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Abstract

Domain generalization (DG) attempts to learn a model
on source domains that can well generalize to unseen but
different domains. The multiple source domains are innately
different in distribution but intrinsically related to each other,
e.g., from the same label space. To achieve a generalizable
feature, most existing methods attempt to reduce the domain
discrepancy by either learning domain-invariant feature, or
additionally mining domain-specific feature. In the space of
these features, the multiple source domains are either tightly
aligned or not aligned at all, which both cannot fully take
the advantage of complementary information from multiple
domains. In order to preserve more complementary informa-
tion from multiple domains at the meantime of reducing their
domain gap, we propose that the multiple domains should
not be tightly aligned but composite together, where all do-
mains are pulled closer but still preserve their individuality
respectively. This is achieved by using instance-adaptive
classifier specified for each instance’s classification, where
the instance-adaptive classifier is slightly deviated from a
universal classifier shared by samples from all domains. This
adaptive classifier deviation allows all instances from the
same category but different domains to be dispersed around
the class center rather than squeezed tightly, leading to bet-
ter generalization for unseen domain samples. In result, the
multiple domains are harmoniously composite centered on a
universal core, like a dandelion, so this work is referred to
as DandelionNet. Experiments on multiple DG benchmarks
demonstrate that the proposed method can learn a model
with better generalization and experiments on source free
domain adaption also indicate the versatility.

1. Introduction

In recent decades, the deep learning based methods
achieves significant progress in a few fields, including object

Figure 1: The importance of the design of the proposed
method. Conventional common feature constraint DG meth-
ods may result in feature space twist as in (a). While an
ideal well generalizable feature space should make different
domains pulled closer but still preserve their individuality
respectively, i.e., slightly deviated from the universal center
(the green star) as illustrated in (b).

detection, face recognition, natural language process, etc.
These methods mostly base on independent and identically
distributed (i.i.d.) assumption. However, in real world, those
unseen samples or domains usually lie in different distribu-
tions from that of the training set. In such situation, the learnt
model would perform poorly on those unseen samples.

The technique of domain generalization (DG) aims to
deal with the fore-mentioned problem by learning a robust
model that can generalize to unseen domains. In domain
generalization, the source domains and unseen domains are
assumed to share the same categories and domain labels are
known, while the unseen domains are unavailable during
training stage.

Previous DG methods mainly do domain invariant fea-
ture learning between multiple domains with domain align-
ment constraints [46, 18, 21, 45, 41, 40, 16, 24], where the
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domain invariant features are expected to be shared among
source domains as well as unseen domains. However, these
methods only emphasize the common information between
domains, but neglect those domain specific information,
which may restrict their discriminative ability. Besides, the
domain invariant feature cannot be perfectly obtained by
just domain alignment constraint, so the domains would be
squeezed together and even twisted severely, which leads
to poor generalization on unseen samples, as shown in Fig-
ure 1. To recall more beneficial features, domain-specific
feature exploration methods as in [11, 47, 7, 42] are pro-
posed to preserve those domain specific feature by addi-
tionally disentangling it from the domain invariant feature.
These approaches obtain more informative features leading
to better performance. However, in these methods, the two
parts of features are just considered in two different man-
ners, i.e., the domain invariant features are tightly aligned as
in those domain-invariant feature learning methods, while
those domain specific features are free of any consideration
of domain commonality, which is similar with freely learning
domain specific models and may be with obvious domain dis-
crepancy. But over-introduction of domain specific features
may also lead to incorrect classification of unseen samples
especially those differing largely from the source domains.

To get a better generalizable mode that can sufficiently
exploit the complementary information among domains, in
this work, we propose a method that neither tightly aligns
the domains which would result in twisted mapping and loss
of information, nor naturally considers them separately to
preserve the favorable domain specific feature, but organizes
the multiple domains together where all domains are pulled
closer but still preserve their individuality respectively. To
ensure that all domains are composite together rather than
squeezed, each sample is classified via an instance adaptive
classifier, which is slightly deviated from the universal clas-
sifier. This adaptive classifier deviation allows all instances
of the same category but with different variations including
intra-class and domain-related ones to be dispersed around
the class centers rather than roughly squeezed together, lead-
ing to better generalization for unseen samples.

