

360VOT: A New Benchmark Dataset for Omnidirectional Visual Object Tracking

Huajian Huang Yinzhe Xu Yingshu Chen Sai-Kit Yeung The Hong Kong University of Science and Technology

{hhuangbg, yxuck, ychengw}@connect.ust.hk, saikit@ust.hk

Figure 1: Example sequences and annotations of 360VOT benchmark dataset. The target objects in each 360° frame are annotated with four different representations as ground truth, including bounding box, rotated bounding box, bounding field-of-view, and rotated bounding field-of-view. 360VOT brings distinct challenges for tracking, e.g., crossing border (CB), large distortion (LD) and stitching artifact (SA).

Abstract

360° images can provide an omnidirectional field of view which is important for stable and long-term scene perception. In this paper, we explore 360° images for visual object tracking and perceive new challenges caused by large distortion, stitching artifacts, and other unique attributes of 360° images. To alleviate these problems, we take advantage of novel representations of target localization, i.e., bounding field-of-view, and then introduce a general 360 tracking framework that can adopt typical trackers for omnidirectional tracking. More importantly, we propose a new large-scale omnidirectional tracking benchmark dataset, 360VOT, in order to facilitate future research. 360VOT contains 120 sequences with up to 113K high-resolution frames in equirectangular projection. The tracking targets cover 32 categories in diverse scenarios. Moreover, we provide 4 types of unbiased ground truth, including (rotated) bounding boxes and (rotated) bounding field-of-views, as well as new metrics tailored for 360° images which allow for the accurate evaluation of omnidirectional tracking performance. Finally, we extensively evaluated 20 state-of-the-art visual trackers and provided a new baseline for future comparisons. Homepage: https://360vot.hkustvgd.com

1. Introduction

Visual object tracking is an essential problem in computer vision since it is demanded in various applications such as video analysis, human-machine interaction, and intelligent robots. In the last decade, a large number of visual tracking algorithms [19, 32, 11, 26, 1] and various benchmarks [42, 30, 24, 16, 22] have been proposed to promote the development of the visual tracking community. Whereas most existing research focuses on perspective visual object tracking, there is little attention paid to omnidirectional visual object tracking.

Omnidirectional visual object tracking employs a 360° camera to track the target object. With its omnidirectional field-of-view (FoV), a 360° camera offers continuous observation of the target over a longer period, minimizing the out-of-view issue. This advantage is crucial for intelligent

agents to achieve stable, long-term tracking, and perception. In general, an ideal spherical camera model is used to describe the projection relationship of a 360° camera. The 360° image is widely represented by equirectangular projection (ERP) [36], which has two main features: 1) crossing the image border and 2) extreme distortion as the latitude increases. Moreover, due to inherent limitations or manufacturing defects of the camera, the 360° image may suffer from stitching artifacts that would blur, break or duplicate the shape of objects. Meanwhile, omnidirectional FoV means it is inevitable to capture the photographers. They would distract and occlude the targets. These phenomena are illustrated in Figure 1. Eventually, they bring new challenges for object tracking on 360° images.

To explore this problem and understand how the current tracking algorithms designed for perspective visual tracking perform, we proposed a challenging omnidirectional tracking benchmark dataset, referred to as 360VOT. The benchmark dataset is composed of 120 sequences, and each sequence has an average of 940 frames with 3840×1920 resolution. Our benchmark encompasses a wide range of categories and diverse scenarios, such as indoor, underwater, skydiving, and racing. Apart from 13 conventional attributes, 360VOT has additional 7 attributes, including the aforementioned challenges, fast motion on the sphere and latitude variation. Additionally, we introduce new representations to object tracking. Compared to the commonly used bounding box (BBox), bounding field-of-view (BFoV) [9, 43] represents object localization on the unit sphere in an angular fashion. BFoV can better constrain the target on 360° images and is not subject to image resolution. Based on BFoV, we can properly crop the search regions, which enhances the performance of the conventional trackers devised for perspective visual tracking in omnidirectional tracking. To encourage future research, we provide densely unbiased annotations as ground truth, including BBox and three advanced representations, i.e., rotated BBox (rBBox), BFoV, and rotated BFoV (rBFoV). Accordingly, we develop new metrics tailored for 360° images to accurately evaluate omnidirectional tracking performances.

