
Federated Learning Over Images:
Vertical Decompositions and Pre-Trained Backbones Are Difficult to Beat

Erdong Hu1, Yuxin Tang1, Anastasios Kyrillidis, Chris Jermaine
Rice University

{eh51, yuxin.tang, anastasios, cmj4}@rice.edu

Abstract

We carefully evaluate a number of algorithms for learn-
ing in a federated environment, and test their utility for a
variety of image classification tasks. We consider many
issues that have not been adequately considered before:
whether learning over data sets that do not have diverse sets
of images affects the results; whether to use a pre-trained
feature extraction “backbone”; how to evaluate learner
performance (we argue that classification accuracy is not
enough), among others. Overall, across a wide variety of
settings, we find that vertically decomposing a neural net-
work seems to give the best results, and outperforms more
standard reconciliation-used methods.

1. Introduction

There has been a recent influx of work aimed at devel-
oping and evaluating new algorithms for Federated Learn-
ing (FL) [2, 6, 20, 29], particularly for image classifica-
tion [3, 14, 18, 27, 28, 31, 35, 50, 53]. Most papers are pri-
marily concerned with the development of innovative al-
gorithms, and less concerned with the design of appropri-
ate benchmarks and especially, appropriate baselines to test
against. This paper, in contrast, is concerned with bench-
marking: Which existing methods for FL work best, and
under what conditions do they work, or not work? As such,
our primary contribution is a set of carefully-designed ex-
periments, rather than the introduction of a new FL algo-
rithm. Our benchmarks are designed to address the follow-
ing concerns regarding the design of FL benchmarks and
baselines.

(1) Learning algorithms are typically evaluated on a few di-
verse data sets, rather than a large variety of more focused
data sets. The most common benchmark for evaluating fed-
erated image classification is CIFAR-100 [25]. This dataset
includes whales, chairs, dinosaurs, and so on. This is a very

1Equal contribution.

diverse set of classes, and we are concerned that few FL
tasks will involve differentiating dinosaurs from rabbits.

For example, imagine that the members of a bird watch-
ing club taking pictures with their smartphones; club mem-
bers label the pictures with the bird species, and FL is used
to build a classifier. Or, a set of companies who are typi-
cally competitors—and hence cannot exchange data—want
to work together to classify pictures of industrial drill bits
based on whether they are going to fail. Both of these
deployments involve narrow domains, and the classifica-
tion problems involve fine-grained differentiation [13, 48]
among members of a narrow category. True, not all appli-
cations of FL will be narrow, but they are likely to be far
narrower than classifying whales versus chairs. We argue
that, while evaluating on a broad data set—such as CIFAR-
100—is useful, it is also necessary to evaluate FL algo-
rithms on a variety of more narrow data sets.

(2) Most evaluations focus on final accuracy or the number
of communication rounds required for convergence. FL al-
gorithms are often evaluated by reporting final accuracies
(after convergence), or by plotting test accuracy as a func-
tion of the number of epochs, or the number of communi-
cation rounds. However, final accuracy, at least in isolation,
is not really a useful metric. After all, the simplest “FL” al-
gorithm is classical, data parallel learning [33, 41, 52]. That
is, run distributed gradient descent; compute gradients lo-
cally over mini-batches in a fully synchronous way, then do
an all-reduce. As this is functionally equivalent to central-
ized learning, it is invariant to data distribution, and is likely
to be the most accurate method in terms of final accuracy.
However, it is inefficient in a federated environment.

Likewise, considering accuracy as a function of commu-
nication rounds ignores the computation or communication
cost of each round. Communication and computation costs
can vary across methods, and are typically far more impor-
tant than the number of rounds. A method that can quickly
achieve high accuracy with a relatively large number of very
inexpensive communication rounds—where a small frac-
tion of the model is communicated at each round—is proba-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

19385

bly preferred to one that uses few rounds, but must transmit
a huge amount of data. Similarly, for computation, given
similar accuracies, an algorithm that performs one forward
and one backward gradient descent pass is preferred over
one that performs two additional forward passes, as extra
overhead [28], even though both operate in the same num-
ber of communication rounds.

(3) Pre-trained feature extractors need to be a standard
baseline. Training the feature-extraction backbone that is
used in most deep image processing networks—that is, the
series of convolutional and pooling layers and without the
final classification layer—is not easy. It is difficult to get
the training process right, and training a good backbone re-
quires a lot of computation.

Researchers have recently suggested using pre-trained
backbones, especially for few-shot training [7, 16]. In a
pre-trained backbone, a pre-trained feature extractor such
as a convolutional neural network (CNN) [15, 19, 39] or vi-
sion transformer [10] is used without modification to em-
bed an image in a high-dimensional space. Learning is then
performed on the resulting vectors, and not on the original
images. The goal is to leverage an existing, well-trained
model on the new learning problem. Given the resource
constraints in many FL scenarios, it is unclear why attempt-
ing to fully train such a backbone from scratch in a federated
environment would be the first approach. Instead, we sug-
gest simply taking a standard, pre-trained backbone (such as
a ResNet [15], or a DenseNet [19], or both used together)
and directly using that backbone as a feature extractor, with-
out training.

The benefit is that each training image only needs to be
pushed through the backbone one time to obtain a compact
set of features, and then that set can be used during train-
ing. As the backbone need not to be communicated or re-
peatedly used to process the input images, both CPU/GPU
cycles and communication are saved during federated train-
ing. Furthermore, final accuracies might actually be better,
as this approach sidesteps the difficulty of training the back-
bone.

(4) Off-the-shelf performance is really what matters, but it
is often neglected in research studies. In a centralized en-
vironment, it is feasible to train and re-train many times, as
various parameters (learning rate, proximal weight, exact
neural architecture, etc.) are tuned. In FL, this is much less
feasible. Most FL scenarios imagine a resource-constrained
environment (possibly involving edge devices), where one
cannot ignore the cost of tuning. FL is typically happening
on someone else’s hardware, and so running an algorithm
many times during parameter tuning is likely to make par-
ticipation in training far less palatable.

Further, application-specific tuning may simply be im-
possible. A device may enter the federated training and then

drop out shortly after, never to be seen again. One cannot
access a missing device’s data to perform validation, and
clearly, one cannot retrain over data that cannot be accessed.

As such, we argue that “off-the-shelf” performance is
more important than in centralized learning. That is, it be-
comes important to settle on one set of universal parameters
that tend to work in most deployments, such that the learn-
ing algorithm can be universally deployed without further
tuning. At the very least, this is an important use case that
should be covered in most experiments.