Briefly, the main contributions of this work lie in:

1. We propose a new method that integrates rather than
tightly aligns the multiple domains for domain general-
ization. Specifically, the source domains are composite
together by allowing each instance being classified by
instance-adaptive classifier. The instance-adaptive clas-
sifier is slightly deviated from the universal classifier, in
order to pull all domains closer but still preserve their
individuality respectively.

2. To prevent the learnt instance-adaptive classifier devia-
tion from being too large which has negative influence
on correct classification, the deviation norm scaling

hyper-parameter is introduced to help control the shift-
ing degree.

3. The experimental analyses verify the effectiveness of
this method. Besides, they also demonstrate that our
predicted classifier deviation keeps category semantic
and domain relation information, showing the rational-
ity of the method and results.

2. Related Works
Previous DG methods mainly exploit multiple source

domains and extract robust domain invariant features via do-
main alignment constraints [46, 18, 21, 45, 41, 40, 16, 24].
The earlier classical approach DICA [46] is motivated by a
learning-theoretic analysis that reducing cross-domain dis-
similarity improves the model generalization ability and a
kernel-based optimization algorithm is proposed to minimize
the dissimilarity across domains. But DICA simply consid-
ers marginal distribution gap without conditional distribution
shift. Therefore the method in [40] is proposed to further
take conditional distribution shift into account. Afterwards,
as the development of deep learning and adversarial training,
CIDDG [41] deploys a class-conditional adversarial network
to align the conditional distributions of source domains.

Then to further improve the model robustness for more
various inputs, augmentation based approaches are pro-
posed [51, 57, 74, 75, 67, 26, 66, 39, 48, 62, 30]. The work
in [57] generates hard adversarial examples to reinforce the
model to handle more difficult scenarios. L2A-OT [74]
maps source domain samples into pseudo-novel domains
via optimal transport divergence maximization to break the
limitation of training data diversity to some extent. Schemes
from [39, 75, 47, 7, 62, 30] regard feature mean and variance
as domain specific information and then augment domain
samples via random selection and mixture of the feature
statistics. There are also methods attempting domain spe-
cific or instance specific normalization to do individual fea-
ture mapping into shared feature space. Fourier analysis
based methods [26, 66] factorize spatial images into mul-
tiple frequency components, re-weight these components
in a random or exchange manner, and then recombine the
components to augment the initial images. Besides aug-
mentation, methods in [11, 47, 7, 42] endeavor to improve
the model generalization capability for varied domains by
preserving more domain specific task-related feature via
feature disentanglement and meta learning. Model ensem-
bling [14, 61, 9] is another way to distill knowledge from
multiple different source domains. RMOE [14] is expected
to merge knowledge from different perspectives. SWAD [9]
ensembles models from sequential iterations to skip out from
the local optima and find a better solution.

Apart from the feature invariance and specificity ex-
ploration approaches, meta learning based methods like
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Figure 2: The overview of the proposed method. Our work consists of three modules including feature extractor E, a universal
classifier C and an instance-adaptive classifier deviation predictor D. The predicted deviation is added to the universal
classifier and then a slightly deviated classifier can be used for each specific input sample. Then the obtained feature can be
composite rather than tightly aligned.

[4, 72, 38, 16, 48, 7] try to obtain better generalized models
by enhancing optimization process. Specifically, MetaReg
[4] is one of the typical meta learning based method, which
splits the training source domains into meta-train and meta-
test set and makes the model trained on meta-train to perform
well on meta-test, thus enforcing the model to generalize de-
cently to unseen domains. Meta learning based methods can
be also regarded as adding a regularization term for optimiz-
ing target, and there are also a lot of general regularization
term based methods [55, 2, 59, 50, 13, 44, 31, 52, 49]. IRM
[2] minimizes invariant risk to regularize more robust invari-
ant features for better generalization. In [52], the approach
focuses on gradient consistency constraint to ensure more
accurate common feature extraction.