In summary, the contribution of this work includes:

- The proposed 360VOT, to the best of our knowledge, is the first benchmark dataset for omnidirectional visual object tracking.
- We explore the new representations for visual object tracking and provide four types of unbiased ground truth.
- We propose new metrics for omnidirectional tracking evaluation, which measure the dual success rate and angle precision on the sphere.
- We benchmark 20 state-of-the-art trackers on 360VOT with extensive evaluations and develop a new baseline for future comparisons.

Benchmark	Videos	Total frames	Object classes	Attr.	Annotation	Feature
ALOV300[35]	314	152K	64	14	sparse BBox	diverse scenes
OTB100[42]	100	81K	16	11	dense BBox	short-term
NUS-PRO[25]	365	135K	8	12	dense BBox	occlusion-level
TC128[28]	129	55K	27	11	dense BBox	color enhanced
UAV123[30]	123	113K	9	12	dense BBox	UAV
DTB70[27]	70	16K	29	11	dense BBox	UAV
NfS[23]	100	383K	17	9	dense BBox	high FPS
UAVDT[14]	100	78K	27	14	sparse BBox	UAV
TrackingNet*[31]	511	226K	27	15	sparse BBox	large scale
OxUvA[38]	337	1.55M	22	6	sparse BBox	long-term
LaSOT*[16]	280	685K	85	14	dense BBox	category balance
GOT-10k*[22]	420	56K	84	6	dense BBox	generic
TOTB[17]	225	86K	15	12	dense BBox	transparent
TREK-150[15]	150	97K	34	17	dense BBox	FPV
VOT[24]	62	20K	37	9	dense BBox	annual
360VOT	120	113K	32	20	dense (r)BBox & (r)BFoV	360° images

Table 1: Comparison of current popular benchmarks for visual single object tracking in the literature. * indicates that only the test set of each dataset is reported.

2. Related Work

2.1. Benchmarks for visual object tracking

With the remarkable development of the visual object tracking community, previous works have proposed numerous benchmarks in various scenarios. ALOV300 [35] is a sparse benchmark introducing 152K frames and 16K annotations, while UAVDT [14] focuses on UAV scenarios and has 100 videos. TrackingNet [31] is a large-scale dataset collecting more than 14M frames based on the YT-BB dataset [34]. As YT-BB only provides fine-grained annotations without further manual refinement. OxUvA [38] targets long-term tracking by constructing 337 video sequences, but each video only has 30 frames annotated.

One of the first dense BBox benchmarks is OTB100 [42] which is extended from OTB50 [41] and has 100 sequences. NUS-PRO [25] takes the feature of occlusion-level annotation and provides 365 sequences, while TC128 [28] researches the chromatic information in visual tracking. UAV123 [30] and DTB70 [27] offer 123 and 70 aerial videos of rigid objects and humans in various scenes. NfS [23] consists of more than 380K frames captured at 240 FPS studying higher frame rate tracking, while La-SOT [16] is a large-scale and category balance benchmark of premium quality. GOT-10k [22] provides about 1.5M annotations and 84 classes of objects, aiming at generic object tracking. The annual tracking challenge VOT [24] offered 62 sequences and 20K frames in 2022. A more recent benchmark TOTB [17] mainly focuses on transparent object tracking. TREK-150 [15] introduces 150 sequences of tracking in First Person Vision (FPV) with the interaction between the person and the target object.

By contrast, our proposed 360VOT is the first benchmark dataset to focus on object tracking and explore new repre-

sentations on omnidirectional videos. A summarized comparison with existing benchmarks is reported in Table 1.

