
PlankAssembly: Robust 3D Reconstruction from Three Orthographic Views
with Learnt Shape Programs

Wentao Hu1,2†∗ Jia Zheng3∗ Zixin Zhang4∗ Xiaojun Yuan4 Jian Yin1,2 Zihan Zhou3

1Sun Yat-Sen University 2Guangdong Key Laboratory of Big Data Analysis and Processing
3Manycore Tech Inc. 4University of Electronic Science and Technology of China

https://manycore-research.github.io/PlankAssembly

Abstract

In this paper, we develop a new method to automat-
ically convert 2D line drawings from three orthographic
views into 3D CAD models. Existing methods for this prob-
lem reconstruct 3D models by back-projecting the 2D ob-
servations into 3D space while maintaining explicit cor-
respondence between the input and output. Such methods
are sensitive to errors and noises in the input, thus often
fail in practice where the input drawings created by hu-
man designers are imperfect. To overcome this difficulty, we
leverage the attention mechanism in a Transformer-based
sequence generation model to learn flexible mappings be-
tween the input and output. Further, we design shape pro-
grams which are suitable for generating the objects of inter-
est to boost the reconstruction accuracy and facilitate CAD
modeling applications. Experiments on a new benchmark
dataset show that our method significantly outperforms ex-
isting ones when the inputs are noisy or incomplete.

1. Introduction
In this paper, we tackle a long-standing problem in

computer-aided design (CAD), namely 3D object recon-
struction from three orthographic views. In today’s product
design and manufacturing industry, 2D engineering draw-
ings are commonly used by designers to realize, update, and
share their ideas, especially during the initial design stages.
But to enable further analysis (e.g., finite element analy-
sis) and manufacturing, these 2D designs must be manually
realized as 3D models in CAD software. Therefore, if a
method can automatically convert the 2D drawings into 3D
models, it would greatly facilitate the design process and
improve overall efficiency.

As the most popular way to describe an object in 2D

†Work done during internship at Manycore Tech Inc.
∗Equal contributions.

Front Top Side

Figure 1. An illustration of various input drawings. From top to
bottom: clean inputs, noisy inputs, and visible inputs. We use
solid and dashed lines to represent the visible and hidden lines,
respectively. In noisy line drawings (the second row), we use blue
lines to represent noisy lines and highlight the missing lines using
the red circle.

drawings, an orthographic view is the projection of the ob-
ject onto the plane that is perpendicular to one of the three
principal axes (Figure 1). Over the past few decades, 3D
reconstruction from three orthographic views has been ex-
tensively studied, with significant improvements in terms
of the types of applicable objects and computational effi-
ciency [25, 10, 19, 37, 38, 28, 18, 21, 8, 9]. However, to the
best of our knowledge, these techniques have not enjoyed
wide adoption in CAD software and commercial products.

Among the challenges faced by existing methods in prac-
tice, their sensitivity to errors and missing components in
the drawings is arguably the most critical one. To under-
stand this issue, we note that almost all existing methods
follow a standard procedure for 3D reconstruction, which
consists of the following steps: (i) generate 3D vertices
from 2D vertices; (ii) generate 3D edges from 3D vertices;

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

18495

Figure 2. An illustration of cabinet design in a 3D modeling soft-
ware.

(iii) generate 3D faces from 3D edges; and (iv) construct 3D
models from 3D faces (see Figure 6 for an illustration). One
main benefit of following the pipeline is that all solutions
that match the input views can be found, as it establishes
explicit correspondences between entities in the 3D model
and those in the drawing. But in practice, rather than mak-
ing an extra effort to perfect the drawings, designers would
deem a drawing good enough as long as it conveys their
ideas. Hence, some entities may be erroneous or missing.
As a result, the aforementioned pipeline often fails to find
the desired solution.

To overcome this difficulty, therefore, it is necessary to
reason about the 2D drawings in a more holistic manner,
and enable more flexible mappings between the input and
output. Recently, Transformer [29] has become the stan-
dard architecture in many NLP and CV tasks. It is par-
ticularly effective in sequence-to-sequence (seq2seq) prob-
lems, such as machine translation, where reasoning about
the context and soft alignment between the input and output
are critical. Motivated by this, we convert our problem into
a seq2seq problem and propose a Transformer-based deep
learning method. Intuitively, the self-attention modules al-
low the model to capture the intent of the product designers
even if their drawings are imperfect, and the cross-attention
modules enable flexible mappings between geometric enti-
ties in the 2D drawing and 3D model.

Another benefit of employing learned representations
and soft alignments for geometric entities is that one is free
to choose how the 3D model is constructed. This provides
us with opportunities to incorporate domain knowledge in
our method to boost its performance. To illustrate this, we
focus on a specific type of product, cabinet furniture, in
this paper. As illustrated in Figure 2, a cabinet is typically
built by arranging and attaching a number of planks (i.e.,
wooden boards) together in a 3D modeling software. To this
end, we develop a simple domain-specific language (DSL)
based around declaring planks and then attaching them to
one another, so that each cabinet can be represented by a
program. Finally, given the input orthographic views, we
train the Transformer-based model to predict the program

associated with the cabinet.
To systematically evaluate the methods, we build a new

benchmark dataset consisting of more than 26,000 3D cab-
inet models for this task. Most of them are created by pro-
fessional interior designers using commercial 3D modeling
software. Extensive experiments show that our method is
much more robust to imperfect inputs. For example, the tra-
ditional method achieves an F1 score of 8.20% when 30%
of the lines are corrupted or missing in the input drawings,
whereas our method achieves an F1 score of 90.14%.

