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Abstract

Despite thousands of researchers, engineers, and artists
actively working on improving text-to-image generation mod-
els, systems often fail to produce images that accurately
align with the text inputs. We introduce TIFA (Text-to-Image
Faithfulness evaluation with question Answering), an auto-
matic evaluation metric that measures the faithfulness of a
generated image to its text input via visual question answer-
ing (VQA). Specifically, given a text input, we automatically
generate several question-answer pairs using a language
model. We calculate image faithfulness by checking whether
existing VOA models can answer these questions using the
generated image. TIFA is a reference-free metric that allows
for fine-grained and interpretable evaluations of generated
images. TIFA also has better correlations with human judg-
ments than existing metrics. Based on this approach, we
introduce TIFA v1.0, a benchmark consisting of 4K diverse
text inputs and 25K questions across 12 categories (object,
counting, etc.). We present a comprehensive evaluation of ex-
isting text-to-image models using TIFA v1.0 and highlight the
limitations and challenges of current models. For instance,
we find that current text-to-image models, despite doing well
on color and material, still struggle in counting, spatial
relations, and composing multiple objects. We hope our
benchmark will help carefully measure the research progress
in text-to-image synthesis and provide valuable insights for
further research.

1. Introduction

While we welcome artistic freedom when we commis-
sion art from artists, images produced by deep generative
models [44, 46, 43, 47, 61] should conform closely to our
requests. Despite the advances in generative models, it is
still challenging for models to produce images faithful to
users’ intentions [40, 11, 30, 35, 36]. For example, current
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Figure 1. Illustration of how TIFA works, and comparison with the
widely-used CLIPScore and SPICE metrics. Given the text input,
TIFA uses GPT-3 to generate several question-answer pairs, and
a QA model filters them (3 out of 14 questions for this text input
are shown). TIFA measures whether VQA models can accurately
answer these questions given the generated image. In this example,
TIFA indicates that the image generated by Stable Diffusion v2.1 is
better than that by v1.5, while CLIP and SPICE yield the opposite
result. The text input is from the MSCOCO validation set.

models often fail to compose multiple objects [40, 11, 35],
bind attributes to the wrong objects [ 1 1], and struggle in gen-
erating visual text [36]. Today, there are efforts to address
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(a) Overview of TIFA

(b) TIFA v1.0 benchmark

Figure 2. (a) Overview of how TIFA evaluates the faithfulness of a synthesized image. TIFA uses a language model (LM), a question-
answering (QA) model, and a visual-question-answering (VQA) model. Given a text input, we generate several question-answer pairs with
the LM and then filter them via the QA model. To evaluate the faithfulness of a synthesized image to the text input, a VQA model answers
these visual questions using the image, and we check the answers for correctness. (b) TIFA v1.0 benchmark. While TIFA is applicable to
any text prompt, to allow direct comparison across different studies, and for ease of use, we introduce the TIFA v1.0 benchmark, a repository
of text inputs along with pre-generated question-answer tuples with answer choices. To evaluate a text-to-image model, a user first produces
the images for the text inputs in TIFA v1.0 and then performs VQA with our provided tools on generated images to compute TIFA.

these challenges: researchers are imposing linguistic struc-
ture with diffusion guidance to produce images with multiple
objects [11]; others are designing reward models trained us-
ing human feedback to better align generations with user
intention [30]. However, progress is difficult to quantify
without accurate and interpretable evaluation measures that
explain when and how models struggle.

A critical bottleneck, therefore, is the lack of reliable
automatic evaluation metrics for text-to-image generation
faithfulness. One of the popular metrics is CLIPScore [17],
which measures the cosine similarity between the CLIP em-
beddings [42] of the text input and the generated image.
However, since CLIP is not effective at counting objects [42],
or reasoning compositionally [37], CLIPScore is unreliable
and often inaccurate. Another family of evaluation metrics
uses image captions, in which an image captioning model
first converts the image into text, and then the image caption
is evaluated by comparing it against the text input. Un-
fortunately, using captioning models is insufficient since
they might decide to ignore salient information in images
or focus on other non-essential image regions [24]; for ex-
ample, a captioning model might say that the images in
Figure 1 are “a field of grass with trees in the background”.
Moreover, evaluating text (caption) generation is inherently
challenging [23, 26]. Another recent text-to-image evalua-
tion is DALL-Eval [6], which employs object detection to
determine if the objects in the texts are in the generated im-
ages. However, this approach only works on synthesized text
and measures faithfulness along the limited axes of objects,
counting, colors, and spatial relationships but misses activi-
ties, geolocation, weather, time, materials, shapes, sizes, and
other potential categories we often ask about when we recall
images from memory [29].