2.2. Benchmarks for 360° object detection

Most visual trackers rely on the approaches of tracking by detection. Benefiting from the rapid development of object detection, it is effective to improve the performance of tracking by utilizing those sophisticated network architectures to obtain more robust correlation features. Recently, aiming at omnidirectional understanding and perception, researchers started resorting to object detection algorithms for 360° images or videos. Several 360° datasets and benchmarks for object detection have been proposed. Flying-Cars [6] is a synthetic dataset composed of 6K images in 512×256 of synthetic cars and panoramic backgrounds. OSV [45] created a dataset that covers object annotations on 600 street-view panoramic images. 360-Indoor [5] focuses on indoor object detection among 37 categories, while PANDORA [43] provides 3K images of 1920 × 960 resolution with rBFoV annotation. These 360 detection benchmarks contain independent images with a sole type of annotation. Differently, as a benchmark for visual object tracking, 360VOT contains large-scale 360° videos with long footage, higher resolution, diverse environments, and 4 types of annotations.

2.3. Visual object tracking scheme

To guarantee high tracking speed, the trackers for single object tracking generally crop the image and search for the target in small local regions. The tracking scheme is vital in selecting searching regions and interpreting network predictions over sequences in the inference phase. A compatible tracking inference scheme can enhance tracking performance. For example, DaSiamRPN [50] explored a local-to-global searching strategy for long-term tracking. SiamX [21] proposed an adaptive inference scheme to prevent tracking loss and realize fast target re-localization. Here, we introduce a 360-tracking framework to make use of local visual trackers, which are trained on normal perspective images to achieve enhanced performance on 360° video tracking.

3. Tracking on 360° Video

The 360° video is composed of frames using the most common ERP. Each frame can capture 360° horizontal and 180° vertical field of view. Although omnidirectional FoV avoids out-of-view issues, the target may cross the left and right borders of a 2D image. Additionally, nonlinear projection distortion makes the target largely distorted when they are near the top or bottom of the image, as illustrated in Figure 1. Therefore, a new representation and framework that fit ERP for 360° visual tracking are necessary.

Figure 2: *Train*. The comparison of the bounding regions of different representations on a 360° image. The unwarped images based on BFoV and rBFoV are less distorted.

3.1. Representation for the target location

The (r)BBox is the most common and simple way to represent the target object's position in perspective images. It is a rectangular area defined by the rectangle around the target object on the image and denoted as $[cx, cy, w, h, \gamma]$, where cx, cy are object center, w, h are width and height. The rotation angle γ of BBox is always zero. However, these representations would become less accurate to properly constrain the target on the 360° image. The works [49, 43] for 360° object detection show that the BFoV and rBFoV are more appropriate representations on 360° images. Basically, we can use the spherical camera model \mathcal{F} to formulate the mathematical relationship between the 2D image in ERP and a continuous 3D unit sphere [20]. (r)BFoV is then defined as $[clon, clat, \theta, \phi, \gamma]$ where [clon, clat] are the longitude and latitude coordinates of the object center at the spherical coordinate system, θ and ϕ denote the maximum horizontal and vertical field-of-view angles of the object's occupation. Additionally, the represented region of (r)BFoV on the 360° image is commonly calculated via a tangent plane [49, 43], $T(\theta, \phi) \in \mathbb{R}^3$, and formulated as:

$$I((\mathbf{r})\mathsf{BFoV} \mid \Omega) = \mathcal{F}(\mathcal{R}_y(clon) \cdot \mathcal{R}_x(clat) \cdot \mathcal{R}_z(\gamma) \cdot \Omega), \quad (1)$$

where \mathcal{R} denotes the 3D rotation along the y, x, z axes, Ω equals $T(\theta, \phi)$ here. The unwarped images based on tangent BFoV are distortion-free under the small FoV, as shown in Figure 2.

However, this definition has a disadvantage on large FoV and cannot represent the region exceeding 180° FoV essentially. With the increasing FoV, the unwarped images from the tangent planes have drastic distortions, shown in the upper row in Figure 3. This defect limits the application of BFoV on visual object tracking since trackers rely on unwarped images for target searching. To address this problem, we extended the definition of BFoV. When the bounding region involves a large FoV, i.e., larger than 90°, the extended BFoV leverages a spherical surface $S(\theta, \phi) \in \mathbb{R}^3$ instead of a tangent plane to represent the bounding region on the 360° image. Therefore, the corresponding region of

Figure 3: The boundaries on the 360° images and the corresponding unwarped images of different BFoV definitions. The tangent BFoV is displayed in blue and the extended BFoV is in orange. M on the sphere surface denotes the object center and tangent point. Blue plane with dotted borders represents a larger plane out of space. Best viewed in color.