In summary, the contributions of this work are: (i) To
the best of our knowledge, we are the first to use deep gen-
erative models in the task of 3D CAD model reconstruction
from three orthographic views. Compared to existing meth-
ods, our model learns a more flexible mapping between the
input and output, thus being more robust to noisy or incom-
plete inputs. (ii) We propose a new network design that
learns shape programs to assemble planks into 3D cabinet
models. Such a design not only improves reconstruction ac-
curacy but also facilitates downstream applications such as
CAD model editing.

2. Related Work
3D reconstruction from three orthographic views. Stud-
ies on recovering 3D models from three orthographic views
date back to the 70s and 80s [13, 22, 32, 25, 10]. An early
survey on this topic appears in [31]. According to [31],
to obtain 3D objects in the boundary representation (B-
rep) format, existing methods follow a four-stage scheme
in which 3D vertices, edges, faces, and blocks are gradu-
ally built upon the results of previous steps. As mentioned
before, a key strength of the framework is that all possible
solutions that exactly match the input views can be found.

Subsequent methods for this task [37, 38, 28, 18, 21, 8, 9]
also follow the same procedure and focus on extending the
methods’ applicable domain to cover more types of objects.
For example, Shin and Shin [28] developed a method to re-
construct objects composed of planar and limited quadric
faces, such as cylinders and tori, that are parallel to one of
the principal axes. To remove the restriction placed on the
axes of curved surfaces, Liu et al. [21] designed an algo-
rithm that combines the geometric properties of conics with
affine properties. Later, Gong et al. [9] proposed to recog-
nize quadric surface features via hint-based pattern match-
ing in the Link-Relation Graph (LRG), expanding the ap-
plicable domain to cover objects like those with interacting
quadric surfaces. However, all these methods assume clean
inputs and, as we will show in the experiment section, could
easily break down in the presence of errors and noises.

Recently, Han et al. [12] also trained a deep network
to reconstruct a 3D model from three orthographic views.
However, their method takes raster images as input and pro-
duces results in the format of unstructured point clouds,

18496

Figure 3. An illustration of how a simple cabinet is incrementally constructed by executing the shape program commands. The correspond-
ing shape program is shown in Program 1.

which are of little use in CAD modeling applications. In
contrast, our method directly uses vectorized line drawings
as input and generates structured CAD models as output.
Deep generative models for CAD. With the availability
of large-scale CAD datasets such as ABC [17] and Fusion
360 Gallery [34], a line of recent work trains deep net-
works to generate structured CAD data in the form of 2D
sketches [33, 7, 27] or 3D models [35, 14, 11, 36]. These
methods all cast it as a sequence generation problem, but
differ in the DSLs used to produce the output. Our idea
to generate cabinet furniture by assembling plank models
together is inspired by ShapeAssembly [15], which learns
to generate objects as hierarchical 3D part graphs. How-
ever, unlike the above studies, which focus on the generative
models themselves, we propose to use generative models to
build effective and efficient method for 3D CAD model re-
construction from three orthographic views.

3. A Simple Assembly Language for Cabinets
In this section, our goal is to define a domain-specific

language (DSL) for the shapes of interest (i.e., cabinet fur-
niture). With this language, each cabinet model can be rep-
resented by a shape program, which will later be converted
into a sequence of tokens as the output of a Transformer-
based seq2seq model.

We define our DSL in the way that the resulting shape
program resembles how a human designer builds the model
in 3D modeling software. As shown in Figure 2, a cabinet
is typically assembled by a list of plank models. In prac-
tice, most planks are axis-aligned cuboids. Therefore, we
use cuboid as the only data type in our language. In Sec-
tion 6, we discuss how our approach may be extended to
accommodate more complex shapes (e.g., a plank with a
non-rectangular profile).

An axis-aligned cuboid has six degrees of freedom
(DOF), which correspond to the starting and ending coor-
dinates along the three axes:

Cuboid(xmin, ymin, zmin, xmax, ymax, zmax). (1)

In practice, instead of specifying the numerical values for
all the coordinates, human designers frequently use the at-
tachment operation. As a form of geometric constraints, the
benefit of using attachment is at least two-fold: First, it en-
ables users to quickly specify the location of a plank with-
out explicitly calculating (some of) its coordinates; Second,

1 bbox = Cuboid(-0.35, -0.23, -0.76, 0.35, 0.23, 0.76)
2 plank1 = Cuboid(bbox1, bbox2, bbox3, -0.34, bbox5, bbox6)
3 plank2 = Cuboid(0.34, bbox2, bbox3, bbox4, bbox5, bbox6)
4 plank3 = Cuboid(plank14, bbox2, -0.70, plank21, bbox5,

-0.69)
5 plank4 = Cuboid(plank14, bbox2, 0.75, plank21, bbox5,

bbox6)
6 plank5 = Cuboid(plank14, 0.21, plank36, plank21, 0.22,

plank43)
7 plank6 = Cuboid(plank14, bbox2, bbox3, plank21, -0.21,

plank33)
8 plank7 = Cuboid(plank14, 0.21, bbox3, plank21, bbox5,

plank33)

Program 1. The subscript indicates the index of coordinate values.