As with the development of self-supervised pretraining
technique, approaches applying self-supervised training are
proposed to enhance the feature modeling ability for domain
generalization [8, 60, 6, 35, 30, 31, 70]. JIGEN [8] is an
earlier self-supervised learning DG method which designs
a novel jigsaw task for improving comprehensive feature
learning. PCL [70] is also a kind of self-supervised learning
method from contrastive learning perspective, which finds
that directly applying contrastive loss is not efficient enough
and thus replacing the original sample-to-sample relations

with proxy-to-sample relations.
Source free domain adaptation can be seen as a post-

process of domain generalization, where the pretrained
models with source domains are expected to adapt to tar-
get domains. A popular solution is using pseudo label-
ing [43, 58, 54, 68, 69] which exploit information entropy
[43, 58], uncertainty [54] or neighbor structure [68, 69] to
help more accurate pseudo label deduction. There also fea-
ture distribution alignment methods [71, 64, 17, 34] which
try to map new target domain to the learnt source domain
feature space. Method proposed in [34] improves both
the source training and target adapting process by using
an augmentation invariance constraint to ensure general-
izable feature mapping. As the self-supervised learning
shows powerful capability of modeling comprehensive fea-
tures, self-supervised training including adaptive contrastive
learning are also proposed to improve adaptation accuracy
[27, 12, 73].

3. Method
In the problem of domain generalization, a single or mul-

tiple labeled source domains are denoted as {Si}NS
i=1, where

each domain Si contains ni samples with corresponding cat-

19052



egory labels, i.e., Si = {(xsi
k , ysik )}ni

k=1. All source domains
share the same task labels, i.e., ysik ∈ {1, 2, · · · , c}. The
goal is to train a model by using samples from all source
domains, which can generalize well to unseen target domains
{Tj}NT

j=1. Here, the target domains also share the same task
labels with the source domains.

As analyzed in introduction, the model for domain gen-
eralization is expected to not only be shared by multiple
domains, but also integrate the complementary information
from multiple domains. To this end, we propose a domain
composition method that can simultaneously pull instances
of multiple domains closer but still preserve their individual-
ity. Particularly, a universal classifier is shared by samples
from all domains to carry the common information among
domains, while an instance-adaptive classifier is used to
classify each sample. Each instance-adaptive classifier is
slightly deviated from the universal classifier, and calculated
as the sum of universal classifier and a small deviation. Thus,
the instance-adaptive classifier allows the individuality (i.e.,
those complementary information) of all samples including
those domain specific ones to be preserved. As a result, all
domains are flexibly composite together rather than tightly
aligned together, inducing a robust as well as informative
model for domain generalization. The details of each module
are given below.

3.1. DandelionNet Training

The framework of the proposed DandelionNet is com-
posed of three modules, including a shared feature extractor
E, a universal classifier C and a classifier-deviation predictor
D, illustrated in Figure 2. Specifically, the feature extractor
is expected to obtain shared comprehensive representations.
The universal classifier is used as the base classifier share by
samples from all source domains. The classifier-deviation
predictor is the newly introduced module, which are used to
predict the deviation of the classifier of each instance from
the universal classifier. Based on the universal classifier and
classifier-deviation of each sample, the instance-adaptive
classifier is finally obtained, which is used to classify the
sample. The whole network is simply optimized by the
cross-entropy classification loss for all training domains.

3.1.1 Feature Extractor E

Concretely, the feature extractor E is expected to transform
instances from all domains into shared and comprehensive
feature representations, formulated as below:

fsi
k = E(xsi

k ), xsi
k ∈ Si, i = 1, 2, · · · , NS . (1)

Here, the extractor can be any types of architecture, such
as the commonly used ResNet [23].

3.1.2 Universal Classifier C

The universal classifier C is shared by samples from all
domains, which are expected to generalize well on unseen
domains. For easy adapting to each instance, the universal
classifier is designed as a fully-connected layer without bias,
parametrized as WC .

In the process of training, the classification is conducted
not directly by the universal classifier C but the adaptively
updated instance-adaptive classifier Ĉ. After training, the
universal classifier C contains shared as well as complemen-
tary favorable information, which inducing better general-
ization on unseen domains. Therefore, during testing, the
universal classifier C is used to classify the unseen samples:

p
tj
k = WC · f tj

k . (2)

3.1.3 Instance-Adaptive Classifier Csi
k

If the universal classifier is directly used to classify samples
from all domains, the samples would have to squeeze to-
gether in order to reduce the domain discrepancy. To avoid
this tight squeezing, in this work an instance-adaptive clas-
sifier Csi

k for each sample xsi
k is introduced to. Besides, to

ensure the instances from different domains but the same cat-
egory still lie closer for accurate classification, the instance-
adaptive classifier Csi

k are enforced to surround closely w.r.t.
the universal classifier. Therefore, the instance-adaptive clas-
sifier Csi

k is designed as the sum of universal classifier and a
small deviation.