To address the above challenges, we introduce TIFA, a
new metric to evaluate text-to-image generation faithfulness.

Our approach is illustrated in Figure 2. Given a repository
of text inputs, we automatically generate question-answer
pairs for each text via a language model (here, GPT-3 [3]). A
question-answering (QA) system (here, UnifiedQA [25])
is subsequently used to verify and filter these question-
answer pairs. To evaluate a generated image, we use a
visual-question-answering (VQA) system (here, mPLUG-
large [31], BLIP-2 [32], etc.) to answer the questions given
the generated image. We measure the image’s faithfulness
to the text input as the accuracy of the answers generated
by the VQA system. While the accuracy of TIFA is depen-
dent on the accuracy of the VQA model, our experiments
show that TIFA has much higher correlation with human
judgments than CLIPScore (Spearman’s p = 0.60 vs. 0.33)
and captioning-based approaches (Spearman’s p = 0.60 vs.
0.34). Additionally, since the LMs and VQA models will
continue to improve, we hypothesize that TIFA will continue
to be more reliable over time. Also, our metrics can automat-
ically detect when elements are missing in the generation:
in Figure 2, TIFA detects that the generated image does not
contain a TV.

To promote the use of our new evaluation metric, we
release TIFA v1.0, a large-scale text-to-image generation
benchmark containing 4K diverse text inputs, sampled
from the MSCOCO captions [34], DrawBench [47], Par-
tiPrompts [61], and PaintSkill [6]. Each input comes with a
pre-generated set of question-answer pairs, resulting in 25K
questions covering 4.5K distinct elements. These questions
have been automatically generated and pre-filtered using
a question-answering model. This benchmark also comes
with different VQA models [57, 28, 58, 32, 31, 21] that
can be used to evaluate generative models and can be eas-
ily extended to use future VQA models when they become
available.

We conduct a comprehensive evaluation of current text-
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to-image models using TIFA v1.0. Thanks to TIFA’s ability
to detect fine-grained unfaithfulness in images, we find that
current state-of-the-art models are good at rendering com-
mon objects, animals, and colors, but still struggle in com-
posing multiple objects, reasoning about spatial relations,
and binding the correct activity for each entity. In addition,
our ablation experiments show that TIFA is robust to dif-
ferent VQA models. Future researchers can use TIFA v1.0
to compare their text-to-image models’ faithfulness across
different studies. Also, future generative models may focus
on addressing the weaknesses of current models that TIFA
discovered. In addition, with TIFA, users can customize
evaluations with their own text inputs and questions [10]; for
example, a future TIFA benchmark could focus on counting
or scene text.

2. Related Work

We compare TIFA to other image and language genera-
tion evaluation metrics.
Prior image generation evaluation Prior work usually com-
pares image generation models via pairwise comparison by
humans. How to design automatic evaluation metrics to
approximate human assessment of the quality of machine-
generated images has always been a major challenge in com-
puter vision. There are two aspects to evaluate, namely im-
age quality and image-text alignment. Inception Score [4 8]
and FID [ 18] are the most widely adopted metrics for image
quality. They compare the features of the generated images
and gold images extracted from a pre-trained Inception-V3
model [52] to evaluate the fidelity and diversity of gener-
ated images. However, they rely on ground-truth images
and are based on a classification model, which makes them
not suitable for complex datasets [|2]. For image-text align-
ment, prior metrics are mainly based on CLIP [42], cap-
tioning, and object detection models. CLIPScore [17] and
CLIP-R [39] are based on the cosine similarity of image
and text CLIP [42] embeddings. [0, 19, 20] first convert
the images using a captioning model, and then compare the
image caption with the text using metrics like CIDEr [55]
and SPICE [1]. SOA [19] and DALL-Eval [6] employ ob-
ject detection models to determine if objects, attributes, and
relations in the text input are in the generated image. How-
ever, this approach only works on synthesized text inputs
and measures faithfulness on limited axes (object, counting,
color, spatial relation), missing elements like material, shape,
activities, and context. In contrast, thanks to the flexibility
of questions, TIFA works on any text inputs and evaluates
faithfulness across a broad spectrum of dimensions.
Summarization evaluation in NLP TIFA is inspired by
the summarization evaluation methods based on question
answering (QA) [56, 50]. Given a summary, a language
model generates a set of questions about the text. A QA
model checks if the same answer can be inferred from the

text and the summary. These QA-based metrics have much
higher correlations with human judgments on the factual
consistency of summarization than other automatic metrics
[56, 50]. TIFA can be seen as treating the text input for the
text-to-image model as a summary of the generated image.

3. The TIFA Metric

We introduce a framework for automatically estimating
the faithfulness of an image to its text prompt. Given a text
input 7', we aim to measure the faithfulness of the generated
image I. An overview of our metric is illustrated in Figure 2.
From T, we generate N multiple-choice question-answer
tuples {Q;, C;, A;}Y ,, in which Q; is a question, C; is a
set of answer choices, and A; € C} is the gold answer. The
answer A; can be inferred given T, Q);, and C;. Next, for
each question );, we use a VQA model to produce an answer
AV = maxaec, pla | I,Q;). We define the faithfulness
between the text 7" and image I as the VQA accuracy:

N
faithfulness(T, I) = % Z ]l[AZQA = Aj] (1)
i=1

The range of our faithfulness score is [0, 1]. It is maximized
when we have a performant VQA model, and the image
I accurately covers the information in the text 7" so that
for any question (), which can be answered given 7' can
also be answered given I. Several key design decisions will
be addressed in later sections: how to generate questions
(§3.1), how to control the question quality (§3.2), and how
to answer those questions (§3.3). Finally, we give a step-by-
step qualitative example of TIFA in Figure 4.

3.1. Question-Answer Generation

Our main challenge is to generate diverse questions that
cover all elements of the text input evenly. We also simplify
the question-generation pipeline into a single GPT-3 [3]
completion, so that TIFA can exploit the power of recent
language models (LM) and work with updated black-box
LMs (e.g., ChatGPT) in the future.

Inspired by prior work [4], given a text prompt 7', we
generate the question-answer tuples {Q;, C;, A;}Y| via the
pipeline illustrated in Figure 3. Different from prior work,
which relies on multiple components, our pipeline is com-
pleted by a single inference run via in-context learning with
GPT-3 [3, 59, 22, 41, 51], thereby avoiding the need for
intermediate human annotations. We annotate 15 examples
and use them as in-context examples for GPT-3 to follow.
Here we take the text “A photo of three dogs.” as an example.
Each in-context example contains the following steps:

Element extraction Given text prompt 7', GPT-3 will first
extract all elements {v; } , following prior work [4] (for the
in-context examples, we perform element extraction manu-
ally). The elements include noun phrases (including named
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<in-context examples>
Description: a photo of three dogs

{ GPT-3 Input

i Entities: dogs

! Activities:

i Colors:

i Counting: three

i Other attributes and relations: photo
; Questions and answers are below:

i About dogs (animal):

1 Q: are there dogs? i
i Choices: yes, no i L Binary

Element
Extraction

: Question 1
1 A yes

i Q: what animals are in the photo?
i Choices: dogs, cats, birds, fish
i A: dogs

i About three (counting):

i Q: are there three dogs?

i Choices: yes, no

1 A: yes

1 Q: how many dogs are in the photo?
! Choices: 1, 2, 3, 4

i A: 3

i About photo (attribute):

Multiple-Choice
Question 1

Binary
Question 2

Multiple-Choice
Question 2

Figure 3. Our question-answer pair generation pipeline. The whole
pipeline can be executed via a single inference of GPT-3 via in-
context learning. Given the text prompt, GPT-3 first extracts the
elements and then generates two questions for each element. The
GPT-3 output is then parsed and filtered by UnifiedQA.

entities), verbs, adjectives, adverbs, and parse tree spans with
no more than 3 words altogether. For the above example, the
elements are photo, three, dogs.

Element category classification For each element v;, fol-
lowing [29], we classify the elements into one of the follow-
ing 12 categories: object, activity, animal, food, counting,
color, material, spatial, location, shape, attribute, and other.
As shown in Figure 3, text generated from GPT-3 contains
the category corresponding to each question.For example,
“three” is “counting”, and “dogs” is classified as “animal.”
This step allows a detailed analysis of the text-to-image
model’s ability in each category.

Question generation conditioned on elements For each
element v;, we generate two questions. The first is a question
that should be answered “yes” for a faithful generated image,
and the second question has v; as its answer. For example,
two questions are generated for the element “three”. The
first is “are there three dogs?”, and the choices are {yes,
no}. The second is “how many dogs are there?”, and the
choices are {1,2,3,4}. These two types of questions make our
evaluations diverse and robust to surface-level differences.

Completing above steps by prompting GPT-3 once As
mentioned earlier, for each text T, the whole pipeline can
be completed by one GPT-3 inference. We annotated 15

in-context examples that cover all types of questions. The
full prompt is in the Appendix. The prompt format is shown
in Figure 3. Our in-context examples follow the same format,
and identical examples are used for all text inputs, leading
to a fixed and limited amount of human annotation cost. We
use code-davinci-002 engine for question generation, and
the decoding temperature is 0.

3.2. Question Filtering

To ensure the quality of generated images, we use Uni-
fiedQA [25] to verify the GPT-3 generated question-answer
pairs and filter out the ones that GPT-3 and UnifiedQA do
not agree on. UnifiedQA? is a state-of-the-art multi-task
question-answering model that can answer both multiple-
choice and free-form questions. Denote the UnifiedQA
model as QA. Given the text T, question @;, choices C';, and
answer A;, Let Af = QA(T, Q;) be the free-form answer,
and A" = QA(T, Q:, C;) be the multiple-choice answer.
We keep the question if A; = A!"¢ and the word-level F}
score between Aif and A; is greater than 0.7. We conduct
a human evaluation on 1000 filtered question-answer pairs.
Only 7 are considered not reasonable (e.g., generated choices
do not include a correct answer). Details are in Appendix C.

Recommended VQA model Based on considerations over
the accuracy, correlation with human judgments, and run
time, we currently suggest using mPLUG-large as the VQA
model for TIFA. Analysis is given in Section 5.4. Like
the LM and QA components, the VQA component can be
updated in the future as the technology improves.

3.3. VQA Models

Since our questions contain a diverse set of visual
elements (e.g., activity, art style), we use open-domain
pre-trained vision-language models as our VQA model
(rather than closed-class classification models fine-tuned
on VQAV2 [14]). We provide tools to easily perform VQA
on arbitrary images and questions, based on 5 state-of-the-art
VQA models trained with distinct data and strategies.

Vision-language models The general pre-trained vision-
language model are GIT-large [57], VILT-B/32 [28], OFA-
large [58], and mPLUG-large [31]. These models are pre-
trained on a large amount of image-text pairs, and down-
stream image-to-text tasks like image captioning and visual
question answering. Notice that these models have not been
trained to answer multiple-choice questions. For each ques-
tion, we first decode the free-form answer and then choose
the choice that has the highest similarity with the decoded
answer, measured by SBERT [45]. Another model we use is
BLIP-2 FlanT5-XL [32], in which a VIT [&] is connected

with a frozen FlanT5 [7] via a lightweight transformer. This

2Model checkpoint we use: https://huggingface.co/
allenai/unifiedga-v2-t5-1large-1363200.
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Text Input: A wet dog standing on a beach next to the ocean.

Step 1: Question Generation + Filtering

About dog (animal/human)

Q: Is this a dog?

A: Yes

Q: What animal is in the picture?
A: Dog

About beach (location)

Q: Is this a beach?

A: Yes

Q: What type of place is this?
A: Beach

About ocean (location)
Q: Is there an ocean?
A: Yes

AOccan

About standing (activity)
Q: Is the dog standing?
A: Yes
Q:+Whatis-the-dog-deing?

Step 2: Visual Question Answering

Stable Diffusion v1.5 image

TIFA 7/10=0.7

About dog (animal/human)
Q: Is this a dog?

A: Yes Q

Q: What animal is in the picture?

A: Dog Q

About beach (location)

Q: Is this a beach?

A: Yes Q
Q: What type of place is this?
A: Beach

About ocean (location)
Q: Is there an ocean?

A: Yes 0

About wet (attribute)

Q: Is the dog wet?

A: Yes

Q: Is the dog wet or dry?
A: Wet

About next to (spatial relation)

Q: Is the dog next to the ocean?

A: Yes

Q: Is the dog next to or in the ocean?
A: Next to

About standing (activity)
Q: Is the dog standing?

A: No e

About wet (attribute)

Q: Is the dog wet?

A: No Q
Q: Is the dog wet or dry?

A: Dry

About next to (spatial relation)

Q: Is the dog next to the ocean?

A: Yes

Q: Is the dog next to or in the ocean?

A: Next to Q

Figure 4. Step-by-step qualitative example of TIFA metric. Given a text input, we first generate question-answer pairs and filter them. We

strikethrough the questions filtered out by UnifiedQA. Then we run VQA models on the generated image to get the TIFA score.

model allows for performing multiple-choice VQA directly
due to the flexibility of the LM.

4. TIFA v1.0: Benchmark for Text-to-Image
Generation Faithfulness

In this section, we introduce TIFA v1.0, a text-to-image
generation faithfulness benchmark based on the evaluation
method discussed in Section 3. The benchmark consists of
4,081 diverse text inputs paired with 25,829 question-answer
pairs. Each question is classified into one of the categories
discussed in Section 3.1. The benchmark also comes with
Python pip-installable APIs to perform VQA with various
state-of-the-art VQA models on arbitrary visual questions.
The overall TIFA for each text-to-image model is computed
by averaging TIFA scores of images generated from each
text input in the benchmark.

4.1. Text Collections

We collect 4,081 text inputs to benchmark text-to-image
models’ generation ability on diverse tasks. 2,000 text inputs
are image captions from COCO validation set [34]. These
captions have corresponding gold images. Since text-to-
image models are often used to create abstract art, we also

collect 2,081 text inputs from previous works that do not
correspond to any real image. All text inputs we use contain
> 3 words. We include 161 from DrawBench used in
Imagen [47] (texts that are categorized as “misspellings” and
“rare words” are removed); 1420 from PartiPrompt used
in Parti [61] (texts in category “abstract” are removed); and
500 texts from PaintSKkill used in DALL-Eval [6].

Table 1. Statistics of TIFA v1.0.

Statistics

# of prompts 4,081
- # of COCO captions 2,000
- # of DrawBench, PartiPrompt, PaintSkill prompts 2,081

# of questions 25,829
- # of binary questions 17,226
- # of multiple-choice questions 8,603

avg. # of questions per prompt 6.3

avg. # of words per prompt 10.5

avg. # of elements per prompt 43

4.2, Statistics and Diversity

Table 1 shows the basic statistics of the TIFA v1.0 bench-
mark. We demonstrate TIFA v1.0’s diversity in Figure 5.
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"a }\{eugw t-shirt Object 090, Animal/Human Attribute @ Activity
with a dog on it table,train,bus .. man,woman,dog ... <i:? large,small,young .. sitting,standing ...
"a panda belar with Qg Spatial Location
“on its headr & above,below,zight ., TIFAv1.0 field, street beach .
i 4,081 text inputs 25,82 tion
"A red colored car" o] Counting ,08 e : puts 5,829 questio .5 Color
two,three, several ... 4!550 distinct elements 12 categorles red,white,blue ...
”ggz ‘;i"tﬁti‘gg one Tr©q Food Material A Shape Other
the grass" =~ pizza,bananas .. wooden,metal,glass ... oo circular,square ... (::) punk, starry night ...

"a painting of a fox

in the style of
starry night"

"A man running to
hit a tennis ball
with his racquet"

"a flag with a
dinosaur on it"

"a photo of suitcase
and chair; chair is
right to suitcase"

Figure 5. Statistics and diversity of TIFA v1.0. The text inputs contain elements from 12 categories (e.g., object, spatial, and counting). We

show the most common elements from each category. In addtion, we also show some example text inputs on the sides.

TIFA v1.0 contains questions about 4,550 distinct elements,
which are categorized into 12 categories. The number of
times each type of element occurs in the text input is ob-
ject (7,854), animal/human (3,501), attribute (3,399), activ-
ity (2,851), spatial (2,265), location (1,840), color (1,743),
counting (986), food (911), material (209), shape (69), and
other (201). The "other" category includes notions often
used in abstract art, such as “starry night” and “steampunk.”
The accuracy of VQA on a particular genre measures the
text-to-image model’s ability in the corresponding aspect.
Please refer to Appendix D for more details on TIFA v1.0.

4.3. Finetuned Open-Source Language Model for
Question Generation

For TIFA v1.0, we use GPT-3 to generate the questions.
While benchmarking with TIFA v1.0 is a deterministic pro-
cess, using TIFA to create a new benchmark might not be
deterministic as the underlying question generator (GPT-3 in
our case) might change privately. To promote deterministic
benchmark generation, we fine-tune and release a LLaMA
2 (7B) [54] model that parses the captions and generates
questions for arbitrary texts, using TIFA v1.0 questions as
training examples. 3

5. Experiments

In this section, we first show that TIFA has substantially
higher correlations with human judgments than prior met-
rics on text-to-image faithfulness (§5.1). Then we present a
comprehensive evaluation of existing text-to-image mod-
els using TIFA v1.0, highlighting the challenges of cur-
rent text-to-image models (§5.3). Finally, we conduct an
analysis of TIFA’s robustness against different VQA mod-
els (§5.4). For all experiments, we use mPLUG as the
VQA model for TIFA unless stated otherwise. The models
we evaluate include AttnGAN [60], X-LXMERT [5], VQ-
Diffusion [16], minDALL-E [27], and Stable Diffusion v1.1,
v1.5, and v2.1 [46]. Details are in Appendix E.

3LLaMA 2 question generation model checkpoint:
https://huggingface.co/tifa-benchmark/llama2_
tifa_question_generation

5.1. Correlation with Human Judgements

To compare TIFA with prior evaluation metrics, we first
conduct human evaluations of the text-to-image models on
the 1-5 Likert scale on text-to-image faithfulness. Then we
compare TIFA with other metrics based on their correlation
with human judgments.

Likert scale on text-to-image faithfulness Annotators are
asked to answer on a scale of 1 (worst) to 5 (best) to the
question “Does the image match the text?". The detailed
annotation guidelines are in Appendix C. Annotators are
asked to focus on text-to-image faithfulness rather than im-
age quality. The Likert scale should be based on how many
elements in the text prompt are missed or misrepresented
in the image. Objects are more important than attributes,
relations, and activities. If an object is missed in the image,
then all related attributes, activities, relations, etc. are also
considered lost. An example is given in Figure 6.

We collect annotations of 800 generated images on 160
text inputs from TIFA v1.0. For each prompt, we sample an
image from the 5 most recent generative models we evalu-
ated, i.e., minDALL-E, VQ-Diffusion, Stable Diffusion v1.1,
v1.5, and v2.1. We collect 2 annotations per image and aver-
age over the scores as the single “faithfulness" score. The
inter-annotator agreement measured by Krippendorf’s « is
0.67, indicating “substantial" agreement.

| { A person sitting on’
a horse in_air M
gate in grass with§
people and trees 1n
; ibackground. :

Miss/Misrepresent

4 out of 10 elements!

Figure 6. Illustration of our Likert scale annotation guideline.
Annotators are asked to give a score of 1 to 5 based on how many
elements in the text prompt are missed or misrepresented in the
image. The missed elements are underlined.

Baselines We compare our evaluation with two families
of reference-free metrics on text-image match introduced in
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Section 2. The first is the caption-based method. We use the
state-of-the-art BLIP-2 FlanT5-XL [32] as the captioning
model. The second approach is CLIPScore [17, 42]. We
use CLIP (VIT-B/32) [42] to compute the score.

Table 2. Correlations between each evaluation metric and human
judgment on text-to-image faithfulness, measured by Spearman’s p
and Kendall’s 7.

Spearman’s p  Kendall’s 7

Caption-Based

BLEU-4 18.3 18.8
ROUGE-L 329 24.5
METEOR 34.0 274
SPICE 32.8 232
CLIPScore 332 23.1
Ours

TIFA (VILT) 49.3 38.2
TIFA (OFA) 49.6 37.2
TIFA (GIT) 54.5 42.6
TIFA (BLIP-2) 559 43.6
TIFA (mPLUG) 59.7 47.2

TIFA has a much higher correlation with human judg-
ments than prior metrics. The correlations between each
evaluation metric and human judgment are shown in Table 2.
For caption-based evaluations, we use metrics BLEU-4 [38],
ROUGE-L [33], METEOR [2], and SPICE [!]. TIFA has
higher correlations with human judgments than all previous
evaluation metrics on all VQA models. TIFA (mPLUG)
yields the highest correlation with human judgments among
all VQA models.

5.2. Benchmarking Text-to-Image Models

Figure 7 shows the average TIFA score text-to-image
models get on TIFA v1.0. The detailed scores with each
VQA model on each element type are provided in Ap-
pendix B. We can see a clear trend of how text-to-image
models evolve over time. There is a jump in TIFA score after
DALL-E [44] is released, from about 60% to 75%. Qualita-
tive examples of our evaluation metric are in Appendix A.
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Figure 7. Average TIFA score of text-to-image models on the TIFA
v1.0 benchmark. The horizontal axis shows their release dates.

5.3. Findings on Current Text-to-Image Models

Figure 8 shows accuracy on each type of question in
TIFA v1.0 for Stable Diffusion v1.1, v1.5, and v2.1. The
score on each type reflects the text-to-image models’ faith-
fulness in each type of visual element. To the best of our
knowledge, TIFA is the only automatic evaluation method
that can provide such a detailed fine-grained analysis of im-
age generation. We separate the scores on COCO captions
and other text inputs. For COCO captions, we also include
the accuracy on the ground-truth images for reference. We
summarize our findings in the following paragraphs.

Generating images from captions vs. free-form text From
Figure 8, we can see that VQA accuracy is higher on the
COCO captions than on other text inputs. The reason is that
COCO captions correspond to real images, while other text
inputs may correspond to compositions that cannot be found
in real-world photos (e.g. “a blue apple").

What elements are text-to-image models struggling with?
Based on the scores of each category in Figure 8, we can see
that Stable Diffusion models are performing well on material,
animal/human, color, and location in terms of text-to-image
faithfulness. However, they yield low accuracy on questions
involving shapes, counting, and spatial relations. “Other"
mainly contains abstract art notions, and models are also
struggling with them. There is also a big gap between the
synthesized images and real images on the COCO captions.
Future work can explore various directions (e.g., training
data/loss and model architecture) to improve text-to-image
models’ faithfulness in these aspects.

Why are ground-truth images not getting perfect scores?
Ground-truth images in COCO do not get perfect scores be-
cause 1) the COCO captions contain a substantial amount of
noise from crowd workers [24] and 2) VQA models are not
perfect. Real images have higher accuracy in all categories
except material, color and location, where differences are
small. It is left to future work to determine whether this is
simply due to noise or it is an area where assessment can be
improved.

Stable Diffusion is evolving. We can see the consistent trend
that Stable Diffusion models are improving in their later
versions in most of the element categories. The exceptions
are “shape" for both prompt sources, “other" and “food" for
the free-form text inputs without gold images.

Composing multiple objects is challenging. Figure 9
shows how the number of entities (objects, animals/humans,
food) in the text input affects the average TIFA score. When
there are more than 5 entities, The TIFA score starts to drop
rapidly for all text-to-image models, consistent with similar
findings in other vision-language evaluations [15, 13]. For
reference, we also add the real images in COCO in this figure.
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v2.1. We order the categories by the average score Stable Diffusion v2.1 gets on corresponding questions. For COCO captions, we also

include the accuracy of the ground-truth images for reference.
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Figure 9. TIFA vs. numbers of entities (objects, animals/humans,
and food) in the text input. The accuracy starts to drop when more
than 5 entities are added to the text, showing that compositionality
is hard for text-to-image models. Meanwhile, TIFA scores for
COCO ground-truth (GT) images remain consistent.

The TIFA score on real images is rather consistent and does
not change as the number of entities increases. This quantita-
tively shows that composing multiple objects is challenging
for current text-to-image models. One possible reason is
that the CLIP text embedding, which is used to train Stable
Diffusion, lacks compositionality, as investigated in [37].

5.4. Analysis of VQA Models

One major concern of TIFA is that VQA models can
introduce some errors. Table 2 shows that TIFA has a much
higher correlation with human judgment than the previous
metrics, regardless of the choice of the VQA models; here
we conduct a more detailed analysis.

Sensitivity of TIFA to VQA models Figure 10 shows sev-
eral recent text-to-image models’ TIFA scores on the COCO
captions in TIFA v1.0, measured by different VQA models.
We also include the TIFA scores on the ground-truth COCO

—VILT —OFA BLIP-2 —GIT —mPLUG

0.90
L 085
=]
A
™ —/ﬁ
<)
—
075
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VQ-Diffusion SDvl.1 SDvl.5 minDALL-E  SDv2.1  Ground-Truth

Text-to-Image Model

Figure 10. Several text-to-image models’ TIFA score on COCO
captions, measured by different VQA models. We also include the
accuracy of ground-truth images for reference.

images for reference. TIFA scores computed by different
VQA models show a similar trend on these text-to-image
models. Also, the ground-truth images get the highest TIFA
score. We also computed Spearman’s p of TIFA scores given
by different VQA models. The pairwise correlation between
all VQA models is greater than 0.6.

Humans performing VQA To conduct further analysis on
the VQA models, we ask annotators to answer the multiple-
choice visual questions in TIFA v1.0. These annotations help
us evaluate the accuracy of each VQA model. For multiple-
choice questions, we add the option “None of the above" for
human evaluation. Annotation guidelines are in Appendix C.

We collect annotations of 1029 questions on 126 images.
Each question is answered by two annotators. The inter-
annotator agreement measured by Krippendorf’s « is 0.88.
A third annotator is involved if two annotators disagree, and
the final answer is chosen by the majority vote.

Which VQA model should we use?

Table 3 reports the accuracy of each VQA model and
the correlation between TIFA scores calculated by VQA
model answers and human answers. We observe that higher
model performance is directly related to the TIFA score’s
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Table 3. Comparison of VQA models. The first row is the VQA
accuracy, using the human VQA answers as reference. The second
row is Spearman’s correlation between TIFA scores calculated by
each VQA model and the human VQA.

VILT OFA GIT BLIP-2 mPLUG

VQA Acc. 761 77.1 79.1 81.0 84.5
TIFA Corr. 609 637 725 75.6 76.8

correlation with human judgments. mPLUG has the highest
accuracy.

Another important factor to consider is the runtime. We
measure the inference speed of each VQA model on NVIDIA
A40 GPU with batch size 1 over the Stable Diffusion v2.1
images (768 x 768 pixels). For one question, VILT takes
0.08s on average; OFA, GIT, and mPLUG all take about
0.25s; BLIP-2 takes 0.73s. Based on the above results, we
choose mPLUG as the default VQA model for TIFA v1.0
because it is the most accurate while being reasonably fast.

Separation of Text-to-Image Errors and VQA Errors
Suppose an image gets a wrong answer given a visual ques-
tion. Then the image generation or the VQA model might
have made an error. Based on the human VQA results, we
separate these two kinds of errors in Figure A. If human
VQA gives the wrong answer, then we suspect the generated
image has an error. Otherwise, the image is correct but the
VQA model is making an error. Figure A shows that the
majority of errors are made by the text-to-image models. For
mPLUG, less than 25% errors are due to the VQA model.
This suggests that the TIFA framework is a viable evaluation
method despite its inherent challenges.

H Error by text-to-image ® Error by VQA

100%

75%

50%

25%

0%
VILT OFA GIT BLIP-2 mPLUG

VQA Model
Figure 11. Source of the error when VQA gets the wrong answer.

6. Discussion

Why does TIFA work better than CLIPScore? Our ex-
perimental results and human evaluations in Section 5 show
that TIFA is more accurate than prior metrics (CLIP [42] and
captioning-based approaches) for evaluating text-to-image
faithfulness. We hypothesize that the major challenge of
these prior metrics is that they summarize the image outputs
and text inputs into a single representation (embedding/cap-
tion). In contrast, TIFA exploits the power of the language
models to decompose the text input into fine-grained probes,
which allows VQA to capture more nuanced aspects of the
text input and the generated image.

How do current VQA models perform on TIFA? One
limitation is that TIFA requires VQA models to work reason-
ably well, which is true given the current models and TIFA
v1.0, as shown in Section 5. Nevertheless, the assumption
might not hold for current models in domains like anime and
abstract art. TIFA is a modularized evaluation framework.
The VQA models used within the framework can be updated
as stronger VQA models become available in the future. For
instance, we plan to incorporate GPT-4 once its image API
is made public since it is likely to improve TIFA. Another
possible solution is to ensemble multiple image understand-
ing models. For example, one may employ expert models on
art concepts. We leave this for future work.

Other limitations. Another limitation of TIFA is its runtime.
Answering multiple visual questions is slower than one CLIP
inference. In the scenario described in Section 5.4, mPLUG
takes 1.6s to evaluate one image (without batching). Also,
our question generation pipeline needs one inference on a
modern language model for each text input. The run time
is not a critical issue for benchmarking purposes, but may
not be computationally feasible for the kind of large-scale
data filtering done, for example, in LAION-5B [49]. Nev-
ertheless, we would like to point out that our evaluation is
much faster than the image generation process of diffusion
models. Thus, we believe it is feasible to perform reranking
and reinforcement learning with TIFA on diffusion models.

7. Conclusions

We present TIFA, a new automatic text-to-image faithful-
ness evaluation metric using VQA. Compared with prior met-
rics, TIFA is fine-grained, interpretable, and better aligned
with human judgments. Based on this metric, we intro-
duce the TIFA v1.0, a large-scale text-to-image benchmark
containing 4K prompts and 25K questions. We conduct a
comprehensive study of current text-to-image models using
TIFA v1.0 and highlight the limitations of current generative
models. We quantitatively show that current image genera-
tion models still struggle in counting, spatial relations, and
composing multiple objects. Finally, we conduct extensive
analysis and human evaluation, demonstrating that TIFA is
robust to different VQA models. We hope TIFA will help
evaluate future work on image generation and become in-
creasingly sophisticated as it is upgraded with new LM, QA,
and VQA components.
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