it facilitates future edits as any changes made to a plank will
be automatically propagated to the others. Take Figure 2 as
an example. When adding a plank (highlighted in blue), a
designer may attach its four sidefaces to existing planks (in-
cluding the invisible bounding box), while specifying the
distances to the top and bottom in numerical values.

union Coord{
float v;
float* p;

};

Our language supports specify-
ing the plank coordinates via ei-
ther numerical values or attachment
operation by adopting the Union
structure commonly used in pro-
gramming languages (e.g., C++).
As shown in the figure to the right,
each of the six coordinates in Eq. (1) can either take a nu-
merical value or be a pointer to the corresponding coordi-
nate of another cuboid (to which it attaches to). Figure 3
shows an example cabinet incrementally constructed by im-
peratively executing the program commands (Program 1).

Shape program as a DAG. Alternatively, we may interpret
the shape program as a directed acyclic graph (DAG). Note
that each plank model consists of six faces, where each face
corresponds to exactly one DOF in the axis-aligned cuboid
(i.e., xmin, ymin, zmin, xmax, ymax, zmax). Therefore, each
program can be characterized by a graph G = {F , E},
whose vertices F = {f1, . . . , f|F|} represent the faces of
plank models and whose edges E = {e1, . . . , e|E|} repre-
sent attachment relationships between faces. Each directed
edge ei→j is an ordered pair of vertices (fi, fj), indicating
the i-th face fi attaches to the j-th face fj . We assume that
each face can attach to at most one another face; that is, the
out-degree of any face fi is at most one. Further, the edges
E can be represented by an adjacency matrix A ∈ R|F|×|F|.
Specifically, Aij is 1 if fi directs to fj , and 0 otherwise.

18497

4. The PlankAssembly Model
As shown in Figure 1, we assume the input consists of

three orthographic projections of the object, namely, the
front view, top view, and side view: V = {VF , VT , VS}.
Each view can be regarded as a planar graph of 2D edges
and node points where the edges meet. We use solid lines
to represent visible edges and dashed lines to represent hid-
den edges. Our goal is to reconstruct a 3D cabinet model
described by the shape program or the equivalent DAG G.

In this paper, we cast 3D reconstruction as a seq2seq
problem. In Sections 4.1 and 4.2, we describe how to en-
code the input views V and the shape program G as 1D
sequences V seq and Gseq, respectively. Then, we intro-
duce the design of our PlankAssembly model, which adopts
a Transformer-based encoder-decoder architecture to learn
the probability distribution p(Gseq | V seq), in Section 4.3.
Finally, we present implementation details in Section 4.4.

4.1. Input Sequences and Embeddings

For the input conditions, we first order the 2D edges in
V by the views. Each 2D edge is written as (x1, y1, x2, y2),
where we order its two endpoints from lowest to highest by
the x-coordinate, followed by the y-coordinate (if x1 = x2).
Then, we order a set of 2D edges by x1, followed by x2, y1,
and y2. Next, we flatten all the edges into a 1D sequence
V seq = {v1, . . . , vNv}. Note that, since each 2D edge has
four DOFs (i.e., the x- and y-coordinates of two endpoints),
the length of V seq is Nv = 4Nedge, where Nedge is the total
number of 2D edges in all three orthographic views.

We embed the i-th token vi as:

E(vi) = Evalue(vi) + Eview(vi) + Eedge(vi)

+ Ecoord(vi) + Etype(vi), (2)

where the value embedding Evalue indicates the quantized
coordinate value of the token, the view embedding Eview
indicates which view (i.e., the front, top, or side view) the
2D edge is from, the edge embedding Eedge indicates the
relative position of the 2D edge in the corresponding view,
and the coordinate embedding Ecoord indicates the relative
position of the coordinate in the corresponding 2D edge. Fi-
nally, we use a type embedding Etype to indicate whether the
2D edge is visible or hidden. In this paper, we quantize the
coordinate values into 9-bit integers and use learned 512-D
embeddings for each term in Eq. (2).

4.2. Output Sequences and Embeddings

To generate the shape program sequentially, we need to
map the graph G to a sequence Gseq. This requires us to de-
fine a vertex order π on G: We first sort the vertices topolog-
ically, ensuring that direct successors are listed before their
corresponding direct predecessors. Then, vertices that are
not directly connected are ordered by the coordinate values.

This gives us a sorted graph Gπ whose vertices Fπ follow
the order π.

Since we would like to capture the modeling process and
facilitate future editing, we prioritize attachment relation-
ships over geometric entities. Similar to the input sequence
encoding, we flatten Gπ to obtain a 1D sequence Gseq. The
i-th element of the sequence Gseq can be obtained as:

gi =

{
fπ
i , if Aπ

ij = 0,∀j,
eπi→j , if Aπ

ij = 1.
(3)

Further, we use two special tokens, [SOS] and [EOS], to
indicate the start and end of the output sequence, respec-
tively.

For the inputs to the decoder of our model, we embed the
token gi using the associated face fπ

i as follows:

E(gi) = E(fπ
i) = Evalue(f

π
i) + Eplank(f

π
i) + Eface(f

π
i).

(4)

The value embedding Evalue indicates the quantized coor-
dinate value, which is shared for the input and output se-
quences. The plank embedding Eplank indicates the location
of the corresponding plank in the cabinet model, and the
face embedding Eface indicates the relative position of the
face within the plank.

