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Figure 1: Example sequences and annotations of 360VOT benchmark dataset. The target objects in each 360◦ frame are
annotated with four different representations as ground truth, including bounding box, rotated bounding box, bounding field-
of-view, and rotated bounding field-of-view. 360VOT brings distinct challenges for tracking, e.g., crossing border (CB), large
distortion (LD) and stitching artifact (SA).

Abstract

360◦ images can provide an omnidirectional field of view
which is important for stable and long-term scene percep-
tion. In this paper, we explore 360◦ images for visual ob-
ject tracking and perceive new challenges caused by large
distortion, stitching artifacts, and other unique attributes
of 360◦ images. To alleviate these problems, we take ad-
vantage of novel representations of target localization, i.e.,
bounding field-of-view, and then introduce a general 360
tracking framework that can adopt typical trackers for om-
nidirectional tracking. More importantly, we propose a new
large-scale omnidirectional tracking benchmark dataset,
360VOT, in order to facilitate future research. 360VOT con-
tains 120 sequences with up to 113K high-resolution frames
in equirectangular projection. The tracking targets cover
32 categories in diverse scenarios. Moreover, we provide 4
types of unbiased ground truth, including (rotated) bound-
ing boxes and (rotated) bounding field-of-views, as well
as new metrics tailored for 360◦ images which allow for
the accurate evaluation of omnidirectional tracking perfor-

mance. Finally, we extensively evaluated 20 state-of-the-art
visual trackers and provided a new baseline for future com-
parisons. Homepage: https://360vot.hkustvgd.com

1. Introduction
Visual object tracking is an essential problem in com-

puter vision since it is demanded in various applications
such as video analysis, human-machine interaction, and in-
telligent robots. In the last decade, a large number of vi-
sual tracking algorithms [19, 32, 11, 26, 1] and various
benchmarks [42, 30, 24, 16, 22] have been proposed to pro-
mote the development of the visual tracking community.
Whereas most existing research focuses on perspective vi-
sual object tracking, there is little attention paid to omnidi-
rectional visual object tracking.

Omnidirectional visual object tracking employs a 360◦

camera to track the target object. With its omnidirectional
field-of-view (FoV), a 360◦ camera offers continuous ob-
servation of the target over a longer period, minimizing the
out-of-view issue. This advantage is crucial for intelligent
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agents to achieve stable, long-term tracking, and percep-
tion. In general, an ideal spherical camera model is used to
describe the projection relationship of a 360◦ camera. The
360◦ image is widely represented by equirectangular pro-
jection (ERP) [36], which has two main features: 1) cross-
ing the image border and 2) extreme distortion as the lat-
itude increases. Moreover, due to inherent limitations or
manufacturing defects of the camera, the 360◦ image may
suffer from stitching artifacts that would blur, break or du-
plicate the shape of objects. Meanwhile, omnidirectional
FoV means it is inevitable to capture the photographers.
They would distract and occlude the targets. These phe-
nomena are illustrated in Figure 1. Eventually, they bring
new challenges for object tracking on 360◦ images.

To explore this problem and understand how the current
tracking algorithms designed for perspective visual tracking
perform, we proposed a challenging omnidirectional track-
ing benchmark dataset, referred to as 360VOT. The bench-
mark dataset is composed of 120 sequences, and each se-
quence has an average of 940 frames with 3840 × 1920
resolution. Our benchmark encompasses a wide range of
categories and diverse scenarios, such as indoor, underwa-
ter, skydiving, and racing. Apart from 13 conventional
attributes, 360VOT has additional 7 attributes, including
the aforementioned challenges, fast motion on the sphere
and latitude variation. Additionally, we introduce new rep-
resentations to object tracking. Compared to the com-
monly used bounding box (BBox), bounding field-of-view
(BFoV) [9, 43] represents object localization on the unit
sphere in an angular fashion. BFoV can better constrain
the target on 360◦ images and is not subject to image reso-
lution. Based on BFoV, we can properly crop the search re-
gions, which enhances the performance of the conventional
trackers devised for perspective visual tracking in omnidi-
rectional tracking. To encourage future research, we pro-
vide densely unbiased annotations as ground truth, includ-
ing BBox and three advanced representations, i.e., rotated
BBox (rBBox), BFoV, and rotated BFoV (rBFoV). Accord-
ingly, we develop new metrics tailored for 360◦ images to
accurately evaluate omnidirectional tracking performances.