Figure 4: The diagram of 360 tracking framework. 360 tracking framework takes responsibility to extract local search regions for tracking and interpret tracking results. It supports various local visual trackers and can generate 4 types of representation.

extended (r)BFoV on 360° is formulated as:

$$I((\mathbf{r})\mathsf{BFoV} \mid \Omega), \quad \Omega = \begin{cases} T(\theta, \phi), & \theta < 90^{\circ}, \phi < 90^{\circ} \\ S(\theta, \phi), & otherwise \end{cases}.$$
(2)

The comparisons of the boundary on 360° images and corresponding unwarped images based on tangent BFoV and the extended BFoV are shown in Figure 3. Please refer to the supplementary for the detailed formulation.

3.2. 360 tracking framework

To conduct omnidirectional tracking using an existing visual tracker, we propose a 360 tracking framework, shown in Figure 4. The framework leverages extended BFoV to address challenges caused by object crossing-border and large distortion on the 360° image. As a continuous representation in the spherical coordinate system, BFoV is not subject to the resolution of the image. Given an initial BFoV, the framework first calculates the corresponding region I on the 360° image via Eq. 2. By remapping the 360° image using pixel coordinates recorded in I, it extracts a less distorted local search region for target identification. From this extracted image, a local visual tracker then infers a BBox or rBBox prediction. Finally, we can still utilize I to convert the local prediction back to the global bounding region on the 360° image. The (r)BBox prediction is calculated as the minimum area (rotated) rectangle on the 360° image. In terms of (r)BFoV, we can re-project the bounding region's coordinates onto the spherical coordinate system and calculate the maximum bounding FoV. Since the framework does not rely on nor affect the network architecture of the tracker, we can adapt an arbitrary local visual tracker trained on conventional perspective images for omnidirectional tracking.

4. A New Benchmark Dataset: 360VOT

In this section, we elaborate on how to collect appropriate 360° videos and efficiently obtain unbiased ground truth, making a new benchmark dataset for omnidirectional (360°) Visual Object Tracking (360VOT).

4.1. Collection

The resources of 360° videos are much less abundant than normal format videos. We spent lots of effort and time collecting hundreds of candidate videos from YouTube and captured some using a 360° camera. After that, we ranked and filtered them considering four criteria of tracking difficulty scale and some additional challenging cases. Videos can gain higher ranking with 1) adequate relative motion of the target, 2) higher variability of the environment, 3) the target crossing frame borders, and 4) sufficient footage. In addition to the criteria listed above, videos with additional challenges are assigned a higher priority. For example, distinguishing targets from other highly comparable objects is a challenge in object detection and tracking. After filtering, videos are further selected and sampled into sequences with a frame number threshold (\leq 2400). The relatively stationary frames are further discarded manually. Considering the distribution balance, 120 sequences are finally selected as the 360VOT benchmark. The object classes mainly cover *humans* (skydiver, rider, pedestrian and diver), *animals* (dog, cat, horse, shark, bird, monkey, dolphin, panda, rabbit, squirrel, turtle, elephant and rhino), *rigid objects* (car, F1 car, bike, motorbike, boat, aircraft, Lego, basket, building, kart, cup, drone, helmet, shoes, tire and train) and *human & carrier cases* (human & bike, human & motorbike and human & horse). Our benchmark encompasses a wide range of categories with high diversity, as illustrated in the examples in Figure 1.

4.2. Annotation

Manual annotation of large-scale images in high quality usually requires sufficient manpower with basic professional knowledge in the domain. Accordingly, the tracking benchmark with 4 different types of ground truth increases the manual annotation workload largely increased and makes the annotation standard inconsistent in a large group of annotators. The large distortion and crossing border issues of 360° images also make it difficult to obtain satisfactory annotations. Besides, there is no toolkit able to produce BFoV annotation directly. To overcome these problems, we seek to segment the per-pixel target instance in each frame and then obtain corresponding optimal (r)BBox and (r)BFoV from the resultant masks.