If the token corresponds to an edge eπi→j in G, we iden-
tify the face fπ

j to which the current face fπ
i attaches, and

use the same value embedding as fπ
j .

4.3. Model Design

To tackle this seq2seq problem, we factorize the joint
distribution over the output sequence into a series of condi-
tional distributions:

p(Gseq | V seq) =
∏
t

p
(
gt | Gseq

<t ,V seq) . (5)

Here, since gt may take the form of either a geometric
entity (i.e., fπ

i) or an attachment relationship (i.e., eπi→j),
we need to generate a probability distribution over a fixed-
length vocabulary set (of quantized coordinate values) plus
a variable-length set of tokens Gseq

<t in the output sequence.
The former distribution is a categorical distribution,

which is commonly used in classification tasks. Let ht be
the hidden feature obtained by the decoder at time t, we
project it to the size of the vocabulary via a linear layer,
which is then normalized to form a valid distribution:

pvocab(gt | Gseq
<t ,V seq) = softmax (linear (ht)) . (6)

To generate a distribution over the output sequence Gseq
<t

at time t, we adopt the Pointer Networks [30]. Specifically,
we first use a linear layer to predict a pointer. The pointer is
then compared with the hidden features of all former steps

18498

Transformer	Decoder

Transformer	Encoder

=(?!) =(?") =(?#) ⋯ EOS

=(C!) =(C") =(C#) ⋯ =(C/)

ℎ! ℎ# ⋯ℎ" ℎ/

w/50--016 534105

5

Figure 4. Network architecture. Our model takes the line se-
quences as input and outputs the shape program sequence auto-
regressively. At each time step t, the Transformer decoder outputs
an attachment distribution pattach over the previously predicted out-
puts, a vocabulary distribution pvocab, and an attachment probabil-
ity wt. The final distribution p is obtained by concatenation of the
two weighted distributions.

via dot-product. Finally, a distribution over the output se-
quence is obtained via a softmax layer:

pattach(gt → gk | Gseq
<t ,V seq) =

softmaxk

(
linear (ht)

T
h<t

)
. (7)

Instead of directly comparing these two distributions,
we follow Pointer-Generator Networks [26] and introduce
an attachment probability wt to weight these two distribu-
tions. The attachment probability wt is obtained via a linear
layer and a sigmoid function σ(·): wt = σ (linear (ht)).
Thus, the final distribution is the concatenation of the two
weighted distributions:

p(gt | Gseq
<t ,V seq) = concat

{
(1− wt) · pvocab, wt · pattach

}
.

(8)

Finally, given a training set, the parameters of the model
can be learned by maximizing the conditional distributions
Eq. (8) via a standard cross-entropy loss.
Network architecture. We use the standard Transformer
blocks [29] as the basic blocks of our PlankAssembly

model. Given the input embeddings {E(v1), E(v2), . . .},
the encoder encodes them into contextual embeddings. At
decoding time t, the decoder produces hidden feature ht

based on the contextual embeddings and the decoder inputs
{E(g1), E(g2), . . .}. We use 6 Transformer layers for both
the encoder and the decoder. Each layer has a feed-forward
dimension of 1024 and 8 attention heads. The network ar-
chitecture is summarized in Figure 4.

4.4. Implementation Details

Training. We implement our models with PyTorch Light-
ning [1]. We use 6 Transformer layers for both the encoder
and the decoder. Each layer has a feed-forward dimension
of 1024 and 8 attention heads. The network is trained for
400K iterations on four NVIDIA RTX 3090 GPU devices.
We use Adam optimizer [16] with a learning rate of 10−4.
The batch size is set to 16 per GPU.

Inference. At inference time, we take several steps to en-
sure valid predictions from our model. First, we observed
that two attaching faces must correspond to the opposite
DOFs on the same axis, in order to avoid any spatial con-
flicts. For example, the xmin token of one plank can only
point to the xmax token of another plank, and vice versa.
Thus, we mask all invalid positions during inference. Sec-
ond, we filter out the predicted planks with zero volume.

5. Experiments
5.1. Experimental Setup

Dataset. We create a large-scale benchmark dataset for this
task, taking advantage of access to a large repository of cab-
inet furniture models from Kujiale1, an online 3D modeling
platform in the interior design industry. Most models in
the repository are created by professional designers using
commercial parametric modeling software, and are used for
real-world production.

Several rules are used to filter the data: (i) We remove
duplicated 3D models based on the similarity of the three
orthographic views; (ii) We exclude models with fewer than
four planks, more than 20 planks, or more than 300 edges
in total. The remaining data is randomly split into three
parts: 24039 for training, 1329 for validation, and 1339 for
testing. To synthesize the three orthographic views, we use
the HLRBRep Algo API from pythonOCC [3], which is
built upon the Open CASCADE Technology modeling ker-
nel [2].

For our task, we need to parse each parametric cabinet
model into a shape program. We first obtain the planks by
extracting the geometric entities in the cabinet model. Note
that in the parametric modeling software, a plank is typi-
cally created by first drawing a 2D profile and then applying

1http://kujiale.com

18499

the extrusion command. Thus, we categorize the faces of
each plank into sideface or endface, depending on whether
they are along the direction of the extrusion or not. Then,
given a pair of faces from two different planks, we consider
that an attachment relationship exists if (i) the two faces are
within a distance threshold of 1mm, and (ii) the pair con-
sists of one sideface and one endface. Finally, a directed
edge from the endface to the sideface is added in G.

Evaluation metrics. To evaluate the quality of the 3D re-
construction results, we use three standard metrics: preci-
sion, recall, and F1 score. Specifically, for a cabinet model,
we use Hungarian matching to match the predicted planks
and the ground truth planks. A prediction is considered a
true positive if its 3D intersection-over-union (IOU) with
one ground truth is greater than 0.5.

5.2. Comparison to Traditional Methods

In this section, we systematically compare our approach
with the traditional methods for 3D reconstruction from
three orthographic views. Since no implementation of the
traditional pipeline is publicly available, we reimplement
the pipeline by closely following prior work [25, 28]. Recall
that, starting from the input views, the traditional pipeline
generates 3D vertices, 3D edges, 3D faces, and 3D blocks
step by step. Then, solutions are found by enumerating all
combinations of the candidate blocks and checking if their
2D projections match the input views.

To make the pipeline suitable for reconstructing assem-
bly models like cabinets, we introduce two minor adjust-
ments to it. First, in the traditional pipeline, two blocks that
share a common face are merged together, which leads to
mismatching between projections and input line drawings.
In our implementation, we simply omit the original merging
operation. Second, the blocks generated by the traditional
pipeline correspond to the minimal closed spaces in 3D.
During the evaluation, they cannot be directly matched with
ground truth planks through bipartite matching. Instead, we
group the blocks as a single prediction if they overlap with
the same ground-truth plank model. Note that the proposed
adjustments slightly favor the traditional approach, as we
use ground truth information to merge the blocks.

Moreover, in cases where the traditional approach gen-
erates multiple solutions that all satisfy the inputs, we ran-
domly select one as the final output.

Experiment on varying input noise levels. We first study
the performance of both methods on imperfect inputs. In
this experiment, we inject varying levels of noise into the
input views. We consider two types of noises/errors com-
monly seen in real-world drawings: missing lines and inac-
curate endpoints. Specially, we randomly select a percent-
age of 2D edges in the input views. For each selected edge,
we either delete it or randomly perturb its endpoints along

0 10 20 30
Noise Level (%)

0

20

40

60

80

100

F1
Sc

or
e

(%
)

Ours
[25,28], variant 1
[25,28], variant 2

Figure 5. Comparison on varying input noise levels.

the edge direction. Figure 5 reports the F1 scores of both
methods as the percentage varies from 0% to 30%.

Note that, when applied to our dataset, a major bottle-
neck of the traditional pipeline is the re-projection verifi-
cation step in which all possible combinations of candidate
blocks are projected to 2D to check if they match the input
views. The reason is two-fold. First, such a match typ-
ically does not exist for noisy inputs. This is illustrated
in Figure 6. When the input views contain errors, the 3D
blocks generated by the traditional pipeline are often in-
complete. Consequently, none of the combinations would
exactly match the input views, resulting in a failure in the
final solid reconstruction step. Second, even on clean in-
puts, the verification may take a long time due to a large
number of possible combinations of the candidate blocks.

Thus, for completeness, we compare two variants of tra-
ditional pipeline in Figure 5. In the first variant, we enforce
the re-projection verification step during reconstruction. On
clean inputs, this variant achieves a slightly higher F1 score
(94.07%) than ours (91.75%). However, this variant fails
to produce a solution for 518 cases (out of 1339 test cases)
in a reasonable time (5 minutes) due to exponential search
complexity. Furthermore, this variant is not applicable to
noisy inputs.

In the second variant, we ignore the re-projection ver-
ification step and directly use the union of blocks as the
solution. As shown in Figure 5, it achieves an F1 score
of 90.67% on clean input. And its performance degrades
quickly as the input noise level increases. On the 30% noise
level, this variant only produces results on 54 objects and
has an F1 score of 8.20%.

In contrast, our approach is much more robust to input
noises. Specifically, its performance only slightly drops
from 91.75% to 90.14% as the noise level increases from
0% to 30%, verifying the key advantage of our method over
traditional ones. In terms of inference time, our method
takes about 0.63 seconds per sample on a single RTX 3090
GPU device.

Experiment on inputs with visible edges only. In real-

18500

1

2
3

1
2

3

4
5

Wireframe
(vertices and edges) Faces Blocks ObjectTopFront Side

Re-projection
verification

failed

Figure 6. A step-by-step illustration of the traditional approach on clean input (top) and noisy input (bottom). The traditional pipeline
accurately reconstructs the object when the input line drawings are free of noise. However, it fails to recover all the 3D blocks in the
presence of noises, resulting in a failure of the re-projection verification in the final solid reconstruction step.

Methods Precision Recall F1 score

[25, 28] 99.64 26.47 39.31
Ours 84.12 82.05 82.62

Table 1. Comparison on inputs with visible edges only.

world design practice, it is common for designers to omit
the hidden edges of line drawings. Although it is still easy
for humans to infer the 3D model, the traditional approach
is likely to fail since the inputs are highly incomplete. To
further demonstrate the robustness of our method, we con-
duct an experiment in which only the visible parts of the line
drawings as used as input. For this experiment, we remove
all invisible edges in the training set and follow the same
protocol in Section 4.4 to train our network from scratch.