In summary, the contribution of this work includes:
• The proposed 360VOT, to the best of our knowledge, is

the first benchmark dataset for omnidirectional visual ob-
ject tracking.

• We explore the new representations for visual object
tracking and provide four types of unbiased ground truth.

• We propose new metrics for omnidirectional tracking
evaluation, which measure the dual success rate and angle
precision on the sphere.

• We benchmark 20 state-of-the-art trackers on 360VOT
with extensive evaluations and develop a new baseline for
future comparisons.

Benchmark Videos
Total

frames
Object
classes Attr. Annotation Feature

ALOV300[35] 314 152K 64 14 sparse BBox diverse scenes
OTB100[42] 100 81K 16 11 dense BBox short-term

NUS-PRO[25] 365 135K 8 12 dense BBox occlusion-level
TC128[28] 129 55K 27 11 dense BBox color enhanced

UAV123[30] 123 113K 9 12 dense BBox UAV
DTB70[27] 70 16K 29 11 dense BBox UAV

NfS[23] 100 383K 17 9 dense BBox high FPS
UAVDT[14] 100 78K 27 14 sparse BBox UAV

TrackingNet∗[31] 511 226K 27 15 sparse BBox large scale
OxUvA[38] 337 1.55M 22 6 sparse BBox long-term

LaSOT∗[16] 280 685K 85 14 dense BBox category balance
GOT-10k∗[22] 420 56K 84 6 dense BBox generic

TOTB[17] 225 86K 15 12 dense BBox transparent
TREK-150[15] 150 97K 34 17 dense BBox FPV

VOT[24] 62 20K 37 9 dense BBox annual

360VOT 120 113K 32 20
dense (r)BBox

& (r)BFoV 360◦ images

Table 1: Comparison of current popular benchmarks for vi-
sual single object tracking in the literature. ∗ indicates that
only the test set of each dataset is reported.

2. Related Work
2.1. Benchmarks for visual object tracking

With the remarkable development of the visual object
tracking community, previous works have proposed nu-
merous benchmarks in various scenarios. ALOV300 [35]
is a sparse benchmark introducing 152K frames and 16K
annotations, while UAVDT [14] focuses on UAV scenar-
ios and has 100 videos. TrackingNet [31] is a large-scale
dataset collecting more than 14M frames based on the YT-
BB dataset [34]. As YT-BB only provides fine-grained an-
notations at 1 fps, they explored a tracker to densify the an-
notations without further manual refinement. OxUvA [38]
targets long-term tracking by constructing 337 video se-
quences, but each video only has 30 frames annotated.

One of the first dense BBox benchmarks is OTB100 [42]
which is extended from OTB50 [41] and has 100 sequences.
NUS-PRO [25] takes the feature of occlusion-level an-
notation and provides 365 sequences, while TC128 [28]
researches the chromatic information in visual tracking.
UAV123 [30] and DTB70 [27] offer 123 and 70 aerial
videos of rigid objects and humans in various scenes.
NfS [23] consists of more than 380K frames captured at
240 FPS studying higher frame rate tracking, while La-
SOT [16] is a large-scale and category balance benchmark
of premium quality. GOT-10k [22] provides about 1.5M
annotations and 84 classes of objects, aiming at generic ob-
ject tracking. The annual tracking challenge VOT [24] of-
fered 62 sequences and 20K frames in 2022. A more recent
benchmark TOTB [17] mainly focuses on transparent ob-
ject tracking. TREK-150 [15] introduces 150 sequences of
tracking in First Person Vision (FPV) with the interaction
between the person and the target object.

