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Abstract

Cross-domain image retrieval has been extensively stud-
ied due to its high practical value. In recently proposed
unsupervised cross-domain image retrieval methods, efforts
are taken to break the data annotation barrier. However,
applicability of the model is still confined to domains seen
during training. This limitation motivates us to present
the first attempt at domain-generalized unsupervised cross-
domain image retrieval (DG-UCDIR) aiming at facilitat-
ing image retrieval between any two unseen domains in an
unsupervised way. To improve domain generalizability of
the model, we thus propose a new two-stage domain aug-
mentation technique for diversified training data genera-
tion. DG-UCDIR also shares all the challenges present
in the unsupervised cross-domain image retrieval, where
domain-agnostic and semantic-aware feature representa-
tions are supposed to be learned without external super-
vision. To accomplish this, we introduce a novel cross-
domain contrastive learning strategy by utilizing phase
image as a proxy to mitigate the domain gap. Exten-
sive experiments are carried out using PACS and Domain-
Net dataset, and consistently illustrate the superior per-
formance of our framework compared to existing state-of-
the-art methods. Our source code is available at https:
//github.com/conghui1002/DG-UCDIR.

1. Introduction

Cross-domain image retrieval finds a variety of applica-
tions in online shopping [15, 31], law enforcement [18, 20],
etc. Most existing cross-domain image retrieval algorithms
[27, 32] heavily rely on category and pair annotations to
drive explicit semantic-aware and domain-invariant feature
learning for retrieval. One emerging research direction for
reducing data labeling cost is unsupervised cross-domain
image retrieval (UCDIR) [9, 10], where human annotation
is no longer necessary for model training and the trained
model can be employed to conduct retrieval between seen
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Figure 1. Illustration of DG-UCDIR. Given only unlabeled train-
ing domain data, the objective of DG-UCDIR is to facilitate re-
trieval between unseen domains.

domains. However, even the raw image can be labor-
intensive to acquire for some domains such as sketch. As
reported in [6], the median drawing time for one non-expert
sketch in the TU-Berlin dataset is 86 seconds. This largely
motivates us to investigate the domain-generalized unsu-
pervised cross-domain image retrieval (DG-UCDIR) that
sidesteps both data labeling and collection barriers, as il-
lustrated in Fig. 1. Specifically, our ultimate goal is to
leverage only unlabeled data from a pair of seen domains,
e.g., art painting and real photo, to train a feature extractor
which is capable of projecting imagery input from any un-
seen domain, e.g., sketch and cartoon, into a domain invari-
ant shared feature space. Images from one unseen domain,
e.g., sketch, can then be used as queries to conduct retrieval
of the same category data from another unseen domain, e.g.,
cartoon. Consequently, DG-UCDIR is particularly valuable
for those domains with data scarcity bottleneck.

Nevertheless, DG-UCDIR is an extremely challenging
task due to the requirements of: 1) Novel domain gener-
alizability. Given data from only the seen domain, we aim
to facilitate image retrieval across to unseen domains, i.e.,
endow trained model with domain generalizability. Both
existing supervised [32] and unsupervised [9] cross-domain
image retrieval methods are not suited for direct testing
on the novel domains since they are designed for spe-
cific domain pairs and thus is highly susceptible to fail-
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ure on unseen novel domains. 2) Domain-agnostic un-
supervised feature learning. The absence of category
label or pairwise supervision for the seen domains dur-
ing training, makes it extremely difficult for the model to
learn semantically meaningful and domain-invariant fea-
tures for effective category-level retrieval. The task then
boils down to domain-agnostic unsupervised feature rep-
resentation learning. Although contrastive learning [2, 3]
has shown great promise in the context of unsupervised
learning, the vanilla contrastive learning algorithm neglects
influence of domain-specific knowledge and thus still suf-
fers from the inability to mitigate domain shift and features
alignment from different domains.

In this paper, we introduce a novel deep learning frame-
work that simultaneously performs unseen domain gener-
alization and domain-agnostic feature learning in an unsu-
pervised paradigm. To address the first challenge of DG-
UCDIR, we propose a new domain augmentation strategy
by exploiting inherent characteristics of frequency domain
data. More concretely, Fourier transform is employed to
convert the RGB image into the disentangled phase and
amplitude component in the frequency domain. According
to [29] and [30], class-discriminative knowledge is mainly
contained in the high-frequency portion of the phase part.
We thus design a two-stage domain augmentation technique
by first augmenting the low-frequency phase component,
followed by the amplitude component distortion of the orig-
inal image, while keeping the semantic information use-
ful for image retrieval unchanged. As a result, our frame-
work can be more resilient to the overfitting on seen do-
mains during training compared to existing cross-domain
image retrieval methods. For domain-agnostic unsuper-
vised feature learning, we devise a set of phase-enhanced
contrastive losses to: 1) remedy shifts in the seen domains
that would hinder the effective training of feature extrac-
tor; 2) further bridge the gap between seen and unseen do-
mains for better generalization; 3) mitigate the discrepancy
between unseen domains for more effective cross-domain
image retrieval. Intuitively, we leverage the smaller domain
gap between phase images compared to their RGB counter-
parts (c.f . Fig. 2) to conduct unsupervised feature learning.
Specifically, we formulate: 1) a phase-enhanced instance-
instance contrastive loss by regarding the phase image as
the positive pair of the corresponding RGB input, i.e., the
phase image is adopted as a proxy to ameliorate the domain
discrepancy and align features from various domains; 2) a
phase-enhanced instance-centroid contrastive loss, where
centroids shared by different domains are measured based
on the phase image features to help pull semantically simi-
lar instance closer across domains.