As shown in Table 1, the traditional approach performs
poorly on this task, with very low recall and F1 score. This
is expected because, on average, invisible edges account for
about 48% of the edges in a line drawing. Meanwhile, our
method is robust to the incomplete inputs, achieving an F1
score of 82.62%.

Qualitative results. Figure 7 visualizes some 3D recon-
struction results of the two methods. In the first and second
rows, we show results with clean inputs. Our method cor-
rectly reconstructs all four objects, whereas the traditional
pipeline fails on the last two objects. Specifically, for the
first object in the second row, the traditional pipeline pro-
duces multiple solutions, and an incorrect one is selected
as the final output. And for the second object, it fails to
produce any result within the time budget (5 minutes).

In the third to fifth rows, we show results from inputs
with noise levels 10%, 20%, and 30%, respectively. As one
can see, the performance of traditional pipeline degrades
quickly. In particular, it fails to find any valid blocks for
the two cases with noise level 30%. In contrast, our method
correctly reconstructs all six objects in the three rows.

Finally, in the sixth row, we show two cases from inputs
with visible edges only. Again, the traditional approach per-
forms poorly in these cases, whereas our method correctly
recovers both objects.

5.3. Ablation Studies

Next, we investigate the effect of several design choices
we made in the PlankAssembly model.

Ablation study on the input. First, we study the per-
formance of our model with different types of inputs. In
PlankAssembly, we directly use the sequence of 2D edges
as input. Here, we consider two alternatives:
Image: Many deep networks for 3D reconstruction use
raster images as input. Inspired by Atlas [23], we re-
place the Transformer encoder in PlankAssembly with a
CNN-based feature extractor to construct a 3D feature vol-
ume from posed images. Specifically, we use ResNet50-
FPN [20] to extract 2D features from each view. Then, we
aggregate the 2D features into a 3D feature volume with
known poses and use a 3D CNN to refine the 3D features.
The Transformer decoder takes the flattened features as in-
put and outputs the shape program.
Sideface: Given the vectorized 2D line drawings, it is also
possible to extract 2D sidefaces (i.e., rectangles that cor-
respond to the 3D sidefaces of the plank models) and use
the sequence of sidefaces as input. Intuitively, this allows
the seq2seq model to leverage explicit correspondences be-
tween the input and output. To this end, we design a set of
heuristic rules to extract sidefaces in each view: First, we
use the polygonize API from Shapely [4] to construct
minimal closed polygons from each line drawing. Then,
each sideface is represented by a polygon’s axis-aligned
bounding box (AABB). Here, we exclude AABBs whose
short side is larger than ϵ (those AABBs typically corre-
spond to the profile faces of the planks). We also merge

18501

Front Top Side [25, 28] Ours Front Top Side [25, 28] Ours

Figure 7. Qualitative results. Rows 1-2: clean inputs. Rows 3-5: Noisy inputs with noise level 10%, 20%, and 30%, respectively. Row 6:
Inputs with visible parts only. We use red boxes to indicate incorrect reconstructions.

0 10 20 30
Noise Level (%)

50

60

70

80

90

100

F1
Sc

or
e

(%
)

Ours
Image
Sideface

0 10 20 30
Noise Level (%)

Ours
PolyGen

Figure 8. Ablation studies on the input sequence (left) and the out-
put sequence (right).

sidefaces recurrently if their short sides are adjacent. We
set ϵ = 50mm in our experiments.

Figure 8 (left) shows the performance of our method
w.r.t. different types of inputs. As one can see, using raster
images as inputs results in lower F1 scores across all noise
levels, possibly because the features extracted from the line
drawings are very sparse when treated as images. Further,
the model achieves similar accuracies on clean inputs when
using lines or sidefaces. However, the performance of the
model using sidefaces is more sensitive to noises in the in-

put views. This again shows that attempts to establish ex-
plicit correspondences between input and output hurt the
methods’ robustness – a phenomenon already seen in the
comparison to traditional methods.

Ablation study on the output sequence. In PlankAssem-
bly, we use shape programs as the outputs. In this exper-
iment, we compare this choice to PolyGen [24], a popu-
lar approach to generate geometric models in the form of
n-gon meshes. Similar to our method, PolyGen adopts a
Transformer-based architecture and proceeds by generating
a set of 3D vertices, which are then connected to form 3D
faces. To obtain the planks in the cabinet models, we bor-
row the block generation step in the traditional pipeline to
construct closed solids from the predicted faces.

The results are shown in Figure 8 (right). Our approach
outperforms PolyGen, especially with high noise levels.
Besides, our method runs about six times faster than Poly-
Gen (0.63 vs. 3.61 seconds per sample), partly because
PlankAssembly directly generates planks as the output and
has a shorter output sequence (solids vs. vertices+faces).

Figure 9 compares the 3D models generated by our
method and PolyGen. One notable issue with PolyGen is
that since it generates each face separately, there is no guar-
antee that the faces will form closed solids (i.e., planks). For
example, in the second row of Figure 9, one face predicted

18502

PolyGen (face) PolyGen (solid) Ours

Figure 9. Qualitative comparison with PolyGen [24]. Input views
are omitted. For PolyGen, we show results both before and after
the solid construction step. Some incorrectly reconstructed faces
are highlighted in red.

(a) (b) (c) (d)
Figure 10. Example of simple user edits. Top: models recon-
structed by PlankAssembly. Bottom: edited models.

by PolyGen has a non-rectangular shape, leading to missing
planks after the solid construction step.