Specifically, the deviation of each instance’s classifier to
the universal classifier is adaptively predicted by a predictor
D, formulated as follows:

∆si
k = D(fsi

k ). (3)

Subsequently, the parameters of instance-adaptive classi-
fier Ck

i for instance xk
i is calculated as:

Ŵ si
k = WC + r ∗∆si

k . (4)

Finally, with the adaptive classifier, the classification re-
sult of each sample is reformulated as below:

p̂sik = Ŵ si
k · fsi

k . (5)

As mentioned, the deviation is enforced to be small in
order to ensure less classification result bias. To this end,
both WC and ∆si

k are normalized with the L2Norm equals
to 1.0, and the parameter r is set small. In this work, r is set
0.1 unless specified.

To optimize the whole network including the E, C and D,
cross entropy loss of samples from all domains are used to
update the whole network in end-to-end manner. The overall
objective is written as below:
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Algorithm 1 Optimization procedure of our method.

Input: The training set including labeled source domain
training set Si, total number of training iterations
end iter, the hyper-parameter r.

Output: The trained feature extractor E and universal clas-
sifier C.

1: for i = 1 to end epoch do
2: Extract features via Equation (1).
3: Optimize instance specific classifier deviation via

Equation (3).
4: Update instance specific classifier weights according

to the learnt deviation (Equation (4)).
5: Do classification via the updated classifier (Equa-

tion (5)) and optimize by cross entropy loss (Equa-
tion (6)).

6: end for

LS = min
Ŵ

si
k ,WE

H
(
Ŵ si

k ·
(
E(xsi

k )
)
, ysik

)
= min

WD,WC ,WE
H
(
(WC + r ∗∆si

k ) ·
(
E(xsi

k )
)
, ysik

)
,

(6)
where each training sample is trained according the adjusted
specific semantic center, i.e., classifier weight, achieving
instance-adaptive feature mapping, which facilitates favor-
able information preservation and over-twist reduction.

3.1.4 Why Instance-Adaptive Classifier Allows More
Favorable Complementary Feature

Intuitively, in conventional classification methods that di-
rectly using the universal classifier with cross entropy loss
for classification of samples from all domains during training
stage, the optimal feature representation fsi

k for a sample fsi
k

tends to be close to the classifier weight as much as possible,
i.e., fsi

k → WC . This will implicitly make all samples such
as fsi

k and f
sj
l lean close to each other, leading to squeez-

ing. Whilst with instance-adaptive classifiers, the optimal
feature representation fsi

k tends to be close to the adaptive
classifier Ŵ si

k = WC + r ∗∆si
k , i.e., fsi

k → WC + r ∗∆si
k .

This equals roughly to fsi
k + r ∗ ∆si

k →→ WC . This is
roughly equivalent to that, any two samples fsi

k + r ∗∆si
k

and f
sj
l +r∗∆sj

l lean close to each other. Since ∆si
k and ∆

sj
l

are adaptively determined and different, so fsi
k and f

sj
l are

also not necessary to be close, thus avoiding over-squeezing.

3.1.5 Overall Optimization
Overally speaking, our method has three parts to opti-

mize, i.e., feature extractor E, universal classifier C and
classifier deviation predictor D parameterized by WE , WC

and WD, respectively. The training process is presented in
Algorithm 1.

Specifically, when optimizing C, the gradient is:

g(WC) =
∂LS

∂Ŵ si
k

×
∂Ŵ si

k

∂WC
.

Meanwhile, the back-propagation gradient for optimizing
D should be:

g(WD) =
∂LS

∂Ŵ si
k

×
∂Ŵ si

k

∂WD
.

Then WE is also updated by chain rule and the gradient
is written as follows:

g(WE) = g(WC)× ∂WC

∂WE
+ g(WD)× ∂WD

∂WE
.