Our Contributions. Our contributions are as follows.

• We suggest several rules-of-thumb governing benchmark
and baseline development for FL over images, and use
those rules to devise an extensive FL image classification
benchmark, and use that benchmark.

• We show that using pre-trained features and other model
reduction tools are necessary for practical FL.

• We highlight some surprising behaviors of current FL al-
gorithms, including the effect of client population size,
that to our knowledge are not sufficiently explored in cur-
rent literature.

• Our source code is publicly available at
https://github.com/huerdong/
FedVert-Experiments

2. Background
The common setting for FL is the following: There are

total N devices participating in the optimization. To protect
data privacy (or due to communication constraints), devices
are not allowed to share local data samples to others. Each
device has its own local objective function fi parameterized
by its own model wi. The coefficient pi = ni/n is the
number of data samples ni on each device, divided by the
unified total data sample n =

∑N
i=1 ni. There will be a

central server that collects all the parameters wi uploaded
by each device and aggregate them into a single model w.

The common formulation of FL is to optimize a global
optimization function L(w):

min
w

L(w) =

N∑
i=1

piL(wi; {xloc, yloc}), (1)

where L(wi; {xloc, yloc}) represents the local objective for
device i, based on local data {xloc, yloc}. The natural algo-
rithm that arises from this objective is FedAvg [37] which
directly applies stochastic gradient descent (SGD) to learn
wi’s. In the most basic case, where FedAvg performs only
one local gradient step, the above formulation becomes
equivalent to data parallel SGD [33, 41, 52].

In real-world applications of FL, local data distributions
are often skewed towards specific classes: i.e., the natural

19386

https://github.com/huerdong/FedVert-Experiments
https://github.com/huerdong/FedVert-Experiments

distribution of real data can be very skewed, with certain
classes only existing in a very small segment of clients’ de-
vices. In these heavily non-i.i.d. scenarios, the learned wi

in Eq. (1) can diverge in drastically different directions and,
in the most extreme cases, diverge in opposite directions.
When FL is performed in this scenario, the averaging can
result in a model drastically different from any of the client
models and has degraded performance as a consequence; a
phenomenon often called client drift [54]. It is this con-
cern that has motivated the development of a number of FL
methods beyond FedAvg [21,28,30,43], a few of which will
be described in the next section.

3. Federated Learning Methods Tested
3.1. The Methods

In our experiments, we consider the following FL meth-
ods, chosen as a representative set of the state-of-the-art.

FedAvg. Federated averaging [37] is the most simple av-
eraging algorithm and is the basis of the others, whereby
client models are trained locally by (stochastic) gradient de-
scent. These local models are aggregated by directly aver-
aging their weights, or equivalently averaging their com-
puted gradients using this averaged gradient for one global
round of gradient descent.

FedProx. FedProx [30] is a modification on FedAvg that
introduces an additional ℓ2-norm term to the local loss func-
tion, that takes the difference between the previously com-
municated global model and the current model. The aim is
to avoid client drift by biasing the training towards an estab-
lished model. Again, the clients then compute local models
whose weights are averaged. Given the model weights w0

from the previous communication round, the FedProx mod-
ification to the FedAvg objective is:

min
wi

{
L(wi; {xloc, yloc}) + µ

2 ∥wi − w0∥22
}
, i ∈ [N]

where µ is a regularization parameter.

MOON. MOON (Model-Contrastive) [28] uses a similar
principle as FedProx by comparing the current model with
the previous model. However, it utilizes a cross-entropy
loss, rather than ℓ2-norm loss, as in:

min
wi

{
L(wi; {xloc, yloc})− µ log e

sim(z,zglob)/τ

e
sim(z,zglob)/τ+esim(z,zprev)/τ

}
where sim() is the cosine similarity function, and
z, zglob, zprev are representations of the data generated by
the respective model (respectively: learned, current global,
previous local). τ is a temperature hyperparameter.

FedAdam. While the above algorithms modify the local
training process of FedAvg, FedAdam [40] modifies the ag-
gregation step. Once the averaged weights are computed

via local gradient descent and their average is computed, it
is used to compute a global gradient surrogate to be used in
the Adam algorithm [22].

FedNova. FedNova [43] introduces a client gradient re-
weighting scheme when accumulating the models parame-
ters/gradients and generalizes FedAvg and FedProx as spe-
cific parameterizations. However, we use the specific for-
mulation specified in [43], where these weights are nor-
malizations of the local gradients.

IST. We consider the previous set of learning algorithms
to be “reconciliation-used”; in that, they attempt to train
a copy of the model at each site. In contrast, IST, or in-
dependent subnet training [51] does not utilize averaging
or some other method to try to reconcile versions of the
model trained at the various site. Instead, IST decomposes
the model and sends non-overlapping parts of the model to
different sites. In one training round, all neurons (or ac-
tivations) in a neural network are randomly partitioned to
the active sites. A weight is only sent to a site if it con-
nects two neurons that have been assigned to the site. Thus,
each site is assigned only a very small subnetwork, which
is trained locally for a number of gradient descent steps. At
the end of local training, the updated weights are shuffled
(with or without the aid of a central server) and the process
is repeated. Since subnetworks are independent, there is no
averaging or other form of reconciliation needed. There are
many variants of this approach in the literature, including
FjORD [17], HeteroFL [9], LotteryFL [26], FedSelect [4],
FedRolex [1], Federated Dropout [5], PVT [47], and the
independent subnetwork training approach in the non-FL
setting [11, 32, 44, 45, 51]. It is this latter version of the ap-
proach (for MLPs) that we apply here.

ISTProx. This is IST, but with a proximal term added to
the loss function.

3.2. Analytic Comparison

The focus of our experiments will be on comparing each
of the methods based on their ability to produce high test
accuracy with a low cost. In the paper, we will define cost
in terms of floating point operations (FLOPs) required to
reach a given accuracy, and in terms of floating point num-
bers transferred. As such, we begin by considering the num-
ber of FLOPS required and the floating point numbers that
must be transferred to complete one gradient descent step
for each of the methods.

In our analysis, we assume that we are using a pre-
trained backbone to transform each input image into a vec-
tor, and we are learning a MLP with two weight matrices.
The MLP accepts an n1-dimensional input. It has a hid-
den layer of n2 neurons, and has n3 outputs. Assume a
batch size of b at each of s sites. Since each image only
goes through the pre-trained backbone once, the FLOP cost

19387

of the pre-trained backbone is negligible when amortized
over many gradient descent steps. We will consider only
the FLOPs associated with the weights, as the cost associ-
ated with updating weights dominates the cost associated
with the activation layers.

Begin with FedAvg. In this case, to push a batch through,
we have approximately 2b(n1n2 + n2n3) FLOPs for the
forward pass and approximately 2b(n1n2 + 2n2n3) for the
backward pass, for a total of 4n1n2b + 6n2n3b FLOPs at
each site. Coordination requires 2s(n1n2 + n2n3) floating
point numbers be sent (the model needs to be distributed to
all sites, and then the updated model needs to be collected
from all sites). The number of FLOPs incurred during aver-
aging is typically not significant, as we are simply average
s copies of the two weight matrices, having n1n2 and n2n3

floating point numbers each, and this may be done using a
distributed algorithm.

Adding a proximal term in the case of FedProx may have
little effect, as this changes the backward pass at each site
by adding FLOP computations that scales linearly with the
weight matrices, but does not scale with the batch size b.
Thus, for any reasonable batch size, it is insignificant. If
multiple gradient update steps are performed at each site, it
also requires storing an older copy of the weight matrices at
each site.

FedAdam is a federated version of the Adam algorithm
and as such, it requires storing four additional matrices—
typically at a coordinator—two of which are associated with
each of the MLP’s weight matrices. It must approximate the
gradient and run the Adam algorithm at the coordinator dur-
ing each update. However, this does not affect the memory,
computation, or communication requirements at each site,
and so any differences may not be of practical importance.

FedNova requires a normalization step at each site dur-
ing the local gradient computation, but this only requires
multiplying each gradient by a scalar, which is likely in-
significant and so it is also, for practical purposes, compu-
tationally no more expensive than FedAvg. MOON is more
expensive than FedAvg in terms of FLOPs, as it needs to
compute multiple representations of each training iteration.
The obvious MOON implementation will require 4bn1n2

additional FLOPs compared to FedAvg at each site. In
addition, MOON needs to locally maintain two additional
copies of the weight matrices.

Next, consider IST. At each site, n2 is effectively cut by
a fraction s, because the neurons in the hidden later is parti-
tioned s ways and only the weights associated with neurons
assigned to a site are actually sent or used there. Hence, the
total number of FLOPs is (4n1n2b+ 6n2n3b)/s, and coor-
dination requires that only 2(n1n2 + n2n3) floating point
numbers be sent and received; each weight is assigned to
exactly one site. There are no FLOPs associated with co-
ordination, as there is no averaging done; weights are sim-

ply updated and sent around. Due to the partitioning, the
memory usage at each site is on average smaller than that of
FedAvg by a factor of s. Like FedAvg, adding a proximal
term has little effect on either FLOPs or bytes transferred.

4. Experimental Setup
4.1. Pre-Trained Backbones

All of the methods we tested (except for one baseline)
utilize pre-trained backbones. That is, we take a pre-trained
feature image classifiers: ResNet101 [15] and DenseNet121
[19], and remove the classification layers to produce two
“backbones.” When processing an image, we simply con-
catenate the feature vectors produced by the two backbones
to produce a 3072 dimensional vector. We also evaluate
FedProx, but without a pre-trained backbone. This version
of FedProx (called “FedFull”) uses a ResNet18 instead of a
single-hidden layer MLP.

4.2. Data Sets and Hyperparameters

Overall, we conduct experiments on a diverse and broad
range of image classification data sets: (1) CUB-200-2011
(Birds) [42], (2) Stanford Cars (Cars) [23], (3) VGGFlow-
ers (Flwrs) [38], (4) Aircraft (Aircrft) [36], (5) Describable
Textures (Textre) [8], and (6) CIFAR 100 (CFAR) [24]. The
only processing we apply on these data sets, besides using
the pre-trained feature extractors, is the standard cropping
and resizing of image data. For the Aircrft data set, there are
multiple levels of specificity of labels - manufacturer, fam-
ily, variant - we chose variant for the finest-grained classes.

We use the Birds data set to tune the methods. After ex-
tensive experimentation on Birds, we chose a learning rate
of 0.01, as we found this to give stable convergence in all
algorithms, except FedAdam, where we choose a learning
rate of 0.03. For all algorithms except for IST, ISTProx, and
FedFull, tuning led us to a single-hidden-layer, multi-layer
perceptron (MLP) with 1,000 hidden neurons sitting on top
of the feature extractor. FedFull was trained with its “out of
the box” configuration. For IST and ISTProx, we find scal-
ing the hidden neurons based on the number of concurrent
training sites made sense (3000 neurons for ten sites, 6000
for 20, 9000 for 30, 18000 for 60, and so on). This ensures
that the client models are not too small.

A number of other hyperparameters were also optimized
using the Birds data set. For the various hyperparameters
in each algorithm, we applied a grid search on a set list of
parameter values, as described in the next subsection. We
consider the number of local iterations of stochastic gradi-
ent descent as a hyperparameter with either 1, 5, or 25 local
training batches, before a communication round. We use a
batch size of 32 images. For FedProx, FedNova, and IST-
Prox, we tuned the additional proximal hyperparameter µ.
For MOON, we have a similar weight parameter µ (the co-

19388

(a) Final accuracies
Birds Cars Flwrs Aircrft Textre CFAR

FedAvg 73.5 66.7 95.9 48.8 74.3 76.7
FedProx 74.0 65.7 95.8 48.9 74.7 75.1
MOON 74.3 66.0 95.6 48.9 74.6 75.3

FedAdam 67.6 51.1 92.4 41.9 72.8 70.1
FedNova 73.3 66.8 95.6 49.0 74.7 74.7
FedFull 5.2 2.8 35.1 5.4 40.3 7.8

IST 74.6 67.8 96.4 50.6 74.6 76.2
ISTProx 74.8 66.8 96.5 50.4 74.7 76.1

(b) Communication (GB) to threshold acc.
Birds Cars Flwrs Aircrft Textre CFAR

FedAvg 9 6 4 13 3 10
FedProx 13 FAIL 6 21 5 15
MOON 13 43 6 21 4 16

FedAdam 8 FAIL 2 FAIL 1 7
FedNova 57 138 17 84 12 68
FedFull FAIL FAIL FAIL FAIL FAIL FAIL

IST 3 288 1 3 1 3
ISTProx 3 FAIL 2 3 1 3

(c) GFLOPs to threshold acc.
Birds Cars Flwrs Aircrft Textre CFAR

FedAvg 904 642 445 1334 275 979
FedProx 53 FAIL 23 86 18 62
MOON 110 FAIL 46 178 34 121

FedAdam FAIL FAIL 170 FAIL 152 750
FedNova 1140 2768 333 1680 232 1355
FedFull FAIL FAIL FAIL FAIL FAIL FAIL

IST 11 1152 6 14 3 12
ISTProx 11 FAIL 6 14 3 13

Table 1: i.i.d. results, 100 sites, 10% participation.

efficient of the contrastive term) and τ , the temperature of
the contrastive term. FedAdam has a central learning rate
as well, which we set to 0.01. Exact values for all of our
hyperparameters are given in the appendix. We stress that,
while we performed careful tuning on the Birds data set, all
hyperparameters were re-used blindly and without modifi-
cation, on all other data sets.

4.3. Evaluation Metrics

Choosing an evaluation metric is among the most diffi-
cult aspects of evaluating FL methods, but does not seem
to have received much attention in the literature. Most pa-
pers focus on final accuracy: What is the accuracy that a
FL method exhibits on a test set after training? Unfor-
tunately, final accuracy as a metric makes little sense in
isolation from other considerations. After all, the method
that likely gives the very best final accuracy is simple dis-

Figure 1: Accuracy as a function of time for FedProx and
FedFull on the Stanford Cars data set.

tributed mini-batch training, where each site computes gra-
dients over a small subset of its local data; those gradients
are summed and a central site updates the model. This is
algorithmically equivalent to centralized training, but it is
typically not tested, because it is generally assumed that the
convergence would be too “slow,” for some implicit defini-
tion of “slow.” Thus, a more carefully-defined evaluation
framework (beyond simple accuracy) is needed.

Hence, we consider three metrics: final accuracy, com-
putational efficiency, and communication efficiency [34,46].
Of the three, we assert that final accuracy should be consid-
ered the least important; it is most useful as a way to con-
textualize the other two metrics (e.g., “what final accuracy
can I achieve in G gigaFLOPs of computation?”).

4.4. Tuning and Evaluation

For a given method, using the Birds data set, we first
perform a grid search over the various hyperparameters,
and for each hyperparameter set, we run the method for a
“long time,” where a “long time” allows a maximum of 1014

floating point operations (or 100 teraFLOPs, where floating
point operations are summed across all devices participat-
ing in federated training) and five terabytes of data commu-
nicated (assuming single-precision floating point computa-
tions). Note that 100 teraFLOPs corresponds to around 14
hours of CPU time on a single mobile phone, or perhaps
several hundred hours of processor time on a limited IoT
device. Once a method exceeds 100 teraFLOPs or five ter-
abytes of communication, we take its very best observed test
accuracy, averaged over ten communication rounds. The
best average observed over all hyperparameter settings is
taken as the method’s “final accuracy”.

Once we have the method’s final accuracy, we then per-
form a grid search over all hyperparameters to find the two
sets of parameter settings for the method that (a) minimize
the number of FLOPs to reach 90% of the final accuracy,
and (b) minimize the number of GB of communication nec-
essary to reach 90% of the final accuracy. Now we have

19389

(a) i.i.d., Cars, one round accuracy. (b) Skewed, Cars, one round accuracy. (c) Skewed, Cars, 20 rounds accuracy.

(d) i.i.d., Flowers, one round accuracy. (e) Skewed, Flowers, one round accuracy. (f) Skewed, Flowers, 20 rounds accuracy.

Figure 2: Comparison of similarity of the FL descent direction to a centrally-computed descent direction. One means the
directions are identical; 0 represents de-correlation. At left is i.i.d. data; center is skewed data, similarity computed over one
descent step; right is skewed data, similarity computed over 20 descent steps.

three sets of hyperparameters: one optimized for accuracy,
one for gigaFLOPs, and one for communication. The rea-
son that we use three sets of hyperparameters is that the
goals of maximizing accuracy, minimizing FLOPs and min-
imizing communication are often in direct opposition to one
another, and these resources can often be traded (e.g., more
local iterations and FLOPs for less communication).

Next, we consider each data set in sequence. We first run
each method to 100 teraFLOPs or five terabytes of com-
munication on the data set, using the accuracy-optimized
parameters. We then compute the maximum accuracy that
any method obtained on the data set, and set 90% of this
accuracy as a target. Then, for each method and each data
set, we compute two additional numbers: the number of
gigaFLOPs required to reach the target accuracy for five
consecutive rounds (using the FLOP-optimized settings),
and the number of gigabytes of communication required
to reach the target accuracy (using the communication-
optimized settings). If a method is unable to reach the target
accuracy within the 100 teraFLOPs/five terabytes limit, it is
said to have failed (indicated as FAIL in tables).

We estimate the amount of FLOPs used during training
using the FlopCountAnalysis tool in the Python fvcore [12].
Similarly, for our communication costs we estimate the size
of a model in bytes with the Python torchinfo [49] package.

The reason for this evaluation strategy is simple. In prac-
tice, the preferred FL method is likely to be the one that

reaches a high level of accuracy with little cost. Hence, we
(somewhat arbitrarily, but precisely) define “high level of
accuracy” as 90% of the peak accuracy observed over all
methods for a given data set. Given this target, evaluation
is then a matter of counting floating point operations and
bytes to reach that target.

Note that other metrics are possible: power usage and
elapsed wall clock time are two of the most obvious. How-
ever, both of these will be closely related to FLOPs and
communication required, and hence we stick to these two.

5. Identically Distributed Data
5.1. Setup

In our first set of experiments, the images are randomly
partitioned across the sites, so that each site has a randomly-
selected (with replacement) subset of the overall set of im-
ages in the training data set. After a round of communica-
tion finishes, ten sites are randomly selected as being “on
the network” and those sites participate in the present round
of training. After local training finishes and all of the re-
sults have been communicated, another set of ten sites are
randomly selected and the process continues.

For this simple “i.i.d.” setup, our experiments will an-
swer a few key questions. First and foremost, should we
be doing full backpropagation through a convolutional net-
work, or should we be exclusively using a pre-trained back-

19390

(a) Final accuracies
Birds Cars Flwrs Aircrft Textre CFAR

FedAvg 61.5 56.4 88.9 40.2 68.1 61.4
FedProx 58.4 50.1 85.4 35.6 66.8 60.5
MOON 57.7 48.0 86.9 37.6 66.2 58.6

FedAdam 49.4 16.9 81.0 28.9 54.0 40.5
FedNova 58.4 47.1 83.6 37.0 64.3 60.3

IST 64.3 50.8 90.7 39.8 69.5 49.4
ISTProx 64.8 50.3 91.3 40.6 68.2 56.7

(b) Communication (GB) to threshold acc.
Birds Cars Flwrs Aircrft Textre CFAR

FedAvg 131 62 51 79 55 59
FedProx 250 FAIL 124 FAIL 71 54
MOON FAIL FAIL 193 FAIL 143 74

FedAdam FAIL FAIL FAIL FAIL FAIL FAIL
FedNova 743 FAIL 430 608 309 160

IST 79 FAIL 37 119 69 FAIL
ISTProx 72 FAIL 59 134 72 219

(c) GFLOPs to theshold acc
Birds Cars Flwrs Aircrft Textre CFAR

FedAvg 13121 6245 5150 7892 5461 5884
FedProx 1000 FAIL 495 FAIL 283 218
MOON FAIL FAIL 581 1243 653 1207

FedAdam FAIL FAIL FAIL FAIL FAIL FAIL
FedNova 14872 FAIL 8614 12172 6181 3200

IST 315 FAIL 148 475 277 FAIL
ISTProx 287 FAIL 238 535 288 875

Table 2: Skewed data results, 100 sites, 10% participation.

bone? Second, when one considers computation and com-
munication (rather than just final accuracy) do the meth-
ods compare differently than when the only metric is accu-
racy? And finally, does the data set used matter? Results
are shown in Table 1. For each data set, the best result is
indicated in bold.

5.2. Discussion

There are a few clear results. First, except for FedAdam
and FedFull, the methods generally have very similar final
accuracy, with the two IST-based methods being slightly
higher. Thus, one key finding is that for data without skew-
ness across sites, if one is only interested in final accuracy, it
does not seem to matter much which method is used, and this
result holds across data sets. The two exceptions to this are
FedAdam and FedFull. FedAdam does not reach the same
final accuracy as the other methods, but it generally does
quite a good job reaching high accuracy with relatively lit-
tle communication. This corresponds to the fact that it tends
to converge in relatively few communication rounds.

FedFull is a very interesting case. Note that it has poor
final accuracy—only 3% in the case of the Cars data set.
As a result, it is labeled as “FAIL” in every case, because it
can never reach 90% of the peak accuracy observed for the
other methods on a given data set. One might ask, Why is
FedFull such a poor choice? The answer is simple: as we
put a 100 teraFLOP/five terabyte “timeout” on the com-
putation, FedFull timed out in every case. That is, it al-
ways hit the 100 teraFLOP/five terabyte limit. Were Fed-
Full allowed infinite computation and infinite communica-
tion, it is actually the preferred method, as the pre-trained
backbones limit accuracy. For example, consider Figure
1, which plots accuracy as a function of FLOPs for both
FedFull and FedProx on Cars. FedFull eventually reaches
90% accuracy, but it takes nearly four orders of magnitude
more FLOPs to top out compared to FedProx. This FLOP
usage gap is apparent in Fig. 1 where even the first com-
munication round of FedFull requires more FLOPs than the
amount required for the entire FedProx training. As a result,
we would argue that full backpropagation is effectively un-
usable in resource-constrained FL. Note, however, that our
FedFull was trained using an initialization consisting of ran-
dom weights. Perhaps a hybrid method makes sense, where
one begins with FedProx (with a pre-trained backbone) and
then once the MLP begins to reach peak accuracy, we allow
backpropagation over the backbone to begin. This issue de-
serves further investigation. That said, given our maximum
FLOP count and communication, FedFull is not competitive
and in the interest of space, we will not consider it further.

The final observation we make is the general superiority
of IST, over each of the six data sets. It is perhaps not sur-
prising that IST is efficient in terms of communication and
in terms of computation. Each site obtains only a fraction
of the MLP that is being trained, saving communication and
computation at each site. However, it is surprising that it is
also generally the most accurate method, in terms of final
accuracy (or close to it) in every case. We will examine this
finding more fully, later in the paper.

6. Effect of Data Skewness

6.1. Setup

How might these results change if data are not uni-
formly distributed across sites? To answer this question,
we modify our experiments as follows. Rather than assign-
ing each training image to each site with uniform proba-
bility, we sample the class probabilities for each site from
a Dirichlet(0.01) distribution, and rerun our experiments
(with 100 sites and 10 sites active in each round). This
creates a relatively extreme—yet still realistic—amount of
skew. For the six data sets we tested, the three-tuple
(number of classes in data set, min number of classes at any
site, max number of classes at any site) is: for Birds (200, 7,

19391

(a) 1000 sites
Change in acc., 2% → 6% participation

Birds Cars Flwrs Aircrft Textre CFAR
FedAvg 0.1 -0.8 0 0 -1.1 1.3
FedProx 0.1 -2 0.4 0.8 1 1.1
MOON 0.3 2.9 0.5 0.5 -0.2 1.4

FedAdam 12.8 16.8 7 12.5 12.1 12.4
FedNova 0.6 -0.5 -0.5 0 0.6 0.8

1.2 7.3 0.5 2.4 0.7 4.9
ISTProx 0.4 6.3 0.4 1.8 7.6 4.1

(b) 100 sites
Change in acc., 10% → 30% participation

Birds Cars Flwrs Aircrft Textre CFAR
FedAvg -0.5 -0.8 0.6 -0.1 1.2 4
FedProx -0.4 -2 3.7 2.1 -0.6 0
MOON 1.5 2.9 -0.5 -0.3 -0.1 2.8

FedAdam 2 14.9 -0.9 0.6 0.4 5
FedNova 0.3 -0.5 4.3 -0.7 -0.6 -0.3

IST 2.3 7.3 -1.7 0.1 0.1 6.2
ISTProx 3 6.3 -0.9 3 1.3 2.2

Table 3: Observed change in accuracy, computed as “(%
correct with fewer sites) - (% correct with more sites)”,
when active sites increases. Red indicates negative change.

20), Aircraft (100, 2, 15), Stanford Cars (196, 4, 20), Flow-
ers (102, 3, 15), Textures (47, 1, 9), and CIFAR100 (100, 1,
13). This matches the realistic case where each site has ac-
cess to only a few of the classes, and from this limited local
information, an accurate global model must be constructed.
Results are shown in Table 2.

6.2. Discussion

Probably the single most interesting finding is that for
a highly-skewed situation, there seems to be divergence in
performance, depending upon the data set. The two IST
methods seem to perform best overall, with either IST or
ISTProx being the superior option in terms of final accu-
racy, FLOPs, or communication for four of the six data sets.
However, IST does relatively poorly on the venerable CFAR
data set. CFAR is a somewhat strange benchmark, as the
images are tiny (32 × 32) and widely varied within the data
set, and both IST variants have problems with this. Never-
theless, it is a good stress test. Note that in the two cases
where IST does not do the best, it is either simple FedAvg
or FedProx that is the best performer. One of the most sur-
prising findings is that FedAvg dominates all other methods
in all metrics (accuracy, FLOPs, communication) on Cars.

Overall, across the two experiments (i.i.d. and skewed),
we find that adding a proximal term to FedAvg (to obtain
FedProx) seems to have little effect on accuracy, but does

(a) 1000 sites
Change in comm., 2% → 6% participation

Birds Cars Flwrs Aircrft Textre CFAR
FedAvg 3.02 2.41 2.53 4.28 2.25 2.07
FedProx 2.76 NA 2.34 2.98 2 2.12
MOON 2.78 0.88 2.52 2.91 2.28 2.11

FedAdam NA NA 0 NA NA NA
FedNova 2.6 3.81 2.43 3.73 2.77 3.12

IST 1.41 0 1.07 1.95 1.03 NA
ISTProx 1.29 NA 1.15 2.2 0.48 NA

(b) 100 sites
Change in comm., 10% → 30% participation

Birds Cars Flwrs Aircrft Textre CFAR
FedAvg 0.65 NA 1.97 0.24 1.24 0
FedProx ∞ 3.13 2.82 6.43 1.75 2.41
MOON ∞ NA 1.27 NA 5.31 7.39

FedAdam NA NA 1.29 NA 2.23 2.89
FedNova 0.3 -0.5 4.3 -0.7 -0.6 -0.3

IST ∞ NA 1.09 ∞ 2.73 6.44
ISTProx NA NA NA NA NA NA

Table 4: Multiplicative change in communication when
tripling the number of active sites. Red text indicates more
than a 3× increase; black indicates less than a 3× increase.
“NA” indicates the case when there was a FAIL in both
bases. ∞ indicates a change from non-fail to a FAIL, and 0
indicates a change from FAIL to non-fail.

speedup convergence, both in terms of reducing communi-
cation and FLOPs. However, IST seems to be the best per-
former overall, allowing for significant reductions in com-
munication and FLOPs. The addition of a proximal term
does not seem to help IST much. The other methods tested
all seem to under-perform.

6.3. FL, Approximating Centralized Learning

How does the training process for a method (such as Fe-
dAvg and FedProx) that trains the entire model at each site
and then reconciles the various versions of the model, com-
pare with IST, which avoids this through decomposition?

To examine, we centrally train a model from initial-
ization through convergence using min-batch gradient de-
scent, obtaining model parameters Mi for the ith train-
ing epoch. Then, using FL, we start training in a feder-
ated setting from Mi for some number of communication
rounds, to obtain new model parameters M̂i. We refer to
the set of model parameters we would have obtained af-
ter processing exactly the same set of data centrally, via
a series of mini-batches, as M∗

i . Then the cosine sim-
ilarity of the directions both methods move, defined as
(M̂i − Mi) · (M∗

i − Mi)/(||M̂i − Mi|| × ||M∗
i − Mi||),

19392

shows the utility of FL as an approximation for centralized
learning. Cosine similarity close to one means FL and cen-
tralized training move in the same direction. Zero implies
de-correlation.

Some results obtained in this way are plotted in Figure
2, where we consider FedAvg, FedProx, IST, and ISTProx.
These plots depict this cosine similarity as a function of
the training epochs. We plot running averages to smooth
the data. The top three plots are for Cars, the bottom three
Flwrs. The results for identically distributed data are at left,
whereas skewed data are in the center, and at the right.

FedAvg and FedProx are shown to approximate the cen-
tralized gradient descent direction well early on, but the
similarity drops after initial training. This makes sense, as
initially, with a random initialization, learning is “easy” as
the model is far from optimal. In the i.i.d. case FedAvg
and FedProx perform well. But in the skewed case, af-
ter the initial training period, similarity to the centralized
training direction drops. IST seems more well-behaved,
with less variance. Especially considering how well the
methods approximate the direction of centralized training
through twenty rounds on skewed data (the right column),
the IST-based methods seem to do better. This is espe-
cially pronounced for the Flwrs data set through the first
20 epochs, where IST averages a similarity of 0.035, com-
pared to 0.01 for the averaging-based methods. Perhaps
this is due to the high variance of the directions computed
by FedAvg and FedProx—as estimators for the centrally-
predicted direction—compared to IST. Examining why this
is deserves further investigation in future work.

7. Varying Sites and Connectivity

7.1. Setup

All of our experiments thus far have focused on the sim-
ple case of 100 sites, where at each communication round,
10% of the sites are connected. We now ask: how do things
change when the number of sites changes and/or the number
of sites connected at each communication round changes?
Keeping all of the other settings the same, we try 1000 sites,
with either 2% or 6% of the sites connected at each com-
munication round, and 100 sites, with either 10% of 30% of
the sites connected at each round. Due to space constraints,
we consider accuracy and communication here, and provide
further results of these experiments in the appendix. In Ta-
ble 3, we show the absolute change in percentage accuracy
moving from 2% to 6% connectivity, and from 10% to 30%
connectivity. In Table 4, we show the multiplicative change
in communication required. Note that, as we increase the
number of active sites by 3×, we might expect a 3× in-
crease in communication if the same number of communi-
cation rounds are required. If fewer rounds are required, we
would see an increase that is less than 3×.

7.2. Discussion

FedAdam, IST, and ISTProx are generally helped a bit
by increasing participation. But for the other methods, the
results obtained by increasing participation rates are mixed,
with a surprising number of red values in both Table 3 and
Table 4, indicating a decrease in accuracy or communica-
tion efficiency via the addition of extra active sites. In addi-
tion, it seems that the increase from 2% participation to 6%
participation is much more helpful than 10% to 30%.

The lack of clear benefit to increasing the rate of partic-
ipation is not surprising in retrospect. Aside from FedFull,
each of the methods was able to run to convergence in the
allotted FLOP/communication budget. The central question
becomes: can we run to convergence in fewer rounds by do-
ing more work in each round? This seems very unlikely,
as this is akin to increasing the batch size in centralized
learning, and expecting a significant decrease in the num-
ber of batches required for convergence. There is typically
some decrease in the number of batches with increasing
batch size, but it often is not significant. In reconciliation-
based methods, this may be particularly inefficient as local
training rounds cause the active sites to diverge and simply
makes it more difficult to reconcile them. IST may have
another advantage in that regard, in that more active sites
does not increase communication for IST, it simply means
that each site gets less of the full model. As long as each
site can tolerate local learning using a smaller model (due
to partitioning more ways), the learning may benefit from
seeing a greater variety of data in each round. This cer-
tainly seems to be the case in when moving from 2% to 6%,
which benefits IST.