By contrast, our proposed 360VOT is the first benchmark
dataset to focus on object tracking and explore new repre-
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sentations on omnidirectional videos. A summarized com-
parison with existing benchmarks is reported in Table 1.

2.2. Benchmarks for 360◦ object detection

Most visual trackers rely on the approaches of tracking
by detection. Benefiting from the rapid development of ob-
ject detection, it is effective to improve the performance of
tracking by utilizing those sophisticated network architec-
tures to obtain more robust correlation features. Recently,
aiming at omnidirectional understanding and perception, re-
searchers started resorting to object detection algorithms for
360◦ images or videos. Several 360◦ datasets and bench-
marks for object detection have been proposed. Flying-
Cars [6] is a synthetic dataset composed of 6K images in
512 × 256 of synthetic cars and panoramic backgrounds.
OSV [45] created a dataset that covers object annotations
on 600 street-view panoramic images. 360-Indoor [5] fo-
cuses on indoor object detection among 37 categories, while
PANDORA [43] provides 3K images of 1920 × 960 reso-
lution with rBFoV annotation. These 360 detection bench-
marks contain independent images with a sole type of an-
notation. Differently, as a benchmark for visual object
tracking, 360VOT contains large-scale 360◦ videos with
long footage, higher resolution, diverse environments, and
4 types of annotations.

2.3. Visual object tracking scheme

To guarantee high tracking speed, the trackers for sin-
gle object tracking generally crop the image and search
for the target in small local regions. The tracking scheme
is vital in selecting searching regions and interpreting net-
work predictions over sequences in the inference phase. A
compatible tracking inference scheme can enhance track-
ing performance. For example, DaSiamRPN [50] explored
a local-to-global searching strategy for long-term tracking.
SiamX [21] proposed an adaptive inference scheme to pre-
vent tracking loss and realize fast target re-localization.
Here, we introduce a 360-tracking framework to make use
of local visual trackers, which are trained on normal per-
spective images to achieve enhanced performance on 360◦

video tracking.

3. Tracking on 360◦ Video

The 360◦ video is composed of frames using the most
common ERP. Each frame can capture 360◦ horizontal and
180◦ vertical field of view. Although omnidirectional FoV
avoids out-of-view issues, the target may cross the left and
right borders of a 2D image. Additionally, nonlinear projec-
tion distortion makes the target largely distorted when they
are near the top or bottom of the image, as illustrated in Fig-
ure 1. Therefore, a new representation and framework that
fit ERP for 360◦ visual tracking are necessary.

Figure 2: Train. The comparison of the bounding regions
of different representations on a 360◦ image. The unwarped
images based on BFoV and rBFoV are less distorted.

3.1. Representation for the target location

The (r)BBox is the most common and simple way to rep-
resent the target object’s position in perspective images. It is
a rectangular area defined by the rectangle around the target
object on the image and denoted as [cx, cy, w, h, γ], where
cx, cy are object center, w, h are width and height. The ro-
tation angle γ of BBox is always zero. However, these rep-
resentations would become less accurate to properly con-
strain the target on the 360◦ image. The works [49, 43]
for 360◦ object detection show that the BFoV and rBFoV
are more appropriate representations on 360◦ images. Ba-
sically, we can use the spherical camera model F to for-
mulate the mathematical relationship between the 2D im-
age in ERP and a continuous 3D unit sphere [20]. (r)BFoV
is then defined as [clon, clat, θ, ϕ, γ] where [clon, clat] are
the longitude and latitude coordinates of the object center at
the spherical coordinate system, θ and ϕ denote the maxi-
mum horizontal and vertical field-of-view angles of the ob-
ject’s occupation. Additionally, the represented region of
(r)BFoV on the 360◦ image is commonly calculated via a
tangent plane [49, 43] , T (θ, ϕ) ∈ R3, and formulated as:

I((r)BFoV |Ω) = F(Ry(clon) · Rx(clat) · Rz(γ) · Ω), (1)

where R denotes the 3D rotation along the y, x, z axes,
Ω equals T (θ, ϕ) here. The unwarped images based on
tangent BFoV are distortion-free under the small FoV, as
shown in Figure 2.

