂ = f(x; θ), param-
terized by θ, trained with images x ∈ Rw×h×3 to predict
pixel-wise depth values d̂ ∈ Rw×h×1, where w and h are
width and height. The model is trained with the dataset
D = {xi,di}|D|

i=1 consisting of images x and corresponding
depth d ∈ Rw×h×1. The dataset is drawn from the training
distribution Pin(x,d), referred to as in-distribution. During
inference, the model cannot just be exposed to images xin
originating from Pin but also to images xout. The so-called
out-of-distribution inputs xout are drawn from a different
distribution Pout(x,d), which is different from the training
distribution Pin(x,d). Such OOD inputs can either con-
tain unknown objects or have a non-semantic shift [24], e.g.,
synthetic compared to real data. This work aims to detect
such OOD samples xout.

Given an already trained depth estimation model, we
propose to detect OOD inputs without modifying the model
parameters. This is referred to as post hoc OOD detection.
Most depth estimation models are built with a feature en-
coder z = ψ(x, θψ) and a depth decoder d̂ = ϕ(z; θϕ),
where the features z = {zj}Mj=1 are extracted from M dif-
ferent encoder layers. We assume to have access to the fea-
tures z of the encoder-decoder depth estimation model, but
we keep its model weights fixed. Therefore, our method is
independent of the underlying training strategy of the depth
estimation model. Moreover, the depth estimation model
can be trained either in a supervised manner with the depth
ground truth d or in a self-supervised manner without d.

3.1. Training Approach

Inspired by anomaly detection [7], where an autoencoder
is optimized to learn the representation of data defined as
normal, we propose to learn a representation of the training
distribution with a second decoder, namely an image de-
coder. The image decoder x̂ = ρ(z; θρ), parameterized by
θρ, is trained to reconstruct the original input images x from
the features z extracted with the already trained and fixed
depth encoder. The reconstructed images x̂ ∈ Rw×h×3

have the same dimension as the original images x. Since
we train the image decoder only on in-distribution data,
we assume access to the images xin drawn from the in-
distribution training dataset D. Similar to anomaly detec-
tion [7], we define the in-distribution images xin as nor-
mal and assume that the decoder reconstructs them well. In
contrast, the decoder should not be able to reconstruct OOD
images since the image decoder did not observe them dur-
ing optimization. The poor reconstruction of OOD images
is also demonstrated in Figure 3. In the case of the OOD
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Figure 2: Given a trained and fixed depth estimation model,
we use a similar model architecture as the depth decoder
by copying and modifying it to use as an image decoder.
During training, the image decoder receives the encoder
features as input and is optimized to reconstruct the input
images only using in-distribution data. Note that we only
back-propagate through the image decoder.

input, the reconstructed image x̂ shows a color shift in com-
parison to the original input x. The difference between the
original image x and the reconstructed image x̂ can then be
used to define an OOD detection score.

Decoder Training Figure 2 illustrates an overview of our
approach. First, we make a copy of the architecture of the
depth decoder ϕ(·) and modify it to use it as our image de-
coder ρ(·). By choosing the image decoder to have a similar
architecture as the depth decoder, we make our method ap-
plicable to various depth estimation models independent of
the architecture, i.e., whether the model is fully convolu-
tional or transformer-based. Note that the image decoder
is trained from scratch and does not reuse the weights of
the depth decoder. During the image decoder training, we
replace the depth estimation loss function with the recon-
struction loss:

Lrec(x̂,x) = Ex∼D|x̂− x|. (1)

Thus, the image decoder learns to reconstruct the original
input image x from the features z instead of predicting the
pixel-wise depth. Note that we only back-propagate through
the image decoder for the gradient update. This makes our
approach simple and feasible for different kinds of depth
estimation models. In our experiments, we demonstrate
the effectiveness of our approach for convolutional and
transformer-based depth estimation models (see Sec. 4.2).

3.2. Out-of-Distribution Detection Score

In Figure 3, the inference process is illustrated. The input
image x is passed through the depth estimation encoder and
decoder as well as our image decoder to obtain the depth
prediction d̂ and the input reconstruction x̂. Afterward, we
leverage the predicted images x̂ to detect OOD inputs. First,
we use the reconstruction error eabs = |x̂ − x| to to obtain
the pixel-wise absolute error eabs ∈ Rw×h×3 between the
input image x and the predicted image x̂. Then, we apply
max-pooling in the channel dimensions to obtain the error
map e ∈ Rw×h×1. Finally, we use the error map to calcu-
late the OOD detection score:

score(e) =

{
1 1

w·h
∑w·h
k=1 ek ≤ τ

0 otherwise.
(2)

In-distribution samples are set to 1, while OOD samples are
set to 0. The threshold τ is used to separate in- from out-of-
distribution data. It can be chosen manually, but all metrics
are threshold independent in our evaluation. Whereas in-
distribution inputs should result in a low reconstruction er-
ror, OOD inputs should lead to high reconstruction errors.
This, in turn, makes OOD inputs distinguishable from in-
distribution data (see Figure 3).

4. Experiments
We evaluate the OOD detection performance with our

epistemic uncertainty evaluation protocol based on two
standard depth estimation benchmarks as in-distribution
data and up to three OOD datasets and different model ar-
chitectures. First, we explain the evaluation protocol, in-
cluding in- and out-of-distribution datasets and metrics. In
addition, we describe the used models and implementation
details. Then, we show the OOD detection results compared
to related work and conduct an ablation study on the choice
to train the image decoder in a post hoc manner.

4.1. Experimental Setup

Datasets We propose to evaluate the OOD detection on
two different setups where the depth estimation model is
trained on NYU Depth V2 [38] or KITTI [14] as an in-
distribution dataset. NYU is an indoor depth estimation
dataset recorded with a resolution of 480 × 640 at 494
scenes. We use the official train/test split with a maxi-
mum depth of 10 meters. For NYU as in-distribution data,
we propose to use Places365 [55] (Places) as OOD data,
which consists of scenes captured in different indoor and
outdoor environments. We choose images from the outdoor
scenes butte, cliff, corn field, desert road, harbor, and high-
way. Since OOD inputs are rare compared to in-distribution
data in real-world scenarios, we choose a smaller number of
OOD images than the number of in-distribution images. We
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Figure 3: During inference, the image decoder ρ(·) is used next to the depth decoder ϕ(·). Since the image decoder ρ(·) is
only trained on in-distribution images, it cannot correctly reconstruct the input images in the case of OOD data. Because of
this reason, the reconstruction error between the input image x and the reconstructed image x̂ is used to calculate error maps
e, which in turn are used to detect OOD inputs.

select 50 images per category for Places to obtain 300 OOD
images, while the NYU test set contains 654 samples.

KITTI, by contrast, is an autonomous driving dataset
with an average resolution of 375 × 1242 captured at 61
scenes in Germany. We use the Eigen split [12] with
the maximum depth set to 80 meters for evaluation. In
[46], a small OOD evaluation is conducted with KITTI as
in-distribution and Places365 [55] and India Driving [47]
as OOD. In contrast to this evaluation, we suggest using
two different in-distribution datasets and treating the OOD
datasets as separate settings instead of combining them.
Also, as previously mentioned, instead of using all OOD
test samples, we limit the number of OOD images to 300
to accommodate real-world scenarios. The KITTI test set,
on the other hand, has twice as many images, with 652. For
KITTI as in-distribution, we choose three different OOD
datasets instead of only two, namely Places [55], India Driv-
ing [47] (India) and virtual KITTI [4] (vKITTI). The three
databases cover different types of OOD data. India encom-
passes driving scenes on Indian roads, whereas vKITTI con-
sists of synthetic driving scenarios. For Places, we select 50
samples from the indoor scenes art gallery, bathroom, din-
ing room, home office, hospital room and kitchen. For India
and vKITTI, we randomly choose the 300 test samples. In
all constellations, we use the entire in-distribution test set
and the selected OOD samples of the respective OOD test
set. Finally, all images are resized to the training image res-
olution for the OOD evaluation.

Evaluation Metrics Consistent with the literature on
OOD detection for classification [37, 34, 26], we adopt
the standard OOD detection metrics. We use the area un-
der the receiver operating curve (AUROC), the area under
the precision-recall curve with in-distribution as positives
(AUPRS), as well as with OOD as positives (AUPRE) and
the false positive rate at 95% true positive rate (FPR95).

Note that all metrics are threshold-independent.

Models Compared to recent work [46, 41, 22], we do not
only evaluate on Monodepth2 [16] but also on two recently
published transformer-based models Pixelformer [1] and
MonoViT [54]. In the case of NYU, Monodepth2 and Pix-
elformer are trained in a supervised manner. While Mon-
odepth2 is trained with an image resolution of 224 × 288,
Pixelformer operates on the original image resolution of
480 × 640. In the case of KITTI, we also use Mon-
odepth2 and the recent transformer architecture MonoViT.
Both models are trained self-supervised with monocular su-
pervision and an image resolution of 192× 640.

Comparison to Related Work We compare our ap-
proach to the aleatoric uncertainty estimation approaches
post-processing (Post [15]), log-likelihood maximization
(Log [30, 39]) and BayesCap (BCap [46]). Moreover, we
also evaluate against the epistemic uncertainty estimation
approach Monte Carlo Dropout (Drop [13]). Since they all
predict pixel-wise uncertainty, we use the mean uncertainty
over the pixels as the OOD detection score, similar to [46].
Note that Post can be applied to all models without training,
while BCap is also trained post hoc. Log and Drop, on the
other hand, must be integrated into the training strategy of
the depth estimation model by modifying the training loss
function or inserting dropout layers, respectively.

Implementation Details For Monodepth2, Pixelformer,
and MonoViT, we use the code provided by [16], [1], and
[54], respectively. For the setup and training of our im-
age reconstruction decoders, we modify the architecture
of the respective depth decoder and apply the same opti-
mizer and hyperparameters. In the case of Monodepth2 and
MonoViT, we remove the Sigmoid activation function af-
ter the last convolution and change the output channels of
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Method AUROC↑ AUPRS↑ AUPRE↑ FPR95↓
Post [15] 56.42 70.22 41.22 88.33
Log [39] 77.32 87.51 64.73 68.00
BCap [46] 34.95 57.42 32.88 89.67
Drop [13] 49.50 67.15 34.77 90.67
Ours 74.84 83.50 65.14 65.33

Table 1: Evaluation of Monodepth2 trained on NYU with
Places as OOD.

Method AUROC↑ AUPRS↑ AUPRE↑ FPR95↓
Post [15] 79.12 88.46 63.38 67.67
Log [39] 40.68 61.73 26.38 97.33
BCap [46] 39.68 63.35 26.35 97.33
Drop [13] 88.13 93.10 81.99 46.00
Ours 93.18 95.62 90.88 21.67

Table 2: Evaluation of Pixelformer trained on NYU with
Places as OOD.

the last convolution from 1 to 3. Since Pixelformer phrases
depth estimation as a classification-regression task, we re-
move the Bin Center Predictor and only rely on the upsam-
pling path with the Skip Attention Modules. In addition,
we remove the Softmax activation function in the disparity
head and add a convolution that reduces the output chan-
nels to 3. For Log, the depth estimation models are trained
with the loss functions as purposed in [30, 39]. Moreover,
for Drop, dropout is applied at different decoder stages with
the dropout probability 0.2. Furthermore, the BCap models
are trained with the implementations provided by [46]. We
provide further details in the supplementary material.

4.2. Out-of-Distribution Detection Results

Results on NYU Table 1 lists the OOD detection results
for Monodepth2 trained on NYU as in-distribution data and
Places as OOD dataset. The best AUROC and AUPRS
results are obtained with Log, while our method obtains
the highest AUPR and FPR95. Since the depth estimation
model is trained with depth ground truth, Log has the ad-
vantage that it learns to estimate the actual error. Therefore,
it is a good representation of the training distribution. How-
ever, the loss function for model training must be changed
to the log-likelihood maximization loss, and thus the depth
estimation performance is influenced. Although Drop tar-
gets epistemic uncertainty, it has the worst OOD detection
performance in this experiment.

Table 2 states the results on the same dataset constella-
tion but for the recent transformer-based architecture Pix-
elformer. Here, our method obtains the best OOD detection
outcome, with FPR95, in particular, being comparatively

low for our approach, followed by Drop and Post. Com-
pared to the previous experiment with Monodepth2, Log
performs worse, while the OOD detection results of Post,
Drop, and our method are improved overall. NYU is a large
dataset with 50K images comprising different indoor envi-
ronments, which makes OOD detection challenging. Pix-
elformer has the advantage of using global attention and
significantly more model parameters, which already results
in a better depth estimation performance compared to Mon-
odepth2. The results indicate that the global attention and
larger model capacity enable Pixelformer to learn a richer
feature representation. This helps to obtain a good repre-
sentation of the in-distribution data.

Results on KITTI For KITTI as in-distribution data, the
OOD detection performance is stated separately for the
three OOD datasets Places, India, and vKITTI. The re-
sults for Monodepth2 trained on KITTI are provided in
Table 3. Overall, the OOD detection performance of the
uncertainty estimation approaches varies for the different
OOD datasets. It underscores the need to evaluate the dif-
ferent OOD datasets as separate domains rather than as a
mixture of OOD data. Our approach consistently outper-
forms all uncertainty estimation approaches in all three con-
stellations. Nevertheless, Post also achieves good results for
Places, which is the simplest setup since it does not include
traffic scenarios but indoor environments. Although Post
likewise obtains the second-best results for the other two
setups, the OOD detection performance is still significantly
worse compared to our approach. Similar to the findings
in [17], our experiments show that the epistemic uncertainty
detection approach Drop is unsuitable for OOD detection in
high-dimensional problems such as monocular depth esti-
mation. The results show that the existing uncertainty ap-
proaches are insufficient to detect OOD inputs, and a new
method, explicitly targeting OOD detection, is required.

Table 4 states the results for MonoViT trained on KITTI.
The OOD detection metrics show a similar tendency as
for Monodepth2. Again, our approach outperforms all un-
certainty estimation approaches. Post obtains the second-
best outcomes for Places and vKITTI, whereas Drop is the
second-best method in the case of India. Especially for the
FPR95 metric, a critical indication to determine a threshold
τ in practice, there is a large gap between the uncertainty
estimation approaches and our reconstruction-based OOD
detection method.

Visual Results Figure 4 illustrates test samples from
KITTI and vKITTI (first row) with corresponding abso-
lute relative error (second row), followed by the uncertainty
maps of the different approaches in the next rows and the er-
ror map of our approach (last row). It is visible that the test
sample from vKITTI is synthetic and, therefore, from a dif-
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Method AUROC↑ AUPRS↑ AUPRE↑ FPR95↓

Pl
ac

es

Post [15] 97.43 98.68 95.38 11.67
Log [30] 33.95 57.97 25.13 96.67
BCap [46] 71.68 79.43 59.86 69.67
Drop [13] 25.47 56.52 21.07 99.67
Ours 99.38 99.67 98.95 3.33

In
di

a

Post [15] 59.61 77.31 36.96 94.33
Log [30] 41.08 62.03 30.96 91.00
BCap [46] 40.85 64.42 25.61 99.00
Drop [13] 53.36 70.91 34.74 92.67
Ours 89.29 92.30 87.89 25.00

vK
IT

T
I

Post [15] 75.98 87.17 55.47 81.67
Log [30] 25.97 55.15 21.38 98.67
BCap [46] 47.93 67.64 30.40 96.00
Drop [13] 36.54 60.16 24.71 97.67
Ours 99.40 99.68 99.04 2.00

Table 3: Evaluation of Monodepth2 trained on KITTI with
Places, India and vKITTI as OOD.

Method AUROC↑ AUPRS↑ AUPRE↑ FPR95↓

Pl
ac

es

Post [15] 94.16 97.24 83.39 35.00
Log [30] 22.54 52.44 21.82 96.67
BCap [46] 52.25 69.76 31.12 99.67
Drop [13] 68.67 83.38 48.98 85.67
Ours 99.70 99.84 99.52 1.33

In
di

a

Post [15] 46.53 67.65 28.19 99.67
Log [30] 35.25 57.84 25.15 97.67
BCap [46] 51.12 69.47 30.33 100.00
Drop [13] 64.20 77.34 46.30 82.67
Ours 95.95 97.40 94.84 14.67

vK
IT

T
I

Post [15] 68.03 81.65 43.34 96.00
Log [30] 25.44 54.02 21.21 99.33
BCap [46] 56.07 72.88 33.88 100.00
Drop [13] 51.40 69.49 34.51 92.00
Ours 97.48 98.64 96.19 9.00

Table 4: Evaluation of MonoViT trained on KITTI with
Places, India and vKITTI as OOD.

ferent domain. In particular, the bus’s depth on the image’s
left side is misjudged. The bus would, therefore, not have
been detected according to the depth map. The yellow and
light red colors in the error map (Error) also emphasize this.
In contrast, the prediction error for the in-distribution test
sample is much smaller. The uncertainty maps from Post,
Log, BCap, and Drop show similar uncertainty estimates
for the in- and out-of-distribution test samples. Notably, the
OOD input’s uncertainty is similar to the estimated uncer-
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Figure 4: The first row shows test samples (RGB) from
the in-distribution dataset KITTI (left) and the OOD dataset
vKITTI (right) with corresponding absolute relative error
in the second row (Error) for MonoViT. The pixel-wise un-
certainties of the approaches Post, Log, Drop, and BCap are
shown in the following rows. The last row displays the error
map of our reconstruction-based OOD detection method.

tainty for the in-distribution image. For example, the uncer-
tainty of Drop is low for both cases, while the uncertainty of
Log is high for both inputs. Therefore, the OOD input can-
not be differentiated from in-distribution data based on un-
certainty estimates. It demonstrates that more than the un-
certainty estimation methods, regardless of the aleatoric or
epistemic approach, are needed to estimate the uncertainty
of OOD inputs. Furthermore, the uncertainty for OOD in-
puts should be high, especially for high prediction errors.
It underlines that an OOD detection method is required to
filter such inputs. The error maps of our method show a low
reconstruction error for the in-distribution image, whereas
the error for the OOD image is high. It shows that in high-
dimensional problems, such as depth estimation, image re-
construction shows astonishing performance in OOD detec-
tion. The improved performance is explainable by the de-
coder, which is trained with the depth features and captures
the different color schemes of the in-distribution data. More
precisely, it can reconstruct the contours of the OOD inputs
but not the correct color schemes. This color shift results in
a high reconstruction error, making our method a suitable
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Model Dataset Abs Rel↓ RMSE↓ δ1↑

MD KITTI 0.090 3.942 0.914
vKITTI 0.305 15.787 0.511

MV KITTI 0.079 3.466 0.934
vKITTI 0.257 14.683 0.563

Table 5: Depth estimation results for Monodepth2 (MD)
and MonViT (MV) trained on KITTI and evaluated on
KITTI and the OOD dataset vKITTI.

OOD detection approach.

4.3. Depth Estimation Results on vKITTI

Table 5 reports the depth estimation results for Mon-
odepth2 and MonoViT trained on KITTI and evaluated on
KITTI and the OOD test set vKITTI. The results are pro-
vided using the standard metrics [54, 16, 1] absolute relative
error (Abs Rel), root mean squared error (RMSE) and accu-
racy δ1 (δ < 1.25). When comparing the results, it is evi-
dent that the depth estimates in all three metrics are signif-
icantly worse. It highlights the need for detecting OOD in-
puts for robust depth estimation in real-world applications.

4.4. Ablation Studies

In this section, we evaluate the image decoder training
strategy. Instead of training the image decoder post hoc,
we ablate the OOD detection performance if the image de-
coder is optimized simultaneously with the depth estima-
tion model (Sim) or if the encoder and the image decoder
are trained from scratch as autoencoder (AE). For Mon-
odepth2 and MonoViT, we provide the depth estimation
performance of the original models (Depth) compared to
training the image decoder simultaneously with the depth
estimation model (Sim) in Table 6. The results demonstrate
that the depth estimation performance decreases if we op-
timize the image decoder with the depth estimation model.
In Table 7, the OOD detection performance averaged over
the three datasets Places, India, and vKITTI is given for
both models. The results show that the autoencoder leads
to the worst OOD detection performance. Analyzing the
reconstructed images, the autoencoder reconstructs all im-
ages well regardless of in-distribution or OOD. The pro-
posed image decoder, by contrast, only reconstructs the in-
distribution images well. This implies that the task-specific
features provided by the trained depth estimation model
help the image decoder to focus on the in-distribution data
due to the fixed and therefore constrained feature represen-
tation. The autoencoder, on the other hand, extracts general
features with the aim of reconstruction, leading to general-
ization beyond in-distribution data. Furthermore, the OOD

Model Method Abs Rel↓ RMSE↓ δ1↑

MD Depth 0.090 3.942 0.914
Sim 0.101 4.260 0.892

MV Depth 0.079 3.466 0.934
Sim 0.085 3.696 0.922

Table 6: Depth estimation results of Monodepth2 (MD) and
MonoViT (MV) trained on KITTI without the image de-
coder (Depth) or together with the image decoder (Sim).

Model Method AUROC↑ AUPRS↑ AUPRE↑ FPR95↓

MD
AE 52.17 69.13 38.62 87.33
Sim 98.57 99.32 97.07 6.78
Ours 96.02 97.22 95.29 10.11

MV
AE 35.04 57.22 28.35 94.33
Sim 94.20 95.15 93.21 14.89
Ours 97.71 98.63 96.85 8.44

Table 7: OOD evaluation of our method compared to train-
ing the image decoder together with the depth estimation
model (Sim) or using an autoencoder (AE) for Monodepth2
(MD) and MonoViT (MV). We train the models on KITTI
as in-distribution data and average the OOD detection re-
sults over the three datasets Places, India, and vKITTI.

detection results are similar when the image decoder is
trained post hoc or with the depth estimation model. While
concurrent training slightly improves the performance of
Monodepth2, it is the opposite for MonoViT. However, post
hoc training of image reconstruction has the advantage that
the performance of depth estimation is not affected by the
training of the image decoder and is thus independent of
OOD detection.

5. Conclusion
Motivated by anomaly detection, we present a sim-

ple and effective OOD detection approach for monocular
depth estimation. Starting from an already trained encoder-
decoder depth estimation model, we train an image decoder
post hoc for input reconstruction using features extracted by
the fixed depth encoder. Designing our image decoder ar-
chitecture similar to the depth decoder makes our approach
applicable to different models regardless of their model
architecture, i.e., whether they are fully convolutional or
transformer-based. Compared to existing uncertainty esti-
mation approaches, our method, which relies on the recon-
struction error as the OOD detection score, shows impres-
sive performance on the epistemic uncertainty evaluation
protocol with the benchmarks NYU Depth V2 and KITTI
as the in-distribution data and different OOD datasets.
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