8. Conclusion

We have designed a set of experiments to evaluate FL
methods. Among the issues considered were what were the
appropriate evaluation metrics (accuracy alone makes little
sense), whether to use a pre-trained backbone, and the ef-
fect of connectivity on the efficiency of the learning. We
find that overall, the method of decomposition of a neural
network into independent subnetworks seems to be the best
option. This has the benefit of decreasing communication
and computation compared to “reconciliation-based” meth-
ods that train a copy of the model at each site, as the model
is sharded, rather than broadcasted.

Acknowledgements. We would like thank the anonymous
reviewers for their comments on the submitted version of
the paper. Work presented in this paper has been supported
by an NIH CTSA, award No. UL1TR003167 and by the
NSF under grant Nos. 1918651, 1910803, 2008240, and
2131294.

19393

References
[1] Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. Fe-

drolex: Model-heterogeneous federated learning with rolling
sub-model extraction. arXiv preprint arXiv:2212.01548,
2022. 3

[2] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp,
Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe Kid-
don, Jakub Konečnỳ, Stefano Mazzocchi, Brendan McMa-
han, et al. Towards federated learning at scale: System de-
sign. Proceedings of Machine Learning and Systems, 1:374–
388, 2019. 1

[3] Qi Chang, Hui Qu, Yikai Zhang, Mert Sabuncu, Chao Chen,
Tong Zhang, and Dimitris N Metaxas. Synthetic learn-
ing: Learn from distributed asynchronized discriminator gan
without sharing medical image data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13856–13866, 2020. 1

[4] Zachary Charles, Kallista Bonawitz, Stanislav Chik-
navaryan, Brendan McMahan, et al. Federated select: A
primitive for communication-and memory-efficient feder-
ated learning. arXiv preprint arXiv:2208.09432, 2022. 3

[5] Gary Cheng, Zachary Charles, Zachary Garrett, and Keith
Rush. Does federated dropout actually work? In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3387–3395, 2022. 3

[6] Li Chou, Zichang Liu, Zhuang Wang, and Anshumali Shri-
vastava. Efficient and less centralized federated learning. In
Machine Learning and Knowledge Discovery in Databases.
Research Track: European Conference, ECML PKDD 2021,
Bilbao, Spain, September 13–17, 2021, Proceedings, Part I
21, pages 772–787. Springer, 2021. 1

[7] Arkabandhu Chowdhury, Mingchao Jiang, Swarat Chaud-
huri, and Chris Jermaine. Few-shot image classification:
Just use a library of pre-trained feature extractors and a sim-
ple classifier. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 9445–9454,
October 2021. 2

[8] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A.
Vedaldi. Describing textures in the wild. In Proceedings of
the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2014. 4

[9] Enmao Diao, Jie Ding, and Vahid Tarokh. HeteroFL:
Computation and communication efficient federated learn-
ing for heterogeneous clients. In International Conference
on Learning Representations. 3

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-
tions, 2021. 2

[11] Chen Dun, Cameron R Wolfe, Christopher M Jermaine, and
Anastasios Kyrillidis. ResIST: Layer-wise decomposition of
resnets for distributed training. In Uncertainty in Artificial
Intelligence, pages 610–620. PMLR, 2022. 3

[12] FAIR. facebookresearch/fvcore: Collection of common
code that’s shared among different research projects in
fair computer vision team. https://github.com/
facebookresearch/fvcore. Accessed: 2022-10-11.
6

[13] Michael Fleischman and Eduard Hovy. Fine grained classi-
fication of named entities. In COLING 2002: The 19th In-
ternational Conference on Computational Linguistics, 2002.
1

[14] Chaoyang He, Alay Dilipbhai Shah, Zhenheng Tang,
Di Fan1Adarshan Naiynar Sivashunmugam, Keerti Bhog-
araju, Mita Shimpi, Li Shen, Xiaowen Chu, Mahdi
Soltanolkotabi, and Salman Avestimehr. Fedcv: A federated
learning framework for diverse computer vision tasks, 2021.
1

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016. 2, 4

[16] Stefan Hinterstoisser, Vincent Lepetit, Paul Wohlhart, and
Kurt Konolige. On pre-trained image features and synthetic
images for deep learning. CoRR, abs/1710.10710, 2017. 2

[17] Samuel Horváth, Stefanos Laskaridis, Mario Almeida, Ilias
Leontiadis, Stylianos Venieris, and Nicholas Lane. Fjord:
Fair and accurate federated learning under heterogeneous tar-
gets with ordered dropout. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, vol-
ume 34, pages 12876–12889. Curran Associates, Inc., 2021.
3

[18] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Fed-
erated visual classification with real-world data distribution.
In European Conference on Computer Vision, pages 76–92.
Springer, 2020. 1

[19] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017. 2, 4

[20] Peter Kairouz, H Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista
Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-
mings, et al. Advances and open problems in federated learn-
ing. Foundations and Trends® in Machine Learning, 14(1–
2):1–210, 2021. 1

[21] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri,
Sashank Reddi, Sebastian Stich, and Ananda Theertha
Suresh. SCAFFOLD: Stochastic controlled averaging for
federated learning. In Hal Daumé III and Aarti Singh, ed-
itors, Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 5132–5143. PMLR, 13–18 Jul
2020. 3

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 3

19394

https://github.com/facebookresearch/fvcore
https://github.com/facebookresearch/fvcore

[23] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
4th International IEEE Workshop on 3D Representation and
Recognition (3dRR-13), Sydney, Australia, 2013. 4

[24] Alex Krizhevsky. Learning multiple layers of features from
tiny images. 2009. 4

[25] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 1

[26] Ang Li, Jingwei Sun, Binghui Wang, Lin Duan, Sicheng Li,
Yiran Chen, and Hai Li. Lotteryfl: Empower edge intelli-
gence with personalized and communication-efficient feder-
ated learning. In 2021 IEEE/ACM Symposium on Edge Com-
puting (SEC), pages 68–79, 2021. 3

[27] Daiqing Li, Amlan Kar, Nishant Ravikumar, Alejandro F
Frangi, and Sanja Fidler. Fed-sim: Federated simulation
for medical imaging. arxiv e-prints, page. arXiv preprint
arXiv:2009.00668, 2, 2020. 1

[28] Qinbin Li, Bingsheng He, and Dawn Song. Model-
contrastive federated learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10713–10722, 2021. 1, 2, 3

[29] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia
Smith. Federated learning: Challenges, methods, and future
directions. IEEE Signal Processing Magazine, 37(3):50–60,
2020. 1

[30] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar San-
jabi, Ameet Talwalkar, and Virginia Smith. Federated op-
timization in heterogeneous networks. In I. Dhillon, D. Pa-
pailiopoulos, and V. Sze, editors, Proceedings of Machine
Learning and Systems, volume 2, pages 429–450, 2020. 3

[31] Wenqi Li, Fausto Milletarı̀, Daguang Xu, Nicola Rieke,
Jonny Hancox, Wentao Zhu, Maximilian Baust, Yan Cheng,
Sébastien Ourselin, M Jorge Cardoso, et al. Privacy-
preserving federated brain tumour segmentation. In Inter-
national workshop on machine learning in medical imaging,
pages 133–141. Springer, 2019. 1

[32] Fangshuo Liao and Anastasios Kyrillidis. On the conver-
gence of shallow neural network training with randomly
masked neurons. CoRR, abs/2112.02668, 2021. 3

[33] Tao Lin, Sebastian U. Stich, Kumar Kshitij Patel, and Martin
Jaggi. Don’t use large mini-batches, use local sgd. In Inter-
national Conference on Learning Representations, 2020. 1,
2

[34] Xiulong Liu, Jiannong Cao, Yanni Yang, Wenyu Qu, Xibin
Zhao, Keqiu Li, and Didi Yao. Fast rfid sensory data col-
lection: Trade-off between computation and communication
costs. IEEE/ACM Trans. Netw., 27(3):1179–1191, jun 2019.
5

[35] Yang Liu, Anbu Huang, Yun Luo, He Huang, Youzhi Liu,
Yuanyuan Chen, Lican Feng, Tianjian Chen, Han Yu, and
Qiang Yang. Fedvision: An online visual object detection
platform powered by federated learning. Proceedings of the
AAAI Conference on Artificial Intelligence, 34(08):13172–
13179, Apr. 2020. 1

[36] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew B.
Blaschko, and Andrea Vedaldi. Fine-grained visual classi-
fication of aircraft. CoRR, abs/1306.5151, 2013. 4

[37] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
Efficient Learning of Deep Networks from Decentralized
Data. In Aarti Singh and Jerry Zhu, editors, Proceedings of
the 20th International Conference on Artificial Intelligence
and Statistics, volume 54 of Proceedings of Machine Learn-
ing Research, pages 1273–1282. PMLR, 20–22 Apr 2017. 2,
3

[38] Maria-Elena Nilsback and Andrew Zisserman. A visual vo-
cabulary for flower classification. In IEEE Conference on
Computer Vision and Pattern Recognition, volume 2, pages
1447–1454, 2006. 4

[39] Keiron O’Shea and Ryan Nash. An introduction to convolu-
tional neural networks. CoRR, abs/1511.08458, 2015. 2

[40] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary
Garrett, Keith Rush, Jakub Konečný, Sanjiv Kumar, and
Hugh Brendan McMahan. Adaptive federated optimization.
In International Conference on Learning Representations,
2021. 3

[41] Sebastian U. Stich. Local SGD converges fast and commu-
nicates little. In International Conference on Learning Rep-
resentations, 2019. 1, 2

[42] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
Caltech-ucsd birds-200-2011 (cub-200-2011). Technical Re-
port CNS-TR-2011-001, California Institute of Technology,
2011. 4

[43] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and
H Vincent Poor. Tackling the objective inconsistency prob-
lem in heterogeneous federated optimization. Advances
in neural information processing systems, 33:7611–7623,
2020. 3

[44] Qihan Wang, Chen Dun, Fangshuo Liao, Chris Jermaine, and
Anastasios Kyrillidis. LOFT: Finding lottery tickets through
filter-wise training. arXiv preprint arXiv:2210.16169, 2022.
3

[45] Cameron R Wolfe, Jingkang Yang, Arindam Chowdhury,
Chen Dun, Artun Bayer, Santiago Segarra, and Anastasios
Kyrillidis. GIST: Distributed training for large-scale graph
convolutional networks. arXiv preprint arXiv:2102.10424,
2021. 3

[46] Tianbao Yang. Trading computation for communication:
Distributed stochastic dual coordinate ascent. In C.J. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Wein-
berger, editors, Advances in Neural Information Processing
Systems, volume 26. Curran Associates, Inc., 2013. 5

[47] Tien-Ju Yang, Dhruv Guliani, Françoise Beaufays, and Gio-
vanni Motta. Partial variable training for efficient on-device
federated learning. In ICASSP 2022-2022 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 4348–4352. IEEE, 2022. 3

[48] Ze Yang, Tiange Luo, Dong Wang, Zhiqiang Hu, Jun Gao,
and Liwei Wang. Learning to navigate for fine-grained clas-
sification. CoRR, abs/1809.00287, 2018. 1

[49] Tyler Yep. Tyleryep/torchinfo: View model summaries
in pytorch! https://github.com/TylerYep/
torchinfo. Accessed: 2022-10-11. 6

[50] Peihua Yu and Yunfeng Liu. Federated object detection: Op-
timizing object detection model with federated learning. In

19395

https://github.com/TylerYep/torchinfo
https://github.com/TylerYep/torchinfo

Proceedings of the 3rd International Conference on Vision,
Image and Signal Processing, pages 1–6, 2019. 1

[51] Binhang Yuan, Cameron R. Wolfe, Chen Dun, Yuxin Tang,
Anastasios Kyrillidis, and Chris Jermaine. Distributed learn-
ing of fully connected neural networks using independent
subnet training. Proc. VLDB Endow., 15(8):1581–1590, apr
2022. 3

[52] Jian Zhang, Christopher De Sa, Ioannis Mitliagkas, and
Christopher Ré. Parallel SGD: When does averaging help?
arXiv preprint arXiv:1606.07365, page arXiv:1606.07365,
June 2016. 1, 2

[53] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon
Civin, and Vikas Chandra. Federated learning with non-iid
data. arXiv preprint arXiv:1806.00582, 2018. 1

[54] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon
Civin, and Vikas Chandra. Federated learning with non-iid
data. CoRR, abs/1806.00582, 2018. 3

19396