However, this definition has a disadvantage on large FoV
and cannot represent the region exceeding 180◦ FoV essen-
tially. With the increasing FoV, the unwarped images from
the tangent planes have drastic distortions, shown in the up-
per row in Figure 3. This defect limits the application of
BFoV on visual object tracking since trackers rely on un-
warped images for target searching. To address this prob-
lem, we extended the definition of BFoV. When the bound-
ing region involves a large FoV, i.e., larger than 90◦, the
extended BFoV leverages a spherical surface S(θ, ϕ) ∈ R3

instead of a tangent plane to represent the bounding region
on the 360◦ image. Therefore, the corresponding region of
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Figure 3: The boundaries on the 360◦ images and the corresponding unwarped images of different BFoV definitions. The
tangent BFoV is displayed in blue and the extended BFoV is in orange. M on the sphere surface denotes the object center
and tangent point. Blue plane with dotted borders represents a larger plane out of space. Best viewed in color.

Figure 4: The diagram of 360 tracking framework. 360 tracking framework takes responsibility to extract local search regions
for tracking and interpret tracking results. It supports various local visual trackers and can generate 4 types of representation.

extended (r)BFoV on 360◦ is formulated as:

I((r)BFoV |Ω), Ω =

{
T (θ, ϕ), θ < 90◦, ϕ < 90◦

S(θ, ϕ), otherwise
. (2)

The comparisons of the boundary on 360◦ images and cor-
responding unwarped images based on tangent BFoV and
the extended BFoV are shown in Figure 3. Please refer to
the supplementary for the detailed formulation.

3.2. 360 tracking framework

To conduct omnidirectional tracking using an existing vi-
sual tracker, we propose a 360 tracking framework, shown
in Figure 4. The framework leverages extended BFoV to ad-
dress challenges caused by object crossing-border and large
distortion on the 360◦ image. As a continuous representa-
tion in the spherical coordinate system, BFoV is not subject
to the resolution of the image. Given an initial BFoV, the
framework first calculates the corresponding region I on the
360◦ image via Eq. 2. By remapping the 360◦ image using
pixel coordinates recorded in I , it extracts a less distorted
local search region for target identification. From this ex-
tracted image, a local visual tracker then infers a BBox or
rBBox prediction. Finally, we can still utilize I to convert
the local prediction back to the global bounding region on
the 360◦ image. The (r)BBox prediction is calculated as
the minimum area (rotated) rectangle on the 360◦ image. In
terms of (r)BFoV, we can re-project the bounding region’s

coordinates onto the spherical coordinate system and calcu-
late the maximum bounding FoV. Since the framework does
not rely on nor affect the network architecture of the tracker,
we can adapt an arbitrary local visual tracker trained on con-
ventional perspective images for omnidirectional tracking.

4. A New Benchmark Dataset: 360VOT

In this section, we elaborate on how to collect appro-
priate 360◦ videos and efficiently obtain unbiased ground
truth, making a new benchmark dataset for omnidirectional
(360◦) Visual Object Tracking (360VOT).

4.1. Collection

The resources of 360◦ videos are much less abundant
than normal format videos. We spent lots of effort and time
collecting hundreds of candidate videos from YouTube and
captured some using a 360◦ camera. After that, we ranked
and filtered them considering four criteria of tracking diffi-
culty scale and some additional challenging cases. Videos
can gain higher ranking with 1) adequate relative motion of
the target, 2) higher variability of the environment, 3) the
target crossing frame borders, and 4) sufficient footage. In
addition to the criteria listed above, videos with additional
challenges are assigned a higher priority. For example, dis-
tinguishing targets from other highly comparable objects is
a challenge in object detection and tracking.
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After filtering, videos are further selected and sampled
into sequences with a frame number threshold (≤2400).
The relatively stationary frames are further discarded man-
ually. Considering the distribution balance, 120 sequences
are finally selected as the 360VOT benchmark. The object
classes mainly cover humans (skydiver, rider, pedestrian
and diver), animals (dog, cat, horse, shark, bird, monkey,
dolphin, panda, rabbit, squirrel, turtle, elephant and rhino),
rigid objects (car, F1 car, bike, motorbike, boat, aircraft,
Lego, basket, building, kart, cup, drone, helmet, shoes, tire
and train) and human & carrier cases (human & bike, hu-
man & motorbike and human & horse). Our benchmark
encompasses a wide range of categories with high diversity,
as illustrated in the examples in Figure 1.