In result, the whole model is optimized to achieve a bet-
ter generalized and adaptive classification network molding
and well organizing more favorable features. The overall
optimization process can be detailed in Algorithm 1.

3.2. DandelionNet Testing

As analyzed in previous subsection, the instance-adaptive
classifier makes the universal classifier more generalizable
on unseen domains. Moreover, we experimentally find that
the trials using universal classifier and instance-adaptive
classifier show similar accuracies on unseen domains. So, in
testing phase, feature extractor E and universal classifier C
are just exploited for simplicity, i.e., Equation (2).

Following [43], our method can be also applicable for
source-free domain adaption via direct finetuning. Specif-
ically, the universal classifier C and feature extractor E
obtained from Equation (6) are further finetuned by using
the unlabeled target domain data, with entropy minimization
and information maximization loss as in [32, 53, 25, 43].

4. Experiments
To verify the effectivity of the proposed method, extensive

comparisons and experimental analysis are conducted on
domain generalization benchmarks. Furthermore, to verify
the versatility of the proposed method to other tasks, the
proposed method are also evaluated on source free domain
adaptation benchmarks.

4.1. Evaluation on Domain Generalization

Following [22], we evaluate our method compared with
others on various benchmarks for domain generalization:
PACS [37] (9,991 images, 7 classes, and 4 domains), VLCS
[19] (10,729 images, 5 classes, and 4 domains), OfficeHome
[56] (15,588 images, 65 classes, and 4 domains), TerraIncog-
nita [5] (24,788 images, 10 classes, and 4 domains), and
DomainNet [63] (586,575 images, 345 classes, and 6 do-
mains). For a fair comparison, the training and evaluation
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Table 1: Comparison with domain generalization methods (ResNet-50) in terms of out-of-domain accuracies on five domain
generalization benchmarks. Best and second best accuracies are higlighted with bold and underline.

Method PACS VLCS OfficeHome TerraInc DomainNet Avg
ERM [55] 84.2 77.3 67.6 47.8 44.0 64.2
IRM[2] 83.5 78.6 64.3 47.6 33.9 61.6
GroupDRO [50] 84.4 76.7 66.0 43.2 33.3 60.7
DANN [20] 83.7 78.6 65.9 46.7 38.3 62.6
CDANN [40] 82.6 77.5 65.7 45.8 38.3 62.0
VREx [13] 84.9 78.3 66.4 46.4 33.6 61.9
RSC [28] 85.2 77.1 65.5 46.6 38.9 62.7
Mixstyle [75] 85.2 77.9 60.4 44.0 34.0 60.3
I-Mixup[65] 84.6 77.4 68.1 47.9 39.2 63.4
MLDG [36] 84.9 77.2 66.8 47.8 41.2 63.6
mDISI [7] 86.2 79.0 69.2 48.1 42.8 65.1
SWAD[9] 88.1 79.1 70.6 50.0 46.5 66.9
MIRO [10] 85.4 79.0 70.5 50.4 46.0 66.5
PCL [70] 88.7 - 71.6 52.1 47.7 -
EoA [3] 88.6 79.1 72.5 52.3 47.4 68.0
Ours (r=0.1) 89.2 81.6 70.4 54.5 48.1 68.8
Ours (r=0.1)+SWAD 88.6 79.6 73.2 51.6 49.0 68.4

Table 2: Comparison on source free domain adaptation benchmarks Office-Home and DomainNet (ResNet50). Best and
second best accuracies are higlighted with bold and underline.

Method w/o domain labels DomainNet OfficeHome
→ C → I → P → Q → R → S Avg → Ar → Cl → Pr → Rw Avg

SHOT [43] % 58.6 25.2 55.3 15.3 70.5 52.4 46.2 72.2 59.3 82.8 82.9 74.3
DECISION [1] % 61.5 21.6 54.6 18.9 67.5 51.0 45.9 74.5 59.4 84.4 83.6 75.5
NRC [69] " 65.8 24.1 56.0 16.0 69.2 53.4 47.4 70.6 60.0 84.6 83.5 74.7
BDT [34]+NRC " 75.4 24.6 57.8 23.6 65.8 58.5 51.0 72.6 67.4 85.9 83.6 77.4
CSS [33] " 70.3 25.7 57.3 17.1 69.9 57.1 49.6 75.1 64.1 86.6 84.4 77.6
Ours " 71.1 27.0 60.0 25.6 69.6 60.7 52.3 73.1 69.9 87.1 85.6 78.9

protocol including the dataset splits in [22] are used for
all methods. In all comparison with existing methods, our
method exploits the ResNet-50 network as the backbone of
feature extractor E and the hyper-parameter r is set as 0.1.
Our method is trained with 15,000 iterations on Domain-
Net and trained with 5,000 iterations on other datasets. All
models are optimized by using Adam optimizer with initial
learning rate 5∗10−5. The implementation is modified based
on DomainBed [22] and fixed random seeds are used in all
experiments for easier reproduction.

We report out-of-domain accuracies and their averages.
As seen in Table 1, compared with the typical regulariza-
tion based methods ERM [55], IRM [2], GroupDRO [50]
and VREx [13], adversarial based domain invariant feature
methods DANN [20] and CDANN [40] achieve better perfor-
mance. Approaches leveraging mixup like [75, 65] endeavor
to diversify training samples and thus improves the accu-
racy of complicated scenarios. However, these methods only

focus on domain invariant feature even if with more compli-
cated data augmentation. The domain specific feature mining
method [7] achieves further improvement benefitted from the
additional domain specific information. Compared to these
existing methods, our method with the hyper-parameter r
simply set as 0.1 outperforms the best method EoA [3] with
an improvement of 0.8% on average of five datasets. Espe-
cially, on VLCS and TerraIncognita datasets, our method
outperforms EoA [3] with an improvement of about 2%,
which clearly demonstrates the superiority of our method.
Considering that the domain discrepancy is different in dif-
ferent dataset, r can be actually set differently on dataset, so
if r is tuned more finely as the best value specified for each
sub-dataset and even each class, our method can achieves
better performance. Besides, sensitivity of r is analyzed in
the following analysis section.

SWAD [9] is a recently proposed pluggable model-
assembling method which can be easily combined with other
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Table 3: Hyper-parameter analysis on r for domain generalization. Best and second best accuracies are higlighted with bold
and underline. Besides, the best choice of hyper-parameter is marked with yellow.

Method PACS VLCS OfficeHome TerraInc DomainNet Avg
Ours(r=0.5) 86.4 79.5 66.2 50.4 48.0 66.1
Ours(r=0.2) 88.3 80.7 69.0 52.9 48.0 67.8
Ours(r=0.1) 89.2 81.6 70.4 54.5 48.1 68.8
Ours(r=0.05) 88.3 81.6 70.5 54.7 47.9 68.6
Ours(r=0.01) 88.2 79.5 70.5 54.4 47.8 68.1

works. So, we also investigate to combine our method with
SWAD method. As can be seen in Table 1, our method de-
grades when combining with SWAD on PACS, VLCS and
TerraIncognita, which may be due to the smaller number of
categories, while on Office-Home and DomainNet, SWAD
further improves the accuracy of our method.

4.2. Evaluation on Source Free Domain Adaptation

Following SHOT [43], we conduct multi-source free do-
main adaptation experiments on OfficeHome [56] and Do-
mainNet [63], to investigate the generalization ability of the
learnt model for easier domain adaptation. For a fair compar-
ison, following the same protocol in SHOT [43], all methods
are firstly pretrained on multiple source domains, then are
finetuned on training split of target domain, and final are
tested on the testing split. The backbone of all methods is
ResNet-50, and the hyper-parameter r of our method is also
simply set as 0.1. The pretrained models of all methods are
trained with 15,000 iterations on DomainNet and trained
with 5,000 iterations on other ones. They are finetuned on
target domain with 5,000 iterations on DomainNet and 1,000
iterations on others. All the pretraining as well as finetuning
process are optimized by Adam with learning rate 5 ∗ 10−5.

As shown in Table 2, our method achieves the best aver-
age performance via simple finetuning with entropy loss and
information maximization loss, indicating that the pretrain-
ing model from our DandelionNet has better generalization
which can be easily adapted to distinct target domains. More-
over, same as [69, 34, 33], our work does not need domain
labels, which is flexible for real-world application.

4.3. Experimental Analysis

In the following, we investigate the visualization of ob-
tained feature, performance improvement under different
domain discrepancy, and sensitivity to the hyper-parameter
r, to deeply analyze how our method works.

Visualization of learnt feature and deviation We firstly
show the optimized features from our method to see how
the multiple domains distribute in learnt feature space. For
clearer presentation, RotatedMNIST [15, 29] is used, where
the domain shift simply corresponds to the image rotation an-

Figure 3: Visualization of learnt deviation in RotatedMNIST
dataset. Different colors stand for different domains includ-
ing target domain 15◦ (in blue). Best viewed in color.

Figure 4: Visualization of learnt latent feature in RotatedM-
NIST dataset. Different colors stand for different domains
including target domain 15◦ (in blue) and different shapes
are for different classes. Best viewed in color.
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Figure 5: Classification accuracies of ERM and our method
on distinct unseen domains with different domain discrep-
ancy with training source domains.

gle, i.e., consisting of 6 domains corresponding to different
angles 15◦, 30◦, 45◦, 60◦, 75◦, 90◦. Taking an example that
30◦, 45◦, 60◦, 75◦, 90◦ are used as source domains, while
15◦ is used as the unseen target domain. The learned devi-
ation and feature of the source as well as the unseen target
domains are visualized via TSNE in Figure 3 and 4. It can be
clearly seen that the multiple domains including the unseen
domain (in blue color) are pulled close but still with their in-
dividuality. Besides, the learnt deviation also shows domain
composition centered on the category center, indicating that
feature and our deviation are optimized as expected.

Performance improvement on domains with large dis-
crepancy. In the available benchmarks, there are several
domains with large gap which are quite challenging, such as
Cartoon in PACS, Sketch in PACS and DomainNet, Clipart
in Office-Home and DomainNet, as well as Quickdraw in
DomainNet are quite different from the rest domains. Their
appearance differs from the other domains which are mostly
collected from real world photos or realistic art pictures. Our
method is evaluated on PACS for an example to show how
our method and the conventional baseline ERM perform. As
seen, when the optimized model generalize to the Art and
Photo which are visually similar to the source domains, both
ERM and our method performs similarly on average. But
when generalizing to Cartoon and Sketch which are quite
different from the source domains, our method performs
much better, even with improvement around 9%, convinc-
ingly indicating that our model contains more favorable and
accurate information for better generalization.

Hyper-parameter sensitivity. The only hyper-parameter
of our method is the deviation scaling parameter r. The
effect of r, i.e., the ratio of norm of delta and classifier
weight in Equation (3) is shown in Table 3 on the five do-
main generalization benchmarks in terms of average accu-

Figure 6: Accuracies with different deviation scaling hyper-
parameter r on painting and quickdraw from DomainNet.

racies of multiple unseen domains. As can be seen, smaller
hyper-parameter r within certain scope is favorable, e.g.,
our method with r <= 0.1 performs better than that with
r > 0.1, which is also consistent with our motivation. More-
over, we show the detailed performance changing trend in
Figure 6 on distinct unseen domains w.r.t. different r on
painting and quickdraw in DomainNet dataset. As can be
seen, when the unseen domain has large discrepancy with
source domains (e.g., quickdraw), larger r performs better.
While when the unseen domain has smaller discrepancy with
source domains (e.g., painting), smaller r performs better.

5. Conclusion and future work

Aiming for better domain generalization, this work pro-
poses a new perspective that the multiple source domains
should be composite rather than tightly aligned. Specifically,
a novel method called DandelionNet is proposed, which in-
troduces an instance-adaptive classifier specified for distinct
sample. The instance-adaptive classifier is slightly deviated
from a universal classifier, thus allowing samples from the
same category but different domains to be dispersed around
the class center rather than squeezed together. As a result,
the multiple domains can be harmoniously composite, orga-
nized like petals of dandelions. Thus, the obtained model
can be more powerful for better domain generalization.

In future, we will explore more elaborate methods to
get better adaptive deviation to achieve more flexible and
exhaustive feature excavation for better generalization on
unseen domains.
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