
PROMPTCAP: Prompt-Guided Image Captioning for VQA with GPT-3

Yushi Hu1* Hang Hua2⇤ Zhengyuan Yang3

Weijia Shi1 Noah A. Smith1,4 Jiebo Luo2

1University of Washington 2University of Rochester
3Microsoft 4Allen Institute for AI

https://yushi-hu.github.io/promptcap_demo/

Abstract

Knowledge-based visual question answering (VQA) in-
volves questions that require world knowledge beyond the
image to yield the correct answer. Large language mod-
els (LMs) like GPT-3 are particularly helpful for this task
because of their strong knowledge retrieval and reasoning
capabilities. To enable LM to understand images, prior work
uses a captioning model to convert images into text. However,
when summarizing an image in a single caption sentence,
which visual entities to describe are often underspecified.
Generic image captions often miss visual details essential
for the LM to answer visual questions correctly. To address
this challenge, we propose PROMPTCAP (Prompt-guided
image Captioning), a captioning model designed to serve as
a better connector between images and black-box LMs. Dif-
ferent from generic captions, PROMPTCAP takes a natural-
language prompt to control the visual entities to describe
in the generated caption. The prompt contains a question
that the caption should aid in answering. To avoid extra
annotation, PROMPTCAP is trained by examples synthesized
with GPT-3 and existing datasets. We demonstrate PROMPT-
CAP’s effectiveness on an existing pipeline in which GPT-3
is prompted with image captions to carry out VQA. PROMPT-
CAP outperforms generic captions by a large margin and
achieves state-of-the-art accuracy on knowledge-based VQA
tasks (60.4% on OK-VQA and 59.6% on A-OKVQA). Zero-
shot results on WebQA show that PROMPTCAP generalizes
well to unseen domains.1

1. Introduction
Knowledge-based visual question answering (VQA) [37]

extends traditional VQA tasks [3] with questions that require

*Equal contribution. Correspondance to <Yushi Hu: yushihu@uw.edu>,
<Hang Hua: hhua2@cs.rochester.edu>

1All codes, data, and demos are available on the project page.
HF checkpoint: https://huggingface.co/tifa-benchmark/
promptcap-coco-vqa

What is the time of the day?

PromptCap

ChatGPT Evening.

A street with traffic lights in the evening.

What kind of food does the 
restaurant on the sign serve?

PromptCap

ChatGPT

A traffic light on a street corner with a 
McDonalds sign.

Fast food. Specifically, McDonald's serves 
burgers, fries, and other fast food items.

v.s. COCO caption: A traffic light on a pole on a city street.

Figure 1. Illustration of VQA with PROMPTCAP and ChatGPT.
PROMPTCAP is designed to work with black-box language models
(e.g., GPT-3, ChatGPT) by describing question-related visual infor-
mation in the text. Different from generic captions, PROMPTCAP
customizes the caption according to the input question prompt,
which helps ChatGPT understand the image and give correct an-
swers to the user. In contrast, ChatGPT cannot infer the answers
from the vanilla human-written caption from MSCOCO.

broad knowledge and commonsense reasoning to yield the
correct answer. Existing systems on knowledge-based VQA
retrieve external knowledge from various sources, including
knowledge graphs [13, 36, 63], Wikipedia [36, 63, 12, 15,
29], and web search [35, 63]. Recent work [67] finds that
modern language models (LMs) like GPT-3 [5] are particu-
larly useful for this task because of their striking knowledge
retrieval and reasoning abilities. The current state-of-the-art
methods [67, 15, 29, 1] all make use of recent large language
models (GPT-3 or Chinchilla).

One key challenge is to allow LMs to understand images.
Many top-performing LMs (e.g., GPT-3, ChatGPT) are only
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accessible via APIs, making it impossible to access their in-
ternal representations or conduct fine-tuning [49]. A popular
solution is to project images into texts that black-box LMs
can process, via a generic image captioning model [7] or
an image tagger [67]. This framework has been successful
on multiple tasks, including VQA [67, 15, 29], image para-
graph captioning [65], and video-language tasks [70, 60].
Despite promising results, converting visual inputs into a
generic, finite text description risks excluding information
necessary for the task. As discussed in PICa [67], when used
for VQA tasks, the generic caption might miss the detailed
visual information needed to answer the question, such as
missing the “McDonald’s" in Figure 1.

To address the above challenges, we introduce PROMPT-
CAP, a question-aware captioning model designed to serve
as a better connector between images and a black-box LM.
PROMPTCAP is illustrated in Figure 2. PROMPTCAP takes
an extra natural language prompt as input to control the vi-
sual content to describe. The prompt contains the question
that the generated caption should help to answer. LMs can
better answer visual questions by using PROMPTCAP as their
“visual front-end". For example, in Figure 1, when asked
“what is the time of the day?", PROMPTCAP includes “in the
evening" in its image description; when asked “what kind of
food does the restaurant on the sign serve?", PROMPTCAP
includes “McDonald’s” in its description. Such visual in-
formation is critical for ChatGPT to reply to the user with
the correct answers. In contrast, the generic COCO [28]
caption often contains no information about the time or the
sign, making ChatGPT unable to answer the questions.