4.2. Annotation

Manual annotation of large-scale images in high qual-
ity usually requires sufficient manpower with basic profes-
sional knowledge in the domain. Accordingly, the track-
ing benchmark with 4 different types of ground truth in-
creases the manual annotation workload largely increased
and makes the annotation standard inconsistent in a large
group of annotators. The large distortion and crossing bor-
der issues of 360◦ images also make it difficult to obtain
satisfactory annotations. Besides, there is no toolkit able to
produce BFoV annotation directly. To overcome these prob-
lems, we seek to segment the per-pixel target instance in
each frame and then obtain corresponding optimal (r)BBox
and (r)BFoV from the resultant masks.

To realize the objective at a speedy time, our annotation
pipeline includes three steps, initial object localization, in-
teractive segmentation refinement, and mask-to-bounding
box conversion. First, we integrated our 360 tracking
framework with a visual tracker [21] and then used it to
generate initial BBoxes for all sequences before segmenta-
tion. The annotators inspected the tracking results online
and would correct and restart the tracking when tracking
failed. The centroid of each BBox would be used to initi-
ate segmentation later. Second, we developed an efficient
segmentation annotation toolkit based on a click-based in-
teractive segmentation model [37], which allows annotators
to refine the initial segmentation with a few clicks. Finally,
we converted the fine-grained segmentation masks with two
rounds of revision to get the four unbiased ground truths by
minimizing the bounding areas respectively. Please refer to
the supplementary for details of the annotation toolkit and
conversion algorithms.

4.3. Attributes

Each sequence is annotated with a total of 20 different
attributes: illumination variation (IV), background clutter
(BC), deformable target (DEF), motion blur (MB), camera
motion (CM), rotation (ROT), partial occlusion (POC), full

Attr. Meaning
IV The target is subject to light variation.
BC The background has a similar appearance as the target.

DEF The target deforms during tracking.
MB The target is blurred due to motion.
CM The camera has abrupt motion.
ROT The target rotates related to the frames.
POC The target is partially occluded.
FOC The target is fully occluded.

ARC
The ratio of the annotation aspect ratio of the first and the cur-
rent frame is outside the range [0.5, 2].

SV
The ratio of the annotation area of the first and the current frame
is outside the range [0.5, 2].

FM
The motion of the target center between contiguous frames ex-
ceeds its own size.

LR The area of the target annotation is less than 1000 pixels.
HR The area of the target annotation is larger than 5002 pixels.

SA
The 360◦ images have stitching artifacts and they affect the tar-
get object.

CB
The target is crossing the border of the frame and partially ap-
pears on the other side.

FMS
The motion angle on the spherical surface of the target center is
larger than the last BFoV.

LFoV The vertical or horizontal FoV of the BFoV is larger than 90◦.

LV
The range of the latitude of the target center across the video is
larger than 50◦.

HL
The latitude of the target center is outside the range
[−60◦, 60◦], lying in the “frigid zone”.

LD
The target suffers large distortion due to the equirectangular
projection.

Table 2: Attribute description. The 360VOT not only con-
tains 13 attributes widely used by the existing benchmarks
but also has 7 additional attributes, described in the last
block of the row, leading to distinct challenges.

occlusion (FOC), aspect ratio change (ARC), scale varia-
tion (SV), fast motion (FM), low resolution (LR), high res-
olution (HR), stitching artifact (SA), crossing border (CB),
fast motion on the sphere (FMS), large FoV (LFoV), lati-
tude variation (LV), high latitude (HL) and large distortion
(LD). The detailed meaning of each attribute is described
in Table 2. Among them, IV, BC, DEF, MB, CM, ROT,
POC and LD attributes are manually labeled, while the oth-
ers are computed from the annotation results of targets. The
distinct features of the 360◦ image are well represented in
360VOT: location variations (FMS, LFoV and LV), exter-
nal disturbances (SA and LD) and special imaging (CB and
HL). See visual examples in the supplementary.

Overall, the exact number of each attribute is plotted
in a histogram, as shown in Figure 5a, while the corre-
spondence of each attribute is provided with a heatmap,
as shown in Figure 5b. A warmer tone indicates that the
pair of attributes are more frequently present together and
vice versa. The co-occurrence counts of each row are then
normalized by the diagonal counts. We observe that scale
changes (ARC and SV) and motion (MB and FM) are com-
mon challenges that are also included in other benchmarks.
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Figure 5: Attribute distribution of 360VOT benchmark.

Extra challenges of omnidirectional visual object tracking,
including CB, FMS, LV, and LD, co-occur with traditional
challenges. Specifically, CB occurs when the two patches
of the target without intersection are at opposite edges or
corners of the frame, and LD happens when the target is of
large FoV and appears in a high latitude area of the frame.

5. Experiments
5.1. Metrics

To conduct the experiments, we use the standard one-
pass evaluation (OPE) protocol [42] and measure the suc-
cess S, precision P, and normalized precision P [31] of the
trackers over the 120 sequences. Success S is computed as
the intersection over union (IoU) between the tracking re-
sults Btr and the ground truth annotations Bgt. The track-
ers are ranked by the area under curve (AUC), which is the
average of the success rates corresponding to the sampled
thresholds [0, 1]. The precision P is computed as the dis-
tance between the results Ctr and the ground truth centers
Cgt. The trackers are ranked by the precision rate on the
specific threshold (i.e., 20 pixels). The normalized preci-
sion P is scale-invariant, which normalizes the precision P
over the size of the ground truth and then ranks the trackers
using the AUC for the P between 0 and 0.5. For the perspec-

tive image using (r)BBox, these metrics can be formulated
as:

S = IoU(Bgt, Btr), P = ||Cgt
xy −Ctr

xy||2,
P = ||diag(Bgt, Btr)(Cgt

xy −Ctr
xy)||2.

(3)

However, for 360◦ images, the target predictions may
cross the image. To handle this situation and increase the
accuracy of BBox evaluation, we introduce dual success
Sdual and precision Pdual. Specifically, we shift the Bgt

to the left and right by W , the width of 360◦ images, to
obtain two temporary ground truth Bgt

l and Bgt
r . Based on

the new ground truth, we then calculate extra success Sl and
Sr and precision Pl and Pr using Eq. 3. Finally, Sdual and
Pdual are measured by:

Sdual = max{Sl,S,Sr},
Pdual = min{Pl,P,Pr}.

(4)

Sdual and S, as Pdual and P, are the same when the anno-
tation does not cross the image border. Similarly, we can
compute the normalized dual Pdual.

Since objects suffer significant non-linear distortion in
the polar regions due to the equirectangular projection, the
distance between the predicted and ground truth centers
may be large on the 2D image but they are adjacent on the
spherical surface. It means that precision metric Pdual is
sensitive for 360◦ images. Therefore, we propose a new
metric Pangle, which is measured as the angle precision
< Cgt

lonlat,C
tr
lonlat > between the vectors of the ground

truth and the tracker results in the spherical coordinate sys-
tem. The different trackers are ranked with angle precision
rate on a threshold, i.e., 3◦. Moreover, when target positions
are represented by BFoV or rBFoV, we utilize spherical
IoU [9] to compute the success metric, denoted as Ssphere,
while only Ssphere and Pangle are measured.

5.2. Baseline trackers

We evaluated 20 state-of-the-art visual object trackers
on 360VOT. According to the latest development of visual
tracking, the compared methods can be roughly classified
into three groups: transformer trackers, Siamese trackers,
and other deep learning based trackers. Specifically, the
transformer trackers contain Stark [44], ToMP [29], Mix-
Former [8], SimTrack [3] and AiATrack [18]. The Siamese
trackers include SiamDW [47], SiamMask [40], SiamRP-
Npp [26], SiamBAN [4], AutoMatch [46], Ocean [48] and
SiamX [21]. For other deep trackers, UDT [39], Meta-
SDNet [33], MDNet [32], ECO [11], ATOM [10], KYS [2],
DiMP [1], PrDiMP [12] are evaluated. We used the official
implementation, trained models, and default configurations
to ensure a fair comparison among trackers. In addition,
we developed a new baseline AiATrack-360 that combines
the transformer tracker AiATrack [18] with our 360 track-
ing framework. We also adapt a different kind of tracker
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Tracker 360VOT BBox

Sdual

(AUC) Pdual
Pdual

(AUC)
Pangle

UDT [39] 0.104 0.075 0.117 0.098
Meta-SDNet [33] 0.131 0.097 0.164 0.136
MDNet [32] 0.150 0.106 0.188 0.143
ECO [11] 0.175 0.130 0.212 0.179
ATOM [10] 0.252 0.216 0.286 0.266
KYS [2] 0.286 0.245 0.312 0.296
DiMP [1] 0.290 0.247 0.315 0.299
PrDiMP [12] 0.341 0.292 0.371 0.347

SiamDW [47] 0.156 0.116 0.190 0.156
SiamMask [40] 0.189 0.161 0.220 0.203
SiamRPNpp [26] 0.201 0.175 0.233 0.213
SiamBAN [4] 0.205 0.187 0.242 0.227
AutoMatch [46] 0.208 0.202 0.261 0.248
Ocean [48] 0.240 0.223 0.287 0.264
SiamX [21] 0.302 0.265 0.331 0.315

Stark [44] 0.381 0.356 0.403 0.408
ToMP [29] 0.393 0.352 0.421 0.413
MixFormer [8] 0.395 0.378 0.417 0.424
SimTrack [3] 0.400 0.373 0.421 0.424
AiATrack [18] 0.405 0.369 0.427 0.423

SiamX-360 0.391 0.365 0.430 0.425
AiATrack-360 0.534 0.506 0.563 0.574

Table 3: Overall performance on 360VOT BBox in terms of
dual success, dual precision, normalized dual precision, and
angle precision. Bold blue indicates the best results in the
tracker group. Bold red indicates the best results overall.

SiamX [21] with our framework, named SiamX-360, to ver-
ify the generality of the proposed framework.

5.3. Performance based on BBox

Overall performance. Existing trackers take the BBox of
the first frame to initialize the tracking, and the inference
results are also in the form of BBox. Table 3 shows com-
parison results among four groups of trackers, i.e., other,
Siamese, transformer baselines, and the adapted trackers
for each block in the table. According to the quantitative
results, PrDiMP [12], SiamX [21] and AiATrack-360 per-
form best in their group of trackers. Owing to the powerful
network architectures, the transformer trackers generally
outperform other groups of the compared trackers. After
AiATrack integrates our proposed framework, AiATrack-
360 achieves a significant performance increase of 12.9%,
13.7%, 13.6% and 15.1% in terms of Sdual, Pdual, Pdual and
Pangle respectively. AiATrack-360 outperforms all other
trackers with a big performance gap. Compared to SiamX,
SiamX-360 is improved by 8.9% Sdual, 10% Pdual, 9.6%
Pdual and 11% Pangle, which is comparable with other
transformer trackers. Although the performance gains of
AiATrack-360 and SiamX-360 are different, it validates the
effectiveness and generalization of our 360 tracking frame-

Tracker 360VOT rBBox

Sdual(AUC) Pdual Pdual(AUC) Pangle

SiamX-360 0.205 0.278 0.278 0.327
AiATrack-360 0.362 0.449 0.516 0.535

360VOT BFoV 360VOT rBFoV

Ssphere(AUC) Pangle Ssphere(AUC) Pangle

SiamX-360 0.262 0.327 0.243 0.323
AiATrack-360 0.548 0.564 0.426 0.530

Table 4: Tracking performance based on other annotations
of 360VOT using 360 tracking framework.

work on 360◦ visual object tracking. They can serve as a
new baseline for future comparison.
Attribute-based performance. Furthermore, we evaluate
all trackers under 20 attributes in order to analyze differ-
ent challenges faced by existing trackers. In Figure 6, we
plot the results on the videos with cross border (CB), fast
motion on the sphere (FMS), and latitude variation (LV) at-
tributes. These are the three exclusive and most challenging
attributes of 360VOT. For complete results with other at-
tributes, please refer to the supplementary. Compared to the
overall performance, all trackers suffer performance degra-
dation, especially on the CB and FMS attributes. For ex-
ample, Pdual of SimTrack decreases by 4.2% and 5.3% on
CB and FMS respectively. However, the performance of
AiATrack-360 still dominates on all three adverse attributes,
while SiamX-360 also obtains stable performance gains.

5.4. Performance based on other annotations

Apart from BBox ground truth, we provide additional
ground truth, including rBBox, BFoV, and rBFoV. As
our 360 tracking framework can estimate approximate rB-
Box, BFoV, and rBFoV from local BBox predictions,
we additionally evaluate performances of SiamX-360 and
AiATrack-360 on these three representations (Table 4).
Compared with the results on BBox (Table 3), the per-
formance on rBBox declines vastly. SiamX-360 and
AiATrack-360 only achieve 0.205 and 0.362 Sdual respec-
tively. By contrast, the evaluation of BFoV and rBFoV
has more reasonable and consistent numbers. In addition,
we display visual results by AiATrack-360 and AiAtrack
in Figure 7. AiATrack-360 can always follow and localize
the target in challenging cases. Compared with (r)BBox,
(r)BFoV can bind the target accurately with fewer irrele-
vant areas. From the extensive evaluation, we can observe
that using BFoV and rBFoV would be beneficial for object
localization in omnidirectional scenes. While SiamX-360
and AiATrack-360 serve as new baselines to demonstrate
this potential, developing new trackers which can directly
predict rBBox, BFoV, and rBFoV will be an important fu-
ture direction.
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(a) Crossing Border (b) Fast Motion on the Sphere (c) Latitude Variation

Figure 6: Comparing BBox tracking performances of different trackers in terms of dual success rate and angle precision rate
under the three distinct attributes of 360VOT.
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Figure 7: Qualitative results of the baseline on different representations. Red denotes the ground truth, and blue denotes the
results of AiATrack-360. The green in the first row denotes the results of AiATrack.

6. Discussion and Conclusion

The 360 tracking framework with existing tracker in-
tegration can, to some extent, succeed in omnidirectional
visual object tracking, but there still remains much room
for improvement. We want to discuss some promising di-
rections here. 1) Data augmentation. The existing track-
ers are trained on the dataset of perspective images, while
large-scale training data of 360◦ images are lacking. During
training, we can introduce projection distortion to augment
the training data. 2) Long-term omnidirectional tracking
algorithms. The trackers enhanced by our tracking frame-

work are technically still classified as short-term trackers.
As target occlusion is a noticeable attribute of 360VOT, the
long-term tracker capable of target relocalization can per-
form better. Nonetheless, how to effectively and efficiently
search for targets on a whole 360◦ image is a challenge.
3) New network architectures. SphereNet [7] learns spher-
ical representations for omnidirectional detection and clas-
sification, while DeepSphere [13] proposes a graph-based
spherical CNN. The trackers exploiting these network archi-
tectures tailored for omnidirectional images may be able to
extract better features and correlations for robust tracking.
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By releasing 360VOT, we believe that the new dataset, rep-
resentations, metrics, and benchmark can encourage more
research and application of omnidirectional visual object
tracking in both computer vision and robotics.
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