Another benefit of leveraging domain-specific language
over general geometric forms such as n-gons is that the
generated shapes can better support user edits in the CAD
modeling software. Specifically, given the attachment re-
lationships predicted by our method, a cabinet model may
undergo global scaling operations (Figure 10 (a-b)) or local
editing operations (Figure 10 (c-d)) while maintaining the
correct topology.

5.4. Failure Cases

Figure 11 illustrates two most common failure modes of
our PlankAssembly model. In the first example, the net-
work makes incorrect predictions for attachments. In the
second example, the reconstructed 3D model is incomplete
because the stop token is predicted too early, which is a
known issue with auto-regressive models.

Front Top Side Ours GT

Figure 11. Failure cases. We highlight incorrectly reconstructed
planks in red.

6. Discussion
This paper advocates a generative approach to 3D CAD

model reconstruction from three orthographic views. Two
lessons can be learned from our experiments: First, com-
pared to finding explicit correspondences between the 2D
line drawings and 3D models, the attention mechanism
plays a key role in the deep network’s robustness to the im-
perfect inputs. Second, incorporating domain knowledge in
the generative model benefits both the reconstruction and
downstream applications.

One may argue that our experiments are limited to cab-
inet furniture, a special type of CAD model. However, we
emphasize that our main idea and the lessons learned are
general and can be applied to any CAD model. For ex-
ample, prior work such as DeepCAD [35] has developed
neural networks which are able to generate CAD command
sequences suitable for mechanical parts. Unlike cabinet fur-
niture, mechanical parts often have non-rectangular profiles
(but fewer blocks). It is thus relatively straightforward to
extend our approach to such domains.

A more challenging scenario is one attempting to ap-
ply our data-driven approach to domains where large-scale
CAD data is unavailable or even nonexistent, such as build-
ings or complex mechanical equipment. Besides, our cur-
rent approach does not consider other information available
in CAD drawings, such as layers, text, symbols, and anno-
tations. Recently, several methods have been proposed for
panoptic symbol spotting in CAD drawings [6, 39, 5]. We
believe that such information is also vital for 3D reconstruc-
tion from complex CAD drawings.

Acknowledgements
This work was supported in part by the Key R&D Pro-

gram of Zhejiang Province (2022C01025). Jian Yin is sup-
ported by the National Natural Science Foundation of China
(U1911203, U2001211, U22B2060), Guangdong Basic and
Applied Basic Research Foundation (2019B1515130001),
Key-Area Research and Development Program of Guang-
dong Province (2020B0101100001).

18503

References
[1] Lightning AI. https://github.com/

Lightning-AI/lightning. 5
[2] Open CASCADE Technology. https://dev.

opencascade.org/. 5
[3] pythonocc. https://github.com/tpaviot/

pythonocc-core. 5
[4] shapely. https://github.com/shapely/

shapely. 7
[5] Zhiwen Fan, Tianlong Chen, Peihao Wang, and Zhangyang

Wang. Cadtransformer: Panoptic symbol spotting trans-
former for CAD drawings. In IEEE Conf. Comput. Vis. Pat-
tern Recog., pages 10976–10986, 2022. 9

[6] Zhiwen Fan, Lingjie Zhu, Honghua Li, Xiaohao Chen, Siyu
Zhu, and Ping Tan. Floorplancad: A large-scale CAD draw-
ing dataset for panoptic symbol spotting. In Int. Conf. Com-
put. Vis., pages 10108–10117, 2021. 9

[7] Yaroslav Ganin, Sergey Bartunov, Yujia Li, Ethan Keller, and
Stefano Saliceti. Computer-aided design as language. In Adv.
Neural Inform. Process. Syst., pages 5885–5897, 2021. 3

[8] Jie-Hui Gong, Gui-Fang Zhang, Hui Zhang, and Jia-Guang
Sun. Reconstruction of 3d curvilinear wire-frame from three
orthographic views. Comput. Graph., 30(2):213–224, 2006.
1, 2

[9] Jie-Hui Gong, Hui Zhang, Gui-Fang Zhang, and Jia-Guang
Sun. Solid reconstruction using recognition of quadric
surfaces from orthographic views. Comput. Aided Des.,
38(8):821–835, 2006. 1, 2

[10] Kaining Gu, Zesheng Tang, and Jiaguang Sun. Reconstruc-
tion of 3d objects from orthographic projections. Comput.
Graph. Forum, 5(4):317–323, 1986. 1, 2

[11] Haoxiang Guo, Shilin Liu, Hao Pan, Yang Liu, Xin Tong,
and Baining Guo. ComplexGen: CAD reconstruction by
b-rep chain complex generation. ACM Trans. Graph.,
41(4):129:1–129:18, 2022. 3

[12] Wenyu Han, Siyuan Xiang, Chenhui Liu, Ruoyu Wang, and
Chen Feng. SPARE3D: A dataset for spatial reasoning on
three-view line drawings. In IEEE Conf. Comput. Vis. Pat-
tern Recog., pages 14678–14687, 2020. 2

[13] Masanori Idesawa. A system to generate a solid figure from
three view. Bulletin of the JSME, 16(92):216–225, 1973. 2

[14] Pradeep Kumar Jayaraman, Joseph G. Lambourne, Nishkrit
Desai, Karl D. D. Willis, Aditya Sanghi, and Nigel J. W.
Morris. SolidGen: An autoregressive model for direct b-rep
synthesis. Trans. Mach. Learn. Res., 2023. 3

[15] R. Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang,
Ellen Jiang, Paul Guerrero, Niloy J. Mitra, and Daniel
Ritchie. ShapeAssembly: learning to generate programs
for 3d shape structure synthesis. ACM Trans. Graph.,
39(6):234:1–234:20, 2020. 3

[16] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Int. Conf. Learn. Represent.,
2015. 5

[17] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis
Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa,
Denis Zorin, and Daniele Panozzo. ABC: A big cad model

dataset for geometric deep learning. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 9601–9611, 2019. 3

[18] Mu-Hsing Kuo. Reconstruction of quadric surface solids
from three-view engineering drawings. Comput. Aided Des.,
30(7):517–527, 1998. 1, 2

[19] Rémi Lequette. Automatic construction of curvilinear solids
from wireframe views. Comput. Aided Des., 20(4):171–180,
1988. 1

[20] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 2117–2125, 2017. 7

[21] Shi-Xia Liu, Shi-Min Hu, Yujian Chen, and Jia-Guang Sun.
Reconstruction of curved solids from engineering drawings.
Comput. Aided Des., 33(14):1059–1072, 2001. 1, 2

[22] George Markowsky and Michael A. Wesley. Fleshing out
wire frames. IBM J. Res. Dev., 24(5):582–597, 1980. 2

[23] Zak Murez, Tarrence van As, James Bartolozzi, Ayan Sinha,
Vijay Badrinarayanan, and Andrew Rabinovich. Atlas: End-
to-end 3d scene reconstruction from posed images. In Eur.
Conf. Comput. Vis., pages 414–431, 2020. 7

[24] Charlie Nash, Yaroslav Ganin, S. M. Ali Eslami, and Pe-
ter W. Battaglia. PolyGen: An autoregressive generative
model of 3d meshes. In Int. Conf. Mach. Learn., pages 7220–
7229, 2020. 8, 9

[25] Hiroshi Sakurai and David C. Gossard. Solid model input
through orthographic views. In ACM SIGGRAPH, pages
243–252, 1983. 1, 2, 6, 7, 8

[26] Abigail See, Peter J. Liu, and Christopher D. Manning.
Get to the point: Summarization with pointer-generator net-
works. In ACL, pages 1073–1083, 2017. 5

[27] Ari Seff, Wenda Zhou, Nick Richardson, and Ryan P.
Adams. Vitruvion: A generative model of parametric CAD
sketches. In Int. Conf. Learn. Represent., 2022. 3

[28] Byeong-Seok Shin and Yeong-Gil Shin. Fast 3d solid model
reconstruction from orthographic views. Comput. Aided
Des., 30(1):63–76, 1998. 1, 2, 6, 7, 8

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Adv. Neural Inform.
Process. Syst., pages 5998–6008, 2017. 2, 5

[30] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer
networks. In Adv. Neural Inform. Process. Syst., pages 2692–
2700, 2015. 4

[31] Weidong Wang and Georges G. Grinstein. A survey of 3d
solid reconstruction from 2d projection line drawings. Com-
put. Graph. Forum, 12(2):137–158, 1993. 2

[32] Michael A. Wesley and George Markowsky. Fleshing out
projections. IBM J. Res. Dev., 25(6):934–953, 1981. 2

[33] Karl D. D. Willis, Pradeep Kumar Jayaraman, Joseph G.
Lambourne, Hang Chu, and Yewen Pu. Engineering sketch
generation for computer-aided design. In IEEE Conf. Com-
put. Vis. Pattern Recog. Worksh., pages 2105–2114, 2021. 3

[34] Karl D. D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao
Du, Joseph G. Lambourne, Armando Solar-Lezama, and
Wojciech Matusik. Fusion 360 gallery: a dataset and en-
vironment for programmatic CAD construction from human

18504

design sequences. ACM Trans. Graph., 40(4):54:1–54:24,
2021. 3

[35] Rundi Wu, Chang Xiao, and Changxi Zheng. DeepCAD: A
deep generative network for computer-aided design models.
Int. Conf. Comput. Vis., pages 6772–6782, 2021. 3, 9

[36] Xiang Xu, Karl D. D. Willis, Joseph G. Lambourne, Chin-Yi
Cheng, Pradeep Kumar Jayaraman, and Yasutaka Furukawa.
Skexgen: Autoregressive generation of CAD construction
sequences with disentangled codebooks. In Int. Conf. Mach.
Learn., pages 24698–24724, 2022. 3

[37] Qing-Wen Yan, C. L. Philip Chen, and Zesheng Tang. Effi-
cient algorithm for the reconstruction of 3d objects from or-
thographic projections. Comput. Aided Des., 26(9):699–717,
1994. 1, 2

[38] Chun-Fong You and Shih-Shing Yang. Reconstruction of
curvilinear manifold objects from orthographic views. Com-
put. Graph., 20(2):275–293, 1996. 1, 2

[39] Zhaohua Zheng, Jianfang Li, Lingjie Zhu, Honghua Li,
Frank Petzold, and Ping Tan. GAT-CADNet: Graph atten-
tion network for panoptic symbol spotting in cad drawings.
In IEEE Conf. Comput. Vis. Pattern Recog., pages 11737–
11746, 2022. 9

18505