To realize the objective at a speedy time, our annotation pipeline includes three steps, initial object localization, interactive segmentation refinement, and mask-to-bounding box conversion. First, we integrated our 360 tracking framework with a visual tracker [21] and then used it to generate initial BBoxes for all sequences before segmentation. The annotators inspected the tracking results online and would correct and restart the tracking when tracking failed. The centroid of each BBox would be used to initiate segmentation later. Second, we developed an efficient segmentation annotation toolkit based on a click-based interactive segmentation model [37], which allows annotators to refine the initial segmentation with a few clicks. Finally, we converted the fine-grained segmentation masks with two rounds of revision to get the four unbiased ground truths by minimizing the bounding areas respectively. Please refer to the supplementary for details of the annotation toolkit and conversion algorithms.

4.3. Attributes

Each sequence is annotated with a total of 20 different attributes: illumination variation (IV), background clutter (BC), deformable target (DEF), motion blur (MB), camera motion (CM), rotation (ROT), partial occlusion (POC), full

Attr.	Meaning				
IV	The target is subject to light variation.				
BC	The background has a similar appearance as the target.				
DEF	The target deforms during tracking.				
MB	The target is blurred due to motion.				
CM	The camera has abrupt motion.				
ROT	The target rotates related to the frames.				
POC	The target is partially occluded.				
FOC	The target is fully occluded.				
ADC	The ratio of the annotation aspect ratio of the first and the cur-				
AKC	rent frame is outside the range [0.5, 2].				
sv	The ratio of the annotation area of the first and the current frame				
	is outside the range [0.5, 2].				
FM	The motion of the target center between contiguous frames ex-				
1.141	ceeds its own size.				
LR	The area of the target annotation is less than 1000 pixels.				
HR	The area of the target annotation is larger than 500^2 pixels.				
C 4	The 360° images have stitching artifacts and they affect the tar-				
SA	get object.				
CD	The target is crossing the border of the frame and partially ap-				
СВ	pears on the other side.				
EMC	The motion angle on the spherical surface of the target center is				
LM2	larger than the last BFoV.				
LFoV	The vertical or horizontal FoV of the BFoV is larger than 90° .				
IV	The range of the latitude of the target center across the video is				
LV	larger than 50°.				
HL	The latitude of the target center is outside the range				
	$[-60^{\circ}, 60^{\circ}]$, lying in the "frigid zone".				
LD	The target suffers large distortion due to the equirectangular				
	projection.				
able 2	2: Attribute description. The 360VOT not only con-				

Table 2: Attribute description. The 360VOT not only contains 13 attributes widely used by the existing benchmarks but also has 7 additional attributes, described in the last block of the row, leading to distinct challenges.

occlusion (FOC), aspect ratio change (ARC), scale variation (SV), fast motion (FM), low resolution (LR), high resolution (HR), stitching artifact (SA), crossing border (CB), fast motion on the sphere (FMS), large FoV (LFoV), latitude variation (LV), high latitude (HL) and large distortion (LD). The detailed meaning of each attribute is described in Table 2. Among them, IV, BC, DEF, MB, CM, ROT, POC and LD attributes are manually labeled, while the others are computed from the annotation results of targets. The distinct features of the 360° image are well represented in 360VOT: *location variations* (FMS, LFoV and LV), *external disturbances* (SA and LD) and *special imaging* (CB and HL). See visual examples in the supplementary.

Overall, the exact number of each attribute is plotted in a histogram, as shown in Figure 5a, while the correspondence of each attribute is provided with a heatmap, as shown in Figure 5b. A warmer tone indicates that the pair of attributes are more frequently present together and vice versa. The co-occurrence counts of each row are then normalized by the diagonal counts. We observe that *scale changes* (ARC and SV) and *motion* (MB and FM) are common challenges that are also included in other benchmarks.

Figure 5: Attribute distribution of 360VOT benchmark.

Extra challenges of omnidirectional visual object tracking, including CB, FMS, LV, and LD, co-occur with traditional challenges. Specifically, CB occurs when the two patches of the target without intersection are at opposite edges or corners of the frame, and LD happens when the target is of large FoV and appears in a high latitude area of the frame.