Our main contributions are summarized as follows:

1. We introduce a new research direction of domain-
generalized unsupervised cross-domain image retrieval

Figure 2. Smaller domain gaps are seen in the phase images com-
pared to the RGB guitar images from four domains in Figure 1.

(DG-UCDIR) which aims at advancing the practical ap-
plication of image retrieval.

2. A two-stage domain augmentation strategy is proposed
to increase the data diversity for superior novel domain
generalizability.

3. We design the phase-enhanced instance-instance and
instance-centroid contrastive losses to effectively facil-
itate the unsupervised domain-invariant and semantic-
aware feature learning.

4. Extensive experiments on PACS and DomainNet vali-
date the efficacy of our proposed framework on DG-
UCDIR.

2. Related Work
Cross-domain Image Retrieval. Cross-domain image
retrieval [11] targets at retrieving images from a target do-
main using the query image from another source domain.
In the context of category-level cross-domain image re-
trieval [24, 9], only images of the same category as the
query image are correct retrievals, which requires semanti-
cally meaningful features to be aligned across domains. For
supervised cross-domain image retrieval, human-annotated
class label [25] and data pairs [24, 31] can be employed
to learn a shared feature space where valid cross-domain
feature distance can be measured for effective retrieval.
To circumvent the tedious data labeling process, unsuper-
vised cross-domain image retrieval [9, 10] is therefore pro-
posed. Provided with only unlabelled data, [9] introduces
a distance-of-distance loss to minimize the domain discrep-
ancy, while [10] leverages optimal transport [22] to estimate
the cross-domain correspondence. However, it is still time-
consuming to collect enough unlabeled images to facilitate
model training for domains like sketch. We are therefore
inspired to explore the domain-generalized unsupervised
cross-domain image retrieval task to further break the data
collection barrier.

Contrastive Learning. Contrastive learning [26, 2, 28] is
a popular self-supervised learning method where the feature
representation is learned by contrasting positive and neg-
ative pairs. Vanilla contrastive learning methods are pro-
posed for single-domain data. [2] and [1] propose to pull
different variants of the same sample closer in feature-level
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and cluster assignment-level, respectively. Feature mem-
ory bank is employed in [3] to aggregate features from the
previous batch for more effective training. In addition, to
extract meaningful semantic information, prototypes are in-
troduced in [14]. More recently, to deal with multi-domain
data, [33] explores the efficacy of cross-domain instance-
prototype contrastive loss which can align the features of
domains involved in training. Nevertheless, existing re-
search on multi-domain contrastive learning still neglects
the domain gap between seen and unseen domains in DG-
UCDIR, and the feature space learned with training do-
mains is not directly applicable to novel domains.

Domain Generalization. According to the number of
training source domains, domain generalization techniques
can be categorized into: 1) Multi-source domain general-
ization [30, 16] where a set of source domains are simulta-
neously employed for training to endow the trained model
with generalization ability; 2) Single-source domain gen-
eralization [5, 4] which is a more challenging task as only
the knowledge from one single domain can be leveraged to
enable the novel domain test. Moreover, unsupervised do-
main generalization [7] is another newly proposed research
direction aiming at removing the data labeling burden and
training the classification model with only raw data with-
out annotation. In terms of application, our DG-UCDIR is
different from the original DG and attempts to facilitate im-
age retrieval between novel domains provided with a pair of
unlabeled seen domains.

3. Our Methodology

Overview. In DG-UCDIR, our goal is to leverage only
unlabeled seen domain data to learn a feature extractor fθ
which can be applied to extract unseen domain features for
effective cross-domain image retrieval. Formally, the fea-
ture extractor fθ trained with imagery data IA =

{
IAi

}M

i=1

and IB =
{
IBj

}N

j=1
from seen domain A and B in an

unsupervised manner is used to embed pixel-level input
IC =

{
ICi

}P

i=1
and ID =

{
IDj

}Q

j=1
from unseen domain

C and D into the feature space. M , N , P and Q stand for
the number of images in domain A, B, C and D respec-
tively. xC

i and xD
j are feature representations for instances

in domain C and D, respectively. For domain C → D image
retrieval, feature distance df between the query feature xC

i

and features
{
xD
j

}Q

j=1
in domain D are used as the criterion

to rank all images from domain D in ascending order. For
the query image ICi of class S, the correct retrievals should
be domain D images belonging to the same category S, and
ideally, they should be ranked at the top of the retrieval list.
It is apparent that the feature extractor fθ needs to be able to
generalize the knowledge acquired from domains A and B

to novel domains C and D, i.e., domain generalizability. In
addition, there is no available external supervision such as
class label and pair information during the whole training
process, and thus aggravating the difficulty for fθ to predict
domain-invariant and semantic-aware features that make the
cross-domain feature distance df meaningful. To address
the identified issues of DG-UCDIR, we propose: 1) A two-
stage domain augmentation strategy to generate more do-
mains for training, with the aim of strengthening domain
generalizability; 2) Phase-enhanced contrastive learning
losses where phase image is introduced to facilitate domain-
agnostic semantic structure encoding.

3.1. Two-stage Domain Augmentation

The underlying assumption for our two-stage domain
augmentation is that the high-level semantic information
mainly exists in the high-frequency phase components from
the Fourier transformed frequency domain, and the distor-
tion of low-frequency phase and amplitude components do
not change the categorical features. The frequency repre-
sentation Fi for image Ii ∈ RC×H×W by applying Fourier
transform F is:

Fi(u, v) = F(Ii)(u, v)

=

H−1∑
h=0

W−1∑
w=0

Ii(h,w)e
−j2π( h

H u+ w
W v).

(1)

For brevity, channel dimension C is omitted here. The
corresponding phase PHi and amplitude AMi components
become:

PHi(u, v) = arctan
Im(Fi(u, v))

Re(Fi(u, v))
,

AMi(u, v) =
√
Im(Fi(u, v))2 +Re(Fi(u, v))2,

(2)

where Im(·) and Re(·) represent imaginary and real part of
the input.

Stage One: Low-frequency Phase Augmentation. The
first step of our proposed domain augmentation technique
is perturbing the low-frequency components of phase PHi

while keeping the high-frequency portion unchanged. In
this case, visually different but semantically same variants
of the original image Ii are created and involved in train-
ing to prevent model from overfitting to training domains.
To augment the PHi, we randomly select another image Ij
from the training set and mix the low-frequency part of PHi

and PHj . The new phase P̂Hi is generated by:

P̂Hi = HPHi +αLPHi +(1− α) LPHj

= (1− R) ◦ PHi +αR ◦PHi +(1− α)R ◦PHj ,

where

R =

{
1, (u, v) ∈ [cH − r : cH + r, cW − r : cW + r]
0, others .

(3)
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Figure 3. Illustration of our framework. The shared cluster centroids U are calculated by applying K-means to all phase features in
training domain memory banks. Only the inputs for LRGB→Phase and LRGB→Centroid are indicated in the figure for brevity. LPhase→RGB and
LPhase→Centroid can be calculated in the same way by exchanging the role of RGB and Phase. Best viewed zoom-in and in color.

R is a low-pass filter. (cH , cW ) and r indicate the image
center and the boundary for low-frequency components. ◦
denotes the Hadamard product. HPHi and LPHi represent
high-pass filtered and low-pass filtered phases for Ii. α ∼
U(0, λ) controls the degree of augmentation.

Stage Two: Amplitude Augmentation. Existing re-
search works [17, 23] have certified that the amplitude spec-
trum mainly contains the low-level statistics, and distorting
the amplitude components would not affect the high-level
semantics. Therefore, to further generate more diversified
data for training, we augment the amplitude spectrum in the
second step. Specifically, the amplitude perturbation is for-
mulated as:

ÂMi = βAMi +(1− β)AMj , (4)

where AMj is the amplitude spectrum of the image Ij
selected in the low-frequency augmentation step. β ∼
U(0, η) defines the strength of amplitude augmentation.
The final augmented image becomes:

Îi = F−1(F̂i(u, v))

= F−1(ÂMi(u, v)e
−jP̂Hi(u,v)).

(5)

Here, F−1(·) is the inversed Fourier transformation.
F̂i(u, v) denotes the augmented Fourier representation.

3.2. Phase-enhanced Contrastive Learning

As shown in Fig. 2, the discrepancy between phase im-
ages from two domains is clearly smaller than the cor-
responding RGB images. Consequently, we propose to
use phase image as a proxy to align features across do-
mains, and enhance the vanilla contrastive learning to learn
domain-agnostic and class-aware features for cross-domain

image retrieval. The phase image PIi is produced by phase
image predictor with constant amplitude γ:

PIi = F−1(γe−j PHi(u,v)). (6)

Instance-Instance Contrastive Learning. The vanilla
contrastive learning methods are designed to extract seman-
tic information by pulling different variants of the same
RGB images closer while pushing the others (negatives)
away, i.e.:

Lrgb = Contra(x̂i, x̂
′
i, x̂

′
e)

=

M−1∑
i=0

− log
exp(x̂⊤

i x̂
′
i/τ)

exp(x̂⊤
i x̂

′
i/τ) +

E−1∑
e=0

exp(x̂⊤
i x̂

′
e/τ)

,

(7)

where x̂i and x̂′
i are the feature representations for two aug-

mented views of image Ii. The negative image is denoted
by x̂′

e, and E is the number of selected negatives stored in
the feature memory bank, following the same strategy as de-
tailed in [3]. τ is a temperature hyper-parameter. However,
the vanilla contrastive learning loss overlooks the effect
of domain-specific knowledge, and as illustrated in [33],
the contrastive training is likely to collapse in those cases
with large domain shifts. We thus introduce phase images
to bridge the domain gap and encourage domain-invariant
feature learning. To effectively assist category-level cross-
domain alignment, it is essential to guarantee that the phase
features are meaningful. We achieve this by applying con-
trastive loss to the phase images:

Lph-intra = Contra(ẑi, ẑ′i, ẑ
′
e) (8)

In Lph-intra, the two augmented RGB images are replaced
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with their phase images PIi and PI′i, and the same fea-
ture extractor fθ and momentum feature extractor f ′

θ are
employed to predict the corresponding features ẑi and ẑ′i
for the phase images. Owing to the small domain discrep-
ancy between phase images, we can then mitigate the gap
between original RGB images from different domains by
pulling the RGB features and paired phase features closer
with RGB-Phase contrastive loss Lph-cross:

Lph-cross =
1

2
(LRGB→Phase + LPhase→RGB)

=
1

2
(Contra(x̂i, ẑ

′
i, x̂

′
e) + Contra(ẑi, x̂′

i, ẑ
′
e))

(9)

The objective of LRGB→Phase is to make sure the query RGB
feature x̂i is closer to the phase feature ẑ′i compared to the
distance to other negative RGB feature x̂′

e from RGB mem-
ory bank. A feature memory bank is maintained separately
for each domain. In LPhase→RGB, we use phase feature ẑi as
query instead. Lph-intra and Lph-cross then corporate together
to facilitate domain-invariant feature learning:

Lph-i = Lph-intra + Lph-cross. (10)

Instance-Centroid Contrastive Learning. Both Lrgb and
Lph-i focus on the instance-wise contrastive learning where
features for image Ii are separated from all the other in-
stances. Nevertheless, image features of the same class
should be clustered together in our category-level cross-
domain image retrieval task, which inspires us to propose
phase-enhanced instance-centroid contrastive loss. Here,
we introduce a set of cluster centroids calculated based on
only phase features to enable cross-domain sharing. Differ-
ent from domain-dependent RGB features, phase features
with smaller domain discrepancies are intuitively more suit-
able for centroids measurement. With the shared cluster
centroids, we can then pull samples with similar semantic
information closer and encourage the shared semantic struc-
ture encoding across domains. More concretely, we apply
K-means to all features in both phase memory bank, i.e.
MA

p and MB
p to predict K cluster centroids U = {uk}Kk=1.

The corresponding cluster centroid for image Ii is denoted
as ui, and the instance-centroid contrastive loss is:

Lph-c =
1

2
(LRGB-Centroid + LPhase-Centroid)

=
1

2

M−1∑
i=0

−(log
exp(x̂⊤

i ûi/ϕ)
K−1∑
k=0

exp(x̂⊤
i ûk/ϕ)

+

log
exp(ẑ⊤i ûi/ϕ)

K−1∑
k=0

exp(ẑ⊤i ûk/ϕ)

),

(11)

where ϕ is a temperature hyper-parameter. We apply all the
training losses to both training domains.

4. Experiments

4.1. Datasets and Settings

Datasets. To evaluate the efficacy of our proposed
method, extensive experiments are carried out using PACS
[13] and DomainNet [21] dataset. PACS consists of four
different domains (Photo, Art Painting, Cartoon, Sketch)
with seven categories. DomainNet offers six domains: Cli-
part, Infograph, Painting, Quickdraw, Real, and Sketch. We
use the same categories selected in [9] for evaluation.

Implementation Details. We adopt ResNet-50 [8] as the
feature extractor θ, which is initialized with the parameters
of pre-trained unsupervised MoCov2 [3] model to guaran-
tee no labeled data is used in the whole training process.
The learning rate for feature extractor is set to 0.0002 at
the beginning and then gradually decreases according to the
cosine learning rate schedule. The size of RGB and phase
memory bank for each domain is 5120. Batch size of 64
is fixed in all experiments for fair comparisons. The num-
ber of centroids K is assigned according to the number of
training categories. The boundary r for low-frequency com-
ponents is set to 25, and we maintain a constant amplitude
γ at 5e4. Our framework is trained using SGD optimizer
with 0.9 momentum factor and 1e-4 weight decay, and im-
plemented based on the deep learning library PyTorch [19].

Evaluation Metrics. We use the same retrieval precision
(P@50, P@100 and P@200) as [9] to validate the perfor-
mance of our framework. Notably, we utilize the trained
feature extractor to extract features from test domain RGB
images, which serve as the sole input for testing. The re-
trieval is performed by calculating the cosine distance be-
tween the features of RGB images. Taking cartoon image
retrieval with a query sketch guitar as an example, we first
calculate the cosine distances between the sketch guitar fea-
ture and all image features from cartoon domain, and then
rank all cartoon images according to the cosine distance in
ascending order. P@50 measures the precision of retrieving
cartoon guitars among the top 50 retrievals since only those
from the same category as the query are correct retrievals.
P@100 and P@200 provide a more thorough evaluation as
the top 100 and 200 are considered.

Baselines. To analyze the effectiveness of our method,
we use the following baselines: 1) CDS [12] is a self-
supervised learning method designed for muti-domain data.
Semantic-aware and domain-invariant feature learning is
achieved by the proposed in-domain instance discrimina-
tion and cross-domain matching method. 2) PCS [33] in-
troduces prototypes to assist semantic feature encoding and
alignment across the domains in an unsupervised manner;
3) UCDIR [9] targets at unsupervised cross-domain im-
age retrieval. A distance-of-distance loss is proposed to
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Table 1. Cross-domain retrieval accuracy (%) on PACS dataset.

Train Art paint., Cartoon Art paint., Photo Art paint., Sketch Cartoon, Photo
Test Photo, Sketch Cartoon, Sketch Cartoon, Photo Art paint., Sketch

Metrics P@50 P@100 P@200 P@50 P@100 P@200 P@50 P@100 P@200 P@50 P@100 P@200
CDS [12] 20.06 18.45 16.50 27.20 25.67 24.78 41.84 38.19 34.12 19.64 19.64 19.48
PCS [33] 36.47 34.16 31.59 26.74 25.19 24.58 39.55 35.54 31.50 26.19 24.44 22.27

UCDIR [9] 28.13 25.48 23.22 28.13 26.45 25.52 41.02 37.15 31.96 28.78 26.46 24.14
USBIR [10] 44.16 42.34 40.38 35.08 32.97 31.09 31.74 30.31 28.46 37.74 34.78 31.54

BrAD [7] 42.84 40.02 37.16 36.54 33.75 31.75 52.91 49.59 44.48 35.83 33.72 31.53
Ours 56.88 53.83 50.28 43.87 41.02 38.30 58.17 54.82 49.38 51.70 49.48 46.60
Train Cartoon, Sketch Photo, Sketch Average ImprovementTest Art paint., Photo Art paint., Cartoon

Metrics P@50 P@100 P@200 P@50 P@100 P@200 P@50 P@100 P@200 P@50 P@100 P@200
CDS [12] 50.14 44.94 38.66 35.22 33.10 33.10 32.35 29.97 27.35 +23.07 +22.34 +20.38
PCS [33] 56.50 50.89 42.65 32.78 29.49 26.11 36.37 33.29 29.78 +19.05 +19.02 +17.95

UCDIR [9] 56.38 50.62 42.30 34.09 30.62 27.38 36.09 32.80 29.09 +19.33 +19.51 +18.64
USBIR [10] 47.56 45.16 42.64 30.14 28.43 26.61 37.74 35.67 33.45 +17.68 +16.64 +14.28

BrAD [7] 59.01 54.16 46.54 44.87 41.85 37.47 45.33 42.18 38.16 +10.09 +10.13 +9.57
Ours 68.85 65.24 57.31 53.02 49.49 44.53 55.42 52.31 47.73 / / /

Table 2. Cross-domain retrieval accuracy (%) on DomainNet dataset.

Train Clipart, Sketch Info., Real Info., Sketch Paint., Clipart
Test Info., Real, Paint., Quick. Clipart, Sketch, Paint., Quick. Clipart, Real, Paint., Quick. Info., Sketch, Real, Quick.

Metrics P@50 P@100 P@200 P@50 P@100 P@200 P@50 P@100 P@200 P@50 P@100 P@200
CDS [12] 37.62 35.18 32.10 35.90 32.57 27.85 44.31 41.08 36.70 35.18 32.18 28.73
PCS [33] 38.08 35.24 32.21 40.43 36.81 32.27 41.24 37.98 34.20 36.34 33.93 30.82

UCDIR [9] 40.52 37.21 33.95 41.53 38.42 34.20 41.74 39.09 35.44 39.16 36.90 33.59
USBIR [10] 46.35 44.60 41.71 48.17 46.15 42.51 51.54 49.77 46.92 50.76 48.21 44.69

BrAD [7] 44.62 41.61 38.01 49.99 46.72 41.57 52.25 49.73 45.67 43.54 40.73 36.80
Ours 52.91 50.59 47.09 63.48 62.10 58.86 61.14 59.17 55.52 53.29 51.14 47.31
Train Paint., Quick. Quick., Real Average ImprovementTest Clipart, Sketch, Info., Real Paint., Clipart, Info., Sketch

Metrics P@50 P@100 P@200 P@50 P@100 P@200 P@50 P@100 P@200 P@50 P@100 P@200
CDS [12] 47.71 41.70 34.79 38.97 34.04 28.68 39.95 36.13 31.48 +19.74 +20.97 +21.11
PCS [33] 49.08 43.69 37.40 41.39 36.50 31.04 41.09 37.36 32.99 +18.60 +19.74 +19.60

UCDIR [9] 53.00 48.56 42.80 44.99 40.15 34.63 43.49 40.06 35.77 +16.20 +17.04 +16.82
USBIR [10] 38.93 35.00 30.18 56.84 53.08 47.16 48.77 46.14 42.20 +10.92 +10.96 +10.39

BrAD [7] 59.17 54.21 46.85 55.90 50.91 43.68 50.91 47.32 42.10 +8.78 +9.78 +10.49
Ours 64.16 59.97 53.30 63.18 59.60 53.44 59.69 57.10 52.59 / / /

mitigate the domain discrepancy. 4) USBIR [10] is orig-
inally designed for unsupervised sketch-based image re-
trieval, where cross-domain correspondence is estimated by
the prototype and feature memory bank-enhanced optimal
transport. 5) BrAD [7] works towards the unsupervised do-
main generalization. An auxiliary domain is devised to rem-
edy the domain shifts and learn domain-agnostic features.

4.2. Main Results

4.2.1 PACS Dataset

Settings. Any two out of the four domains (Photo, Art
painting, Cartoon, and Sketch) in the PACS dataset are se-
lected as one training pair. There are six training pairs in
total, and the remaining two domains are employed as the
unseen test domains. For instance, the test domains are
Photo and Sketch when the model is trained with data from
Art painting and Cartoon. We then conduct both photo →
sketch and sketch → photo retrieval and calculate the mean

of the precisions as the final results.

Results. The retrieval results in Table 1 demonstrate
that: 1) Existing multi-domain unsupervised feature learn-
ing methods [12, 33] cannot generalize well to novel do-
mains. 2) Unsupervised cross-domain image retrieval algo-
rithms [9, 10] designed for a specific domain pair also suf-
fer from the large domain shifts between seen and unseen
domains. 3) BrAD [7] performs well in DG-UCDIR task
among the existing baselines. 4) Our framework achieves
the best results in all six pairs in terms of P@50, P@100,
and P@200, and the overall average scores improve the oth-
ers by a large margin. 5) Generalizing from Art painting and
Photo to Cartoon and Sketch is the most difficult setting, re-
sulting in 43.87% at P@50 for our method.

4.2.2 DomainNet Dataset

Settings. Following the experiment settings in [9], we use
the six different pairs for model training. While training
with one domain pair, the rest four domains in the Do-
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Table 3. Contribution of each proposed component to cross-domain retrieval accuracy (%) on DomainNet dataset.

Train Clipart, Sketch Info., Real Info., Sketch Paint., Clipart
Test Info., Real, Paint., Quick. Clipart, Sketch, Paint., Quick. Clipart, Real, Paint., Quick. Info., Sketch, Real, Quick.

Metrics P@50 P@100 P@200 P@50 P@100 P@200 P@50 P@100 P@200 P@50 P@100 P@200
Lrgb (v1) 40.85 38.00 34.57 46.05 42.61 37.63 47.54 44.69 40.68 38.37 35.58 31.90

v1+Stage one Aug. (v2) 43.33 40.33 36.71 50.34 47.30 42.33 51.22 48.76 44.54 41.65 38.76 34.97
v2+Stage two Aug. (v3) 47.04 43.94 40.12 54.54 51.81 46.97 56.75 54.30 49.89 44.26 41.29 37.19

v3+Lph−i (v4) 49.92 47.02 43.15 59.11 56.39 51.42 59.81 57.60 53.45 50.04 47.21 43.04
v4+Lph−c (v5) 52.91 50.59 47.09 63.48 62.10 58.86 61.14 59.17 55.52 53.29 51.14 47.31

Train Paint., Quick. Quick., Real Average Component ContributionTest Clipart, Sketch, Info., Real Paint., Clipart, Info., Sketch
Metrics P@50 P@100 P@200 P@50 P@100 P@200 P@50 P@100 P@200 P@50 P@100 P@200

Lrgb (v1) 52.38 47.23 40.52 50.33 44.92 38.06 45.92 42.17 37.23 / / /
v1+Stage one Aug. (v2) 58.45 53.63 46.32 55.93 50.97 43.80 50.15 46.63 41.45 +4.23 +4.46 +4.22
v2+Stage two Aug. (v3) 61.01 56.41 49.06 59.03 54.35 47.16 53.77 50.35 45.07 +3.62 +3.72 +3.62

v3+Lph−i (v4) 63.77 59.54 52.73 62.04 57.78 50.87 57.45 54.26 49.11 +3.68 +3.91 +4.04
v4+Lph−c (v5) 64.16 59.97 53.30 63.18 59.60 53.44 59.69 57.10 52.59 +2.24 +2.84 +3.48

Table 4. Influence of different seen domains over cross-domain retrieval accuracy (%) on DomainNet dataset.

Train
Test Clipart, Sketch

Train
Test Paint., Clipart

Train
Test Paint., Quick.

P@50 P@100 P@200 P@50 P@100 P@200 P@50 P@100 P@200
Quick., Real 73.91 69.53 62.23 Quick., Real 74.12 69.96 63.73 Info., Sketch 41.54 40.17 38.02
Paint., Quick. 74.92 70.72 62.28 Info., Sketch 75.09 72.16 65.63 Clipart, Sketch 43.71 43.33 42.04

Info., Real 76.91 74.23 68.49 Info., Real 76.29 74.35 69.37 Info., Real 47.61 47.39 46.31

Train
Test Info., Real

Train
Test Info., Sketch

Train
Test Quick., Real

P@50 P@100 P@200 P@50 P@100 P@200 P@50 P@100 P@200
Paint., Quick. 53.27 47.74 41.50 Quick., Real 49.42 45.83 39.89 Info., Sketch 43.01 41.59 39.87

Clipart, Sketch 55.67 50.00 42.99 Paint., Quick., 52.21 46.36 39.20 Clipart, Sketch 44.43 44.18 43.17
Paint., Clipart 57.99 52.93 44.95 Paint., Clipart 56.87 52.11 43.69 Paint., Clipart 45.59 45.10 43.99

mainNet dataset [21] are all regarded as unseen test do-
mains. For example, the retrieval evaluations are carried
out among Infograph, Real, Painting and Quickdraw if Cli-
part and Sketch are the seen domains, and the retrieval re-
sults are the averaged precisions of 12 retrieval tasks (In-
fograph → Real, Real → Infograph, Infograph → Painting,
Painting → Infograph, Infograph → Quickdraw, Quickdraw
→ Infograph, Real → Painting, Painting → Real, Real →
Quickdraw, Quickdraw → Real, Painting → Quickdraw and
Quickdraw → Painting).

Results. From the retrieval results in Table 2, we draw the
following conclusions: 1) The domain gaps between seen
and unseen domains in the DomainNet dataset also hurts
the retrieval accuracies of the baselines, but BrAD [7] still
performs the best among them. 2) Our framework signifi-
cantly outperforms all the compared methods in all six set-
tings. 3) When taking Painting and Quickdraw for training,
the retrieval accuracies for the remaining test domains are
the highest, i.e. 64.16% for P@50. 4) Transferring from In-
fograph and Real domain gives us the most significant im-
provement over the best baseline, and the retrieval accuracy
increases from 49.99% to 63.48% in terms of P@50. Qual-
itative retrieval results can be found in the supplementary.

4.3. Ablation Study

The contribution of each proposed component is com-
prehensively evaluated on all six DomainNet experimental

settings. The results in Table 3 show: 1) Applying vanilla
contrastive learning on RGB images (v1) overlooks the in-
fluence of large domain gap and thus results in unsatisfac-
tory performance. 2) Augmentation in low-frequency phase
part (v2) improves the novel domain generalizability of the
model. 3) In v3, the second augmentation step (amplitude
augmentation) boosts the retrieval performance by 3.62%
for P@50. 4) With phase-enhanced instance-instance con-
trastive loss (v4), features from different domains are bet-
ter aligned and the performance gain over v3 is 3.68% for
P@50. 5) Our full model (v5), which further takes the
advantage of phase-enhanced instance-centroid contrastive
loss, predicts the best feature for DG-UCDIR.

4.4. Influence of Different Seen Domains

To analyze the effect of training domains, we measure
the retrieval accuracy for the same test domains by apply-
ing models trained with different seen domain pairs. For in-
stance, the reported retrieval precisions for Clipart-Sketch
test pair in Table 4 are calculated based on three mod-
els learned with Quickdraw-Real, Painting-Quickdraw, and
Infograph-Real respectively. From Table 4 we can see: 1)
The retrieval performance for the same test domains varies
regarding the training domains. For Infograph-Sketch re-
trieval, the model trained with Painting and Clipart achieves
56.87% at P@50, while its Quickdraw-Real counterpart is
only 49.42%. 2) The retrieval accuracies for different un-
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Table 5. Cross-category DG-UCDIR accuracy (%) on DomainNet dataset.

Train D-Clipart, D-Sketch D-Info., D-Real D-Info., D-Sketch D-Paint., D-Clipart

Test P-Photo, P-Sketch, P-Art paint. P-Cartoon, P-Sketch, P-Art paint. P-Cartoon, P-Sketch, P-Photo, P-SketchP-Art paint., P-Photo
Metrics P@50 P@100 P@200 P@50 P@100 P@200 P@50 P@100 P@200 P@50 P@100 P@200

CDS [12] 33.30 30.52 27.09 21.68 20.20 19.44 26.92 25.08 23.20 18.42 16.50 14.87
PCS [33] 29.97 27.04 23.96 25.73 24.09 22.99 29.56 27.13 24.75 21.36 18.74 15.97

UCDIR [9] 29.57 26.38 23.62 25.83 24.12 23.10 27.35 25.50 23.91 23.95 20.63 18.62
USBIR [10] 29.73 27.76 26.33 25.78 24.69 24.20 29.20 27.77 26.44 18.54 17.04 16.86

BrAD [7] 37.35 34.24 30.83 31.97 29.79 27.93 38.77 36.17 33.15 30.30 27.68 25.11
Ours 39.73 36.00 32.45 34.59 32.02 29.77 41.57 38.22 34.98 34.79 30.89 28.03
Train D-Paint., D-Quick. D-Quick., D-Real

Average ImprovementTest P-Photo, P-Cartoon P-Art paint., P-Cartoon

Metrics P@50 P@100 P@200 P@50 P@100 P@200 P@50 P@100 P@200 P@50 P@100 P@200
CDS [12] 34.18 32.71 30.34 27.42 25.18 23.14 26.99 25.03 23.01 +11.52 +10.31 +9.36
PCS [33] 30.38 28.80 27.29 25.97 23.20 20.94 27.16 24.83 22.65 +11.35 +10.51 +9.72

UCDIR [9] 34.02 32.21 30.73 29.62 26.63 23.62 28.39 25.91 23.93 +10.12 +9.43 +8.44
USBIR [10] 28.99 26.98 24.52 29.50 27.84 26.12 26.96 25.35 24.08 +11.55 +9.99 +8.29

BrAD [7] 40.63 38.82 36.09 33.90 31.35 28.62 35.49 33.01 30.29 +3.02 +2.33 +2.08
Ours 41.97 39.02 36.17 38.42 35.91 32.81 38.51 35.34 32.37 / / /

seen pairs differ greatly even when tested with the same
model. When evaluated with the model trained on Paint-
ing and Clipart, P@50 for Quickdraw-Real test pair with a
larger domain gap is 12.40% lower than Infograph-Real.

4.5. Results of Cross-category DG-UCDIR

Settings. Cross-category DG-UCDIR is an even harder
setting with test images of unseen categories from novel
domains. To verify whether our framework can also gen-
eralize to novel categories, we apply the model trained on
DomainNet dataset to conduct retrieval between PACS do-
mains since there is no class overlap between the Domain-
Net subset we used [9] and the 7 categories in PACS dataset.
Furthermore, as we can see from Fig. 4, the four domains in
the PACS dataset can all find their visually similar domains
from the DomainNet dataset. More examples are provided
in the supplementary file. The four pairs are: P-Sketch and
D-Quickdraw, P-Cartoon and D-Clipart, P-Art painting and
D-Painting, P-Photo and D-Real. P- and D- represent PACS
and DomainNet dataset, respectively. To simulate the cross-
category DG-UCDIR scenario, the visually similar domains
are excluded during test time. Taking the model trained
with D-Quickdraw and D-Real as an example, the test do-
mains are just the remaining two domains (P-Art painting
and P-Cartoon) from PACS dataset since D-Quickdraw and
D-Real are paired with P-Sketch and P-Photo.
Results. From the results shown in Table 5, we can draw
the conclusions: 1) Cross-category DG-UCDIR is a more
challenging task than DG-UCDIR. P@50 for retrieval be-
tween P-Photo and P-Sketch is 34.79% by adopting our
model trained with D-Painting and D-Clipart as a feature
extractor. However, the corresponding retrieval accuracy
is 56.88% (c.f . Table 1) under the circumstance without
category generalization when we replace D-Painting and
D-Clipart with their paired domains (P-Art painting and

P-Sketch P-Cartoon P-Art painting P-Photo

D-Quickdraw D-Clipart D-Painting D-Real

Figure 4. Examples from PACS and DomainNet dataset.

P-Cartoon) from PACS dataset. 2) Our framework still
achieves the best averaged retrieval accuracies compared
with all baselines, which shows the superior performance of
our method in transferring knowledge from seen classes to
unseen classes. 3) It is worthwhile to explore further in the
cross-category DG-UCDIR task and equip model with bet-
ter category generalization capability for real applications.

5. Conclusion
In this paper, we propose a new research problem of

domain-generalized unsupervised cross-domain image re-
trieval (DG-UCDIR) under the stringent assumption of un-
seen test domain and no annotated data. We believe that
this new research direction would provide a step towards
more practical cross-domain image retrieval applications.
To facilitate cross-domain test, we introduce a novel two-
stage domain augmentation strategy to enrich the diver-
sity of training data. The phase-enhanced instance-instance
and instance-centroid contrastive losses are proposed for
domain-agnostic and semantic-aware feature learning. Ex-
tensive experiments are conducted on the PACS and Do-
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mainNet datasets to provide insights into factors that affect
DG-UCDIR performance.
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