One major technical challenge is PROMPTCAP training.
The pipeline of “PROMPTCAP + black-box LM" cannot be
end-to-end fine-tuned on VQA tasks because the LM param-
eters are not exposed through the API. Also, there are no
training data for question-aware captions. To avoid extra
annotation, we propose a pipeline to synthesize and filter
training samples with GPT-3. Specifically, we view existing
VQA datasets as pairs of question and question-related vi-
sual details. Given a question-answer pair, we rewrite the
corresponding image’s generic caption into a customized
caption that helps answer the question. Following 20 human-
annotated examples, GPT-3 synthesizes a large number of
question-aware captions via few-shot in-context learning [5].
To ensure the sample quality, we filter the generated captions
by performing QA with GPT-3, checking if the answer can
be inferred given the question and the synthesized caption.
Notice that GPT-3 is frozen in the whole pipeline. Its strong
few-shot learning ability makes this pipeline possible.

We demonstrate the effectiveness of PROMPTCAP on
knowledge-based VQA tasks with the pipeline in PICa [67].
Details of the pipeline are illustrated in §4. The images are
converted into texts via PROMPTCAP, allowing GPT-3 to
perform VQA via in-context learning. This pipeline, despite

PromptCap

Question:  
What type plane 
is this? 

Answer: 747 

Generic caption: 
A passenger jumbo jet 
taxiing at an airport. 

please describe this 
image according to the 
following question: 
what type plane is this? 

Prompt

A 747 taxiing 
at an airport 

GPT-3
Training 
Target

Question-aware caption 
(synthesized by GPT-3)

Original VQA sample

GPT-3 rewrite

Figure 2. Overview of PROMPTCAP training. PROMPTCAP takes
two inputs, including an image and a natural language prompt.
The model is trained to generate a caption that helps downstream
LMs to answer the question. During training, we use GPT-3 to
synthesize VQA samples into captioning examples. The original
caption is rewritten into a caption that helps answer the question.
PROMPTCAP is trained to generate this synthesized caption given
the image and the prompt.

its simplicity, achieves state-of-the-art results on knowledge-
based VQA tasks (60.4% on OK-VQA [38] and 59.6% on
A-OKVQA [46]). We also conduct extensive ablation stud-
ies on the contribution of each component, showing that
PROMPTCAP gives a consistent performance gain (3.8% on
OK-VQA, 5.3% on A-OKVQA, and 9.2% on VQAv2) over
a generic captioning model that shares the same architecture
and training data. Finally, we investigate PROMPTCAP’s
generalization ability on WebQA [6], showing that PROMPT-
CAP, without any training on the compositional questions in
WebQA, outperforms the generic caption approach and all
supervised baselines.

In summary, our contributions are as follows:

• We propose PROMPTCAP, a novel question-aware cap-
tioning model that uses natural language prompt to
control the visual content to be described. (§3)

• To the best of our knowledge, we are the first to propose
a pipeline to synthesize and filter training samples for
vision-language tasks via GPT-3 (§3.1).

• PROMPTCAP helps GPT-3 in-context learning (§4)
achieve state-of-the-art results on OK-VQA and A-
OKVQA, substantially outperforming generic captions
on various VQA tasks. (§5).

2. Related Work
Knowledge-Based VQA Knowledge-based VQA [38, 46]
requires systems to leverage external knowledge beyond im-
age content to answer the question. Prior works [13, 36,
63, 72, 40, 41, 17, 18, 12] investigate leveraging knowledge
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from various external knowledge resources, e.g., Wikipedia
[56], ConceptNet [50], and ASER [71], to improve the per-
formance of the VQA models. Inspired by PICa [67], recent
works [15, 29] use GPT-3 as an implicit knowledge base
and achieve state-of-the-art results. We identify the critical
problem: generic captions used to prompt GPT-3 often miss
critical visual details for VQA. We address this challenge
with PROMPTCAP.

Vision-Language Models Vision-language models have
recently shown striking success on various multimodal
tasks [51, 33, 9, 27, 61, 22, 43, 66, 57, 58, 34, 68, 8, 26].
These works first pretrain multimodal models on large-scale
image-text datasets and then finetune the models for partic-
ular tasks. The works most related to ours are Frozen [54],
Flamingo [1], and BLIP-2 [26], which keeps the LMs frozen
and tune a visual encoder for the LM. However, such tech-
niques require access to internal LM parameters and are thus
difficult to be applied to black-box LMs like GPT-3.

Prompting for Language Models Prompting allows a
pre-trained model to adapt to different tasks via different
prompts without modifying any parameters. LLMs like GPT-
3 [5] have shown strong zero-shot and few-shot ability via
prompting. Prompting has been successful for a variety of
natural language tasks [32], including but not limited to clas-
sification tasks [39, 48], semantic parsing [64], knowledge
generation [49, 30], and dialogue systems [24, 16]. The most
closely-related works to ours are the instruction-finetuned
language models [45, 62, 59].

3. PROMPTCAP

We introduce PROMPTCAP, an image captioning model
that utilizes a natural language prompt as an input condition.
The overview of PROMPTCAP training is in Figure 2. Given
an image I , and a natural language prompt P , PROMPTCAP
generates a prompt-guided caption C. P contains instruc-
tions about the image contents of interest to the user. For
VQA, an example prompt could be “Please describe this
image according to the following question: what type plane
is this?. The prompt-guided caption C should (1) cover the
visual details required by the instruction in the prompt, (2)
describe the main objects as general captions do, and (3)
use auxiliary information in the prompt if necessary. For
instance, assuming the prompt contains a VQA question,
C may directly describe the asked visual contents (e.g., for
questions about visual details), or provide information that
helps downstream models to infer the answer (e.g., for ques-
tions that need external knowledge to solve).

Given the above design, the major technical challenge is
PROMPTCAP training. PROMPTCAP is designed to work
with black-box LMs, which cannot be end-to-end fine-tuned
on VQA tasks because the LM parameters are not accessi-
ble. Besides, there are no training data for question-aware

Task instruction

Human-written in-context examples
Original Context: A orange tabby cat laying down on 
a black car.
Question: What brand of car is this?
Answer: Subaru
Summary: A orange tabby cat laying down on a black 
Subaru.

Example to synthesize

Prompt

Synthesized question-aware caption

Original Context: A passenger jumbo jet taxiing at an 
airport.
Question: What type plane is this?
Answer: 747
Summary:

Summarize the context to help answer the question

…
Original Context: A bright kitchen with hardwood 
floors and wooden cupboards.
Question: What is the source of light in this picture?
Answer: sunlight
Summary: A bright kitchen lit by sunlight.

Corresponding 
Images

GPT-3 A 747 taxiing at an airport.

Figure 3. Training example synthesis with GPT-3 in-context learn-
ing. The “Original Contexts" are ground-truth image captions. The
question-answer pairs come from existing VQA datasets. GPT-3
generalizes (without parameter updates) from the human-written
examples to produce the question-aware caption given the caption,
question, and answer. The images are shown for clarity but are not
used in our data synthesis procedure.

captions. To address these challenges, we propose training
PROMPTCAP with data synthesized with GPT-3.

3.1. Training Data Synthesis

To avoid annotating question-aware caption examples, we
use GPT-3 to generate training examples for PROMPTCAP
via in-context learning [5, 44, 16, 10].

3.1.1 Training Example Generation with GPT-3

For PROMPTCAP training, we view existing VQA datasets
as natural sources of pairs of task and task-related visual
details. We synthesize question-aware captions by combin-
ing the general image captions and the question-answering
pairs using GPT-3 in-context learning. Figure 3 illustrates
the GPT-3 prompt we use for training example generation.
The prompt contains the task instruction, 20 human-written
examples, and the VQA question-image pair that we syn-
thesize the task-aware caption from. Since GPT-3 only ac-
cepts text inputs, we represent each image by concatenating
the 5 human-written COCO captions [7], as shown in the
“Original Context". The human-written examples follow the
three principles of prompt-guided captions described in Sec-
tion 3. The commonsense reasoning ability of GPT-3 allows
the model to understand the image to some extent via the
COCO captions and synthesize new examples by following
the human-written examples.
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3.1.2 Training Example Filtering

To ensure the quality of the generated captions, we sample
5 candidate captions from GPT-3 for each question-answer
pair. We devise a pipeline to filter out the best candidate
caption as the training example for PROMPTCAP. The idea
is that a text-only QA system should correctly answer the
question given a high-quality prompt-guided caption as the
context. For each candidate caption, we use the GPT-3 in-
context learning VQA system in §4 to predict an answer, and
score the candidate captions by comparing this answer with
the ground-truth answers.

Soft VQA Accuracy We find that in the open-ended gen-
eration setting, the VQA accuracy [14] incorrectly punishes
answers with a slight difference in surface form. For ex-
ample, the answer “coins" gets 0 when the ground truth
is “coin". To address this problem, we devise a new soft
VQA accuracy for example filtering. Suppose the predicted
answer is a and the human-written ground truth answers
are [g1, g2, ..., gn]. The soft accuracy is given by the three
lowest-CER ground truth answers:

Accsoft(a) = max
x,y,z2[n]

X

i2{x,y,z}

max[0, 1� CER(a, gi)]

3
,

where CER is the character error rate, calculated by the char-
acter edit distance over the total number of characters of the
ground truth. In contrast, the traditional VQA accuracy [14]
uses exact match. We sort the candidate captions based on
this soft score.

Comparing with COCO ground-truth Multiple candi-
dates may answer the question correctly and get the same soft
score. To break ties, we also compute the CIDEr score [55]
between the candidate captions and the COCO ground-truth
captions. Among the candidates with the highest soft VQA
accuracy, the one with the highest CIDEr score is selected
as the training example for PROMPTCAP.

3.2. PROMPTCAP Training
For PROMPTCAP training, we start with the state-of-the-

art pre-trained vision-language model OFA [58] and make
some modifications to the OFA captioning model. OFA
has an encoder-decoder structure. As discussed earlier, our
training data are synthesized with VQA data in the form
of question-caption pairs. Given a question-caption pair,
we first rewrite the question into an instruction prompt via
a template. For example, the instruction prompt might
be “describe to answer: What is the clock saying the time
is?". We apply byte-pair encoding (BPE) [47] to the given
text sequence, encoding it as subwords. Images are trans-
formed into image patches that share the same subword
token set. Let the training samples be D = {Pi, Ii, Ci}|D|

i=1,

in which Pi is the text prompt, Ii is the image patch, and
Ci is the synthesized task-aware caption. The captioning
model takes [Pi : Ii] as input and is trained to generate
Ci = [c1, c2, ..., c|Ci|]. Here [:] is concatenation. We use
negative log-likelihood loss and train the model in an end-to-
end manner. The training loss is :

L = �
X

D

|Ci|X

t=1

log p(ct | [Pi : Ii], ct�1).

4. VQA with PROMPTCAP and GPT-3
Our VQA pipeline is illustrated in Figure 4, which is

adopted from PICa [67]. The pipeline consists of two com-
ponents, PROMPTCAP and GPT-3.

Step 1: Converting images into texts via PROMPTCAP
GPT-3 can perform a new task by simply conditioning on
several task training examples as demonstrations. As we
have discussed, the major challenge is that GPT-3 does not
understand images. To bridge this modality gap, we convert
the images in VQA samples to texts using PROMPTCAP (Fig-
ure 4a). Notice that different from generic captioning models,
PROMPTCAP customizes the image caption according to the
question, which enables LMs to understand question-related
visual information in the image. As such, we are able to con-
vert VQA samples into question-answering examples that
GPT-3 can understand.

Step 2: GPT-3 in-context learning for VQA Hav-
ing used PROMPTCAP to convert VQA examples into
question-answer examples that GPT-3 can understand
(Step 1), we use a subset of these examples as the
task demonstration for GPT-3. We concatenate the in-
context learning examples to form a prompt, as shown
in Figure 4b. Each in-context learning example consists
of a question (Question: When was the first
time this was invented?), a context generated
by PROMPTCAP (Context: a train traveling
down tracks next to a dirt road), and an an-
swer (Answer: 1804). Then we append the test exam-
ple to the in-context learning examples, and provide them
as inputs to GPT-3. GPT-3 generates predictions based on
an open-ended text generation approach, taking into account
the information provided in the in-context learning examples
and the test example.

Example retrieval Previous research has shown that the
effectiveness of in-context learning examples chosen for
GPT-3 can significantly impact its performance [31]. In the
few-shot setting where only a few training examples are avail-
able, we simply use these examples as in-context learning
examples (referred to as “Random” in later sections because
they are selected at random from our collection). However,
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 Q: What is the purpose of the red rag?

 A: clean

PromptCap

Original VQA sample

In-Context Example for LM

Question: What is the purpose of the red rag? 
  
Context: a kitchen sink with a red towel on the rack 
  
Answer: clean 

(a) Step 1: Using PromptCap to convert images into texts

(b) Step 2: VQA with PromptCap and in-context learning on GPT-3

GPT-3 Input

Question: When was the first 
time this was invented? 
Context: a train traveling down 
tracks next to a dirt road 
Answer: 1804

Question: What is the purpose 
of the red rag? 
Context: a kitchen sink with a 
red towel on the rack 
Answer: clean

Question: Who invented this 
machine? 
Context: an old plane flying 
over a church 
Answer:

. . .

GPT-3 Completion

Wright brothers

Figure 4. Our inference pipeline for VQA. (a) Illustration of how we convert a VQA sample into pure text. Given the image and the
question, PROMPTCAP describes the question-related visual information in natural language. The VQA sample is turned into a QA sample
that GPT-3 can understand. (b) GPT-3 in-context learning for VQA. After converting the VQA examples into text with PROMPTCAP, we
carry out VQA by in-context learning on GPT-3. The input consists of the task instruction (not shown in the figure), the in-context examples,
and the test instance. GPT-3 takes the input and generates the answer. Notice that the GPT-3 is treated as a black box and is only used for
inference. The question-aware captions PROMPTCAP generated are marked red.

in practice, we often have access to more than small-n exam-
ples (i.e., full training data setting). To improve the selection
of in-context learning examples, we follow the approach pro-
posed by [67]: we compute the similarity between examples
using CLIP [43] by summing up the cosine similarities of
the question and image embeddings. The n most similar
examples in the training set are then selected as in-context
examples (referred to as “CLIP” in this paper). By using the
most similar in-context examples to the test instance, our ap-
proach can improve the quality of the learned representations
and boost the performance of GPT-3 on VQA tasks.

5. Experiments
In this section, we demonstrate PROMPTCAP’s effective-

ness on knowledge-based VQA tasks. First, we show that
PROMPTCAP captions enable GPT-3 to achieve state-of-
the-art performance on OK-VQA [38] and A-OKVQA [46]
with in-context learning. Then we conduct ablation experi-
ments on the contribution of each component, showing that
PROMPTCAP is giving consistent gains over generic cap-
tions. In addition, experiments on WebQA [6] demonstrate
that PROMPTCAP generalizes well to unseen domains.

5.1. Experimental Setup
Datasets We use three knowledge-based VQA datasets,
namely OK-VQA [38], A-OKVQA [46], and WebQA [6].
OK-VQA[38] is a large knowledge-based VQA dataset that

contains 14K image-question pairs. Questions are manu-
ally filtered to ensure that outside knowledge is required to
answer the questions. A-OKVQA[46] is an augmented suc-
cessor of OK-VQA, containing 25K image-question pairs
that require broader commonsense and world knowledge
to answer. For both OK-VQA and A-OKVQA, the direct
answers are evaluated by the soft accuracy from VQAv2[14].
Besides direct answer evaluation, A-OKVQA also provides
multiple-choice evaluation, where the model should choose
one correct answer among 4 candidates. WebQA [6] is a
multimodal multi-hop reasoning benchmark that requires the
model to combine multiple text and image sources to answer
a question.

PROMPTCAP implementation details We adopt the of-
ficially released OFA [58] captioning checkpoint “caption-
large-best-clean” (470M) for model initialization and use the
GPT-3 synthesized examples in §3.1 to fine-tune the model.
The examples are synthesized from VQAv2 [3, 14]. No-
tice that this dataset is included in OFA pre-training, so we
are not adding additional annotated training data compared
with OFA. We use AdamW [23] optimizer with learning rate
{2 ⇥ 10�5, 3 ⇥ 10�5, 5 ⇥ 10�5}, batch size {32, 64, 128},
and �1 = 0.9, �2 = 0.999 for training.

In-context learning details We use code-davinci-002 en-
gine (175B) for GPT-3 in all the experiments. Due to the
input length limit, we use n = 32 most similar examples in

2967



Table 1. Results comparison with existing systems on OK-VQA, with the image representation and the knowledge source each method uses.
GPT-3 is frozen for all methods. The methods on top require end-to-end finetuning on OK-VQA. The methods below are fully based on
in-context learning or zero-shot learning and do not require task-specific finetuning.

Method Image Representation Knowledge Source Accuracy (%)

End-to-End Finetuning
Question only [37] - - 14.9
MUTAN [38] Feature - 26.4
BAN + KG + AUG [25] Feature Wikipedia + ConceptNet 26.7
ConceptBERT [13] Feature ConceptNet 33.7
KRISP [36] Feature Wikipedia + ConceptNet 38.4
Vis-DPR [35] Feature Google Search 39.2
MAVEx [63] Feature Wikipedia + ConceptNet + Google Images 39.4
TRiG [12] Caption + Tags + OCR Wikipedia 50.5
KAT (Single) [15] Caption + Tags + Feature GPT-3 (175B) + Wikidata 54.4
KAT (Ensemble) [15] Caption + Tags + Feature GPT-3 (175B) + Wikidata 54.4
REVIVE (Single) [29] Caption + Feature GPT-3 (175B) + Wikidata 56.6
REVIVE (Ensemble) [29] Caption + Feature GPT-3 (175B) + Wikidata 58.0

In-Context Learning & Zero-Shot
BLIP-2 VIT-G FlanT5XXL [26] (zero-shot) Feature FlanT5-XXL (11B) 45.9
PICa-Base [67] Caption + Tags GPT-3 (175B) 43.3
PICa-Full [67] Caption + Tags GPT-3 (175B) 48.0
Flamingo (80B) [1] (zero-shot) Feature Chinchilla (70B) 50.6
Flamingo (80B) [1] (32-shot) Feature Chinchilla (70B) 57.8
PromptCap + GPT-3 Caption GPT-3 (175B) 60.4

Table 2. Results comparison with existing systems on A-OKVQA.
There are two evaluations, namely multiple-choice and direct-
answer. Both are measured by accuracy(%).

Multiple Choice Direct Answer
Method val test val test

ClipCap [46] 44.0 43.8 18.1 15.8
Pythia [19] 49.0 40.1 25.2 21.9
ViLBERT [33] 49.1 41.5 30.6 25.9
LXMERT [53] 51.4 41.6 30.7 25.9
KRISP [36] 51.9 42.2 33.7 27.1
GPV-2 [20] 60.3 53.7 48.6 40.7

PromptCap + GPT-3 73.2 73.1 56.3 59.6

the prompt for GPT-3. The examples are retrieved by CLIP
(VIT-L/14) using the method discussed in §4.

5.2. Results on OK-VQA and A-OKVQA
Table 1 compares PROMPTCAP + GPT-3 with other meth-

ods on the OK-VQA validation set. For each method, we
also list the way it represents the images, and the knowledge
source used. The table is split into two sections. The up-
per section lists fully supervised methods. These methods
require end-to-end finetuning. The methods in the bottom
section are based on in-context learning and no task-specific
finetuning is done on the models.

We can see that all state-of-the-art systems use GPT-3
(or Chinchilla) as part of their systems. These methods
obtain significant performance gains compared with previous

methods, showing the importance of the LM in knowledge-
based VQA tasks. PICa is the first system that used GPT-3 as
the knowledge source. KAT [15] further improves over PICa
by introducing Wikidata [56] as the knowledge source, doing
ensemble and end-to-end finetuning on multiple components.
REVIVE [29] is the current state of the art on OK-VQA.
Compared with KAT, it introduces extra object-centric visual
features to the ensemble, which brings additional gains over
KAT. However, all of the above methods use generic image
captions to prompt knowledge from GPT-3. We identify
this as a critical bottleneck in using LMs for VQA tasks.
PROMPTCAP is designed to address this bottleneck.

Comparison with state of the art Our proposed PROMPT-
CAP + GPT-3, despite using no additional knowledge source,
no ensemble with visual features, and no end-to-end finetun-
ing, achieves 60.4% accuracy and outperforms all existing
methods on OK-VQA. Table 2 shows similar results on A-
OKVQA, in which PROMPTCAP + GPT-3 outperforms all
prior methods by a large margin on both multiple-choice
(73.1%) and direct-answer (59.6%) evaluations. These re-
sults demonstrate PROMPTCAP’s effectiveness in connecting
LMs with images. Besides, we would like to emphasize that
PROMPTCAP could replace the captioning module in the
systems KAT and REVIVE have proposed, which might
further boost the performance. We expect that PROMPTCAP
will help future systems with complementary advances to
achieve even better performance on these tasks.
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5.3. Ablation Study
We conduct extensive ablation studies to quantify the

performance benefit of each component in our system, i.e.,
the captioning model PROMPTCAP, the language model, and
the prompting method. We conduct ablation experiments on
each component.

Additional dataset for analysis Besides knowledge-based
VQA tasks, we would also like to investigate the perfor-
mance gain from PROMPTCAP for traditional VQA. Thus,
we also include VQAv2 [3] in our ablation studies.

Table 3. Ablation on the contribution of PROMPTCAP, compared
with generic captioning model OFA-Cap. The LM we use is GPT-3.

Captioning Model OK-VQA A-OKVQA VQAv2

OFA-Cap 56.6 51.0 64.9
PROMPTCAP 60.4 56.3 74.1

5.3.1 Performance Benefit from PROMPTCAP

Baseline generic captioning model We use the officially
released OFA [58] captioning checkpoint “caption-large-
best-clean” (470M) as the baseline generic captioning model.
We refer to it as “OFA-Cap”. We choose this model because
this is the model initialization we use for PROMPTCAP, shar-
ing the same model architecture. Notice that OFA is a large
vision-language model pre-trained on 20M image-text pairs
and 20 vision-language tasks, including many VQA tasks.
We are not using additional annotated data during PROMPT-
CAP finetuning.

PROMPTCAP captions give consistent gains over generic
captions. Table 3 measures the performance benefit from
PROMPTCAP on OK-VQA, A-OKVQA, and VQAv2 vali-
dation sets. Here we focus on the performance gap between
using PROMPTCAP captions and generic OFA captions. We
can see that PROMPTCAP gives consistent improvements
over generic captions. Specifically, with GPT-3, PROMPT-
CAP improves over OFA-Cap by 3.8%, 5.3%, and 9.2%
absolute accuracy on OK-VQA, A-OKVQA, and VQAv2,
respectively.

Table 4. Ablation on the contribution of GPT-3. We measure
the performance gain of using GPT-3 as the language model, com-
pared with Flan-T5-XXL (11B). The captioning model we use is
PROMPTCAP.

Language Model OK-VQA A-OKVQA VQAv2

Flan-T5-XXL (11B) 42.0 41.5 70.9
GPT-3 (175B) 60.4 56.3 74.1

5.3.2 Performance Benefit from Language Model

Baseline language model To measure the performance
gain from GPT-3, we choose Flan-T5-XXL(11B) [11] as

the baseline language model. FlanT5-XXL is an instruction-
finetuned LM that has shown good in-context learning ability.
Notice that for Flan-T5-XXL, because of the input length
limit, we use n = 16 in-context examples in the input.

GPT-3 yields huge gains on knowledge-based VQA, but
not on VQAv2. Results in Table 4 quantify the benefit of
GPT-3 over Flan-T5-XXL. GPT-3 yields great performance
gains on knowledge-based VQA tasks, improving over Flan-
T5 by 18.4% and 14.8% absolute accuracy on OK-VQA and
A-OKVQA, respectively. In comparison, on VQAv2, GPT-
3 only gives 3.2% accuracy gain, which is much smaller
than the gain from PROMPTCAP over generic captions. The
results indicate that GPT-3’s external knowledge is critical
for knowledge-based VQA tasks but not for VQAv2. We
speculate that this disparity arises from VQAv2’s focus on
information in the image, without requiring additional knowl-
edge beyond visual information.

Table 5. Ablation of GPT-3 prompting on OK-VQA. We experi-
ment with different numbers of in-context examples in the input and
measure the performance gain from retrieving similar in-context
examples compared with random examples.

Examples Caption n=1 n=4 n=16 n=32

Random OFA-Cap 42.8 46.6 49.7 50.8
PROMPTCAP 46.5 50.0 53.1 55.2

CLIP OFA-Cap 44.5 50.0 55.3 56.6
PROMPTCAP 48.7 53.3 58.4 60.4

5.3.3 Ablation on GPT-3 Prompting

As discussed in §4, two factors affect the in-context learn-
ing performance: the number of in-context examples, and
the example selection strategy. To measure the effects of
these two factors, we conduct an ablation study on GPT-3
prompting for OK-VQA in Table 5. We vary the number of
examples n 2 {1, 4, 16, 32} and experiment with random
examples and the most similar examples retrieved by CLIP
(VIT-L/14) [43]. We can see that for both example selection
strategies, the more in-context examples, the better the per-
formance. Also, retrieving most similar examples with CLIP
gives substantial performance gain (5.2% absolute accuracy
for PROMPTCAP when n = 32). Both findings agree with
the claims in prior work [5, 31, 67].

5.4. Domain Transfer on WebQA
We apply PROMPTCAP to WebQA [6] to evaluate

PROMPTCAP’s generalization ability on images and tasks
from different domains. WebQA images are crawled from
the web and are from domains different from the COCO [28]
images used in PROMPTCAP’s training data synthesized
from VQAv2 [14]. Due to the task setting, questions are
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Two cats eating from a bowl 
on a red placemat.

What is the complimentary 
color to the placemat?

PromptCap

GPT-3

Green

A Volkswagen van parked in 
a parking lot.

What brand vehicle is the 
blue white one?

PromptCap

Volkswagen
GPT-3

A woman is pumping gas into 
a silver SUV

What is the seating capacity 
of the silver vehicle?

PromptCap

7
GPT-3

A boy in a trench coat putting 
up gloves.

What piece of clothing is 
this boy putting on?

PromptCap

Gloves
GPT-3

A person bending over by the 
side of a parked car.

4
GPT-3

Question-Aware Caption

A van is parking in the lot.

Mercedes
GPT-3

A cat is looking at a bowl of 
food.

Yellow
GPT-3

A young boy is standing next 
to a suitcase.

Tie
GPT-3

Question-Aware Caption Question-Aware Caption Question-Aware Caption

Generic Caption Generic Caption Generic Caption Generic Caption

(a) (b) (c) (d)

Figure 5. Example captions generated by PROMPTCAP and OFA-Cap, and the answers GPT-3 generated the captions. For all these questions,
GPT-3 yields the correct answer given PROMPTCAP captions but fails given the generic caption. Questions are from OK-VQA.

A fighter jet flying through a 
blue sky.

What is in the sky?

PromptCap

GPT-3
Cloud

A young boy standing in front 
of a race car in Louisiana.

What state is the child 
most likely in?

PromptCap

Louisiana
GPT-3

A bus with a movie 
advertisement on the side of it.

What network did the show in 
the picture first air on?

PromptCap

Fox
GPT-3

(a) (b) (c)

PromptCap fails to provide 
helpful information

Gold answer:  
HBO

Gold answer:  
Massachusetts

PromptCap hallucinates 
information

GPT-3 does not follow the 
visual context

Gold answer:  
Jet

A woman riding a horse in 
front of a car.

What is the fastest this 
animal can run?

PromptCap

GPT-3
40 mph

(d)

GPT-3 provides the wrong 
answer

Gold answer:  
55 mph

Figure 6. Representative failure cases of PROMPTCAP and GPT-3 pipeline on OK-VQA.

Table 6. Results on the WebQA validation set with oracle sources
on image queries. The baselines in the upper part are fully super-
vised, while our methods only use 8-shot in-context learning.

Method FL Acc FL*Acc

Fully supervised
VLP + VinVL [6] 47.6 49.6 27.5
VLP + x101fpn [6] 46.9 44.3 23.8

8-shot in-context learning
OFA-Cap + GPT-3 52.8 55.4 33.5
PROMPTCAP + GPT-3 53.0 57.2 34.5

compositional and much longer than typical VQA questions.
We convert the source images into captions and use GPT-3
in-context learning to carry out the task with only 8 ran-
dom examples. The answers are long-form and measured by
two scores: the fluency score measured by BARTScore [69]
and the accuracy score that measures if human-annotated
keywords are included in the answer. The results in the
image-query setting with oracle sources on the validation

set2 are shown on Table 6. Our systems outperform all the
official baselines. PROMPTCAP outperforms the generic
OFA captions, showing that PROMPTCAP is generalizable
to a different domain of questions and images.

5.5. Qualitative Analysis
Representative captions generated by PROMPTCAP and

OFA are illustrated in Figure 5. The task is to answer the
questions in OK-VQA. For all these questions, GPT-3 gener-
ates the correct answer when taking PROMPTCAP’s caption
as input, but fails when taking the generic caption. PROMPT-
CAP is able to capture visual attributes according to the
question, for example, “brand" in (b) and “color" in (c).
In addition, it can focus on particular objects asked in the
question, such as the clothing the boy is “putting on" in (d).
For tasks beyond PROMPTCAP’s reasoning ability, GPT-3
infers the answer by the visual details PROMPTCAP gives.
For example, GPT-3 infers “green" for the “complimentary

2Setting at https://github.com/WebQnA/WebQA/tree/
main/baseline_output_files/Baseline_prediction_
files_on_Val
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color of red" in (c) and “7" for SUV’s seating capacity in
(a). We also show some representative failure cases in Fig-
ure 6. The majority of failures are as shown in (a) and (b),
in which PROMPTCAP fails to provide helpful information,
or provides unfactual information. GPT-3 sometimes makes
mistakes, as shown in (c) and (d).

Table 7. Comparison of captions. “GPT-3-Syn" are the question-
aware captions synthesized by GPT-3. “COCO-GT" are the
MSCOCO ground-truth captions. Higher scores imply higher simi-
larities between the captions.

Captions B M C S

Comparison between “gold captions"
GPT-3-Syn COCO-GT 67.1 44.3 182.9 32.1

Inferenced captions vs. “gold captions"
OFA-Cap GPT-3-Syn 26.2 25.3 231.0 40.2
PROMPTCAP GPT-3-Syn 33.0 29.7 307.1 47.3
OFA-Cap COCO-GT 44.5 30.9 147.9 24.6
PROMPTCAP COCO-GT 45.4 31.6 150.1 25.2

5.6. Analysis: How Do Question-Aware Captions
Differ from Generic Captions?

To further analyze the question-aware captions, we com-
pare different inferred/gold captions in Table 7. The cap-
tions are compared by the automatic evaluations used in
MSCOCO [7]: BLEU-4 (B) [42], METEOR (M) [4], CIDEr
(C) [55], and SPICE (S) [2]. We evaluate the captions on the
VQAv2 question-image pairs with images in the Karpathy
test split [21] and average the scores over the questions. The
upper part of the table compares the “training targets" for
PROMPTCAP and the generic captioning model OFA-Cap.
The lower part compares the captions inferred by each cap-
tioning model with these “gold captions". We make several
observations from the table:
GPT-3 synthesized question-aware captions synthesized
by GPT-3 are highly similar to the MSCOCO ground
truth generic captions. As seen in the upper part of Ta-
ble 7, the question-aware captions are really similar to the
MSCOCO ground-truth captions.
PROMPTCAP achieves high CIDEr and SPICE scores
using GPT-3 synthesized captions as reference. The sec-
ond row in the lower part compares the prompt-guided cap-
tions generated by PROMPTCAP with the GPT-3 synthesized
question-aware captions. We can see that the CIDEr and
SPICE scores are really high. One possible reason for the
high scores is that synthesized question-aware captions are
typically less diverse, shorter, and cover fewer visual entities
compared with human-written general captions. Moreover,
the image captioning task becomes less ambiguous via the
prompt’s control, making it easier for PROMPTCAP to learn.
PROMPTCAP can also generate high-quality generic cap-
tions. The last row shows the quality of the generic captions

generated by PROMPTCAP. Users can get generic captions
by prompting PROMPTCAP with the question “what does
the image describe?". All the automatic metrics show that
PROMPTCAP achieves SOTA performance on COCO valida-
tion set, with even higher scores than the original OFA-Cap
model.

6. Limitations and Broader Impact
One limitation is that the current PROMPTCAP only fo-

cuses on knowledge-based VQA tasks. PROMPTCAP can
be extended to other vision-language tasks beyond VQA.
Figure 7 shows an example of solving NLVR2 [52] via a
series of vision and reasoning steps between PROMPTCAP
and ChatGPT. Future work may scale up PROMPTCAP train-
ing with more diverse tasks and instructions, and explore
broader applications of PROMPTCAP beyond VQA.

Another limitation is that images contain information
that cannot be abstracted as text. While PROMPTCAP has
demonstrated promising results in bridging the gap between
LMs and images, it is important to recognize its limitations
and use it in conjunction with other methods to ensure a
comprehensive understanding of visual data.

Determine whether the claim is true:  
The left image contains twice the number of dogs as the 
right image, and at least two dogs in total are standing

ChatGPT

The claim is true.

Left: Two dogs standing in the sand 
Right: A dog standing in the grass

How many dogs are there, and how many 
are standing?

PromptCap

ChatGPT

Figure 7. Demo of solving the NLVR2 task with off-the-shelf
PROMPTCAP and ChatGPT via an interpretable reasoning process.

7. Conclusion
We present PROMPTCAP, a novel question-aware cap-

tioning model that can be controlled via a natural language
prompt. To train this captioning model with no extra anno-
tation, we devise an efficient pipeline for synthesizing and
filtering training examples via GPT-3. We demonstrate the ef-
fectiveness of PROMPTCAP on knowledge-based VQA tasks.
Our system achieves state-of-the-art performance on OK-
VQA and A-OKVQA. Ablations show that PROMPTCAP is
giving consistent gains over generic captions. Furthermore,
we investigate PROMPTCAP’s generalization ability on We-
bQA. PROMPTCAP works as a simple and general module
for converting question-related visual information into text.
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