5. Experiments

5.1. Metrics

To conduct the experiments, we use the standard onepass evaluation (OPE) protocol [42] and measure the success S, precision P, and normalized precision \overline{P} [31] of the trackers over the 120 sequences. Success S is computed as the intersection over union (IoU) between the tracking results B^{tr} and the ground truth annotations B^{gt} . The trackers are ranked by the area under curve (AUC), which is the average of the success rates corresponding to the sampled thresholds [0, 1]. The precision P is computed as the distance between the results C^{tr} and the ground truth centers C^{gt} . The trackers are ranked by the precision rate on the specific threshold (i.e., 20 pixels). The normalized precision \overline{P} is scale-invariant, which normalizes the precision P over the size of the ground truth and then ranks the trackers using the AUC for the \overline{P} between 0 and 0.5. For the perspective image using (r)BBox, these metrics can be formulated as:

$$\mathbf{S} = IoU(B^{gt}, B^{tr}), \mathbf{P} = ||\mathbf{C}_{xy}^{gt} - \mathbf{C}_{xy}^{tr}||_{2},$$

$$\overline{\mathbf{P}} = ||diag(B^{gt}, B^{tr})(\mathbf{C}_{xy}^{gt} - \mathbf{C}_{xy}^{tr})||_{2}.$$
(3)

However, for 360° images, the target predictions may cross the image. To handle this situation and increase the accuracy of BBox evaluation, we introduce dual success S_{dual} and precision P_{dual} . Specifically, we shift the B^{gt} to the left and right by W, the width of 360° images, to obtain two temporary ground truth B_l^{gt} and B_r^{gt} . Based on the new ground truth, we then calculate extra success S_l and S_r and precision P_l and P_r using Eq. 3. Finally, S_{dual} and P_{dual} are measured by:

$$S_{dual} = max\{S_l, S, S_r\},$$

$$P_{dual} = min\{P_l, P, P_r\}.$$
(4)

 S_{dual} and S, as P_{dual} and P, are the same when the annotation does not cross the image border. Similarly, we can compute the normalized dual \overline{P}_{dual} .

Since objects suffer significant non-linear distortion in the polar regions due to the equirectangular projection, the distance between the predicted and ground truth centers may be large on the 2D image but they are adjacent on the spherical surface. It means that precision metric P_{dual} is sensitive for 360° images. Therefore, we propose a new metric P_{angle} , which is measured as the angle precision $< C_{lonlat}^{gt}, C_{lonlat}^{tr} >$ between the vectors of the ground truth and the tracker results in the spherical coordinate system. The different trackers are ranked with angle precision rate on a threshold, i.e., 3°. Moreover, when target positions are represented by BFoV or rBFoV, we utilize spherical IoU [9] to compute the success metric, denoted as S_{sphere} , while only S_{sphere} and P_{angle} are measured.

5.2. Baseline trackers

We evaluated 20 state-of-the-art visual object trackers on 360VOT. According to the latest development of visual tracking, the compared methods can be roughly classified into three groups: transformer trackers, Siamese trackers, and other deep learning based trackers. Specifically, the transformer trackers contain Stark [44], ToMP [29], Mix-Former [8], SimTrack [3] and AiATrack [18]. The Siamese trackers include SiamDW [47], SiamMask [40], SiamRP-Npp [26], SiamBAN [4], AutoMatch [46], Ocean [48] and SiamX [21]. For other deep trackers, UDT [39], Meta-SDNet [33], MDNet [32], ECO [11], ATOM [10], KYS [2], DiMP [1], PrDiMP [12] are evaluated. We used the official implementation, trained models, and default configurations to ensure a fair comparison among trackers. In addition, we developed a new baseline AiATrack-360 that combines the transformer tracker AiATrack [18] with our 360 tracking framework. We also adapt a different kind of tracker

Tracker	360VOT BBox				
	S _{dual} (AUC)	P _{dual}	\overline{P}_{dual} (AUC)	Pangle	
UDT [39]	0.104	0.075	0.117	0.098	
Meta-SDNet [33]	0.131	0.097	0.164	0.136	
MDNet [32]	0.150	0.106	0.188	0.143	
ECO [11]	0.175	0.130	0.212	0.179	
ATOM [10]	0.252	0.216	0.286	0.266	
KYS [2]	0.286	0.245	0.312	0.296	
DiMP [1]	0.290	0.247	0.315	0.299	
PrDiMP [12]	0.341	0.292	0.371	0.347	
SiamDW [47]	0.156	0.116	0.190	0.156	
SiamMask [40]	0.189	0.161	0.220	0.203	
SiamRPNpp [26]	0.201	0.175	0.233	0.213	
SiamBAN [4]	0.205	0.187	0.242	0.227	
AutoMatch [46]	0.208	0.202	0.261	0.248	
Ocean [48]	0.240	0.223	0.287	0.264	
SiamX [21]	0.302	0.265	0.331	0.315	
Stark [44]	0.381	0.356	0.403	0.408	
ToMP [29]	0.393	0.352	0.421	0.413	
MixFormer [8]	0.395	0.378	0.417	0.424	
SimTrack [3]	0.400	0.373	0.421	0.424	
AiATrack [18]	0.405	0.369	0.427	0.423	
SiamX-360	0.391	0.365	0.430	0.425	
AiATrack-360	0.534	0.506	0.563	0.574	

Table 3: Overall performance on 360VOT BBox in terms of dual success, dual precision, normalized dual precision, and angle precision. Bold **blue** indicates the best results in the tracker group. Bold **red** indicates the best results overall.

SiamX [21] with our framework, named SiamX-360, to verify the generality of the proposed framework.

5.3. Performance based on BBox

Overall performance. Existing trackers take the BBox of the first frame to initialize the tracking, and the inference results are also in the form of BBox. Table 3 shows comparison results among four groups of trackers, i.e., other, Siamese, transformer baselines, and the adapted trackers for each block in the table. According to the quantitative results, PrDiMP [12], SiamX [21] and AiATrack-360 perform best in their group of trackers. Owing to the powerful network architectures, the transformer trackers generally outperform other groups of the compared trackers. After AiATrack integrates our proposed framework, AiATrack-360 achieves a significant performance increase of 12.9%. 13.7%, 13.6% and 15.1% in terms of S_{dual} , P_{dual} , \overline{P}_{dual} and Pangle respectively. AiATrack-360 outperforms all other trackers with a big performance gap. Compared to SiamX, SiamX-360 is improved by 8.9% S_{dual}, 10% P_{dual}, 9.6% \overline{P}_{dual} and 11% P_{angle} , which is comparable with other transformer trackers. Although the performance gains of AiATrack-360 and SiamX-360 are different, it validates the effectiveness and generalization of our 360 tracking frame-

Tracker	360VOT rBBox					
	$S_{dual}(AUC)$	\mathbf{P}_{dual}	$\overline{P}_{dual}(AUC)$	Pangle		
SiamX-360	0.205	0.278	0.278	0.327		
AiATrack-360	0.362	0.449	0.516	0.535		
	360VOT BFoV		360VOT rBFoV			
	$S_{sphere}(AUC)$	\mathbf{P}_{angle}	$\overline{S_{sphere}(AUC)}$	\mathbf{P}_{angle}		
SiamX-360	0.262	0.327	0.243	0.323		
AiATrack-360	0.548	0.564	0.426	0.530		

Table 4: Tracking performance based on other annotations of 360VOT using 360 tracking framework.

work on 360° visual object tracking. They can serve as a new baseline for future comparison.

Attribute-based performance. Furthermore, we evaluate all trackers under 20 attributes in order to analyze different challenges faced by existing trackers. In Figure 6, we plot the results on the videos with cross border (CB), fast motion on the sphere (FMS), and latitude variation (LV) attributes. These are the three exclusive and most challenging attributes of 360VOT. For complete results with other attributes, please refer to the supplementary. Compared to the overall performance, all trackers suffer performance degradation, especially on the CB and FMS attributes. For example, P_{dual} of SimTrack decreases by 4.2% and 5.3% on CB and FMS respectively. However, the performance of AiATrack-360 still dominates on all three adverse attributes, while SiamX-360 also obtains stable performance gains.

5.4. Performance based on other annotations

Apart from BBox ground truth, we provide additional ground truth, including rBBox, BFoV, and rBFoV. As our 360 tracking framework can estimate approximate rB-Box, BFoV, and rBFoV from local BBox predictions, we additionally evaluate performances of SiamX-360 and AiATrack-360 on these three representations (Table 4). Compared with the results on BBox (Table 3), the per-SiamX-360 and formance on rBBox declines vastly. AiATrack-360 only achieve 0.205 and 0.362 Sdual respectively. By contrast, the evaluation of BFoV and rBFoV has more reasonable and consistent numbers. In addition, we display visual results by AiATrack-360 and AiAtrack in Figure 7. AiATrack-360 can always follow and localize the target in challenging cases. Compared with (r)BBox, (r)BFoV can bind the target accurately with fewer irrelevant areas. From the extensive evaluation, we can observe that using BFoV and rBFoV would be beneficial for object localization in omnidirectional scenes. While SiamX-360 and AiATrack-360 serve as new baselines to demonstrate this potential, developing new trackers which can directly predict rBBox, BFoV, and rBFoV will be an important future direction.

Figure 6: Comparing BBox tracking performances of different trackers in terms of dual success rate and angle precision rate under the three distinct attributes of 360VOT.

Figure 7: Qualitative results of the baseline on different representations. Red denotes the ground truth, and blue denotes the results of AiATrack-360. The green in the first row denotes the results of AiATrack.

6. Discussion and Conclusion

The 360 tracking framework with existing tracker integration can, to some extent, succeed in omnidirectional visual object tracking, but there still remains much room for improvement. We want to discuss some promising directions here. 1) Data augmentation. The existing trackers are trained on the dataset of perspective images, while large-scale training data of 360° images are lacking. During training, we can introduce projection distortion to augment the training data. 2) Long-term omnidirectional tracking algorithms. The trackers enhanced by our tracking framework are technically still classified as short-term trackers. As target occlusion is a noticeable attribute of 360VOT, the long-term tracker capable of target relocalization can perform better. Nonetheless, how to effectively and efficiently search for targets on a whole 360° image is a challenge. 3) New network architectures. SphereNet [7] learns spherical representations for omnidirectional detection and classification, while DeepSphere [13] proposes a graph-based spherical CNN. The trackers exploiting these network architectures tailored for omnidirectional images may be able to extract better features and correlations for robust tracking.

By releasing 360VOT, we believe that the new dataset, representations, metrics, and benchmark can encourage more research and application of omnidirectional visual object tracking in both computer vision and robotics.

Acknowledgement. This research is partially supported by an internal grant from HKUST (R9429) and the Innovation and Technology Support Programme of the Innovation and Technology Fund (Ref: ITS/200/20FP). We thank Xiaopeng Guo, Yipeng Zhu, Xiaoyu Mo, and Tsz-Chun Law for data collection and processing.

References

- Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. Learning discriminative model prediction for tracking. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 6182–6191, 2019. 1, 6, 7
- [2] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. Know your surroundings: Exploiting scene information for object tracking. In *Computer Vision–ECCV 2020:* 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIII 16, pages 205–221. Springer, 2020. 6, 7
- [3] Boyu Chen, Peixia Li, Lei Bai, Lei Qiao, Qiuhong Shen, Bo Li, Weihao Gan, Wei Wu, and Wanli Ouyang. Backbone is all your need: A simplified architecture for visual object tracking. *arXiv preprint arXiv:2203.05328*, 2022. 6, 7
- [4] Zedu Chen, Bineng Zhong, Guorong Li, Shengping Zhang, and Rongrong Ji. Siamese box adaptive network for visual tracking. In *Proceedings of the IEEE/CVF Conference* on Computer Vision and Pattern Recognition, pages 6668– 6677, 2020. 6, 7
- [5] Shih-Han Chou, Cheng Sun, Wen-Yen Chang, Wan-Ting Hsu, Min Sun, and Jianlong Fu. 360-indoor: Towards learning real-world objects in 360° indoor equirectangular images. 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), 2020. 3
- [6] Benjamin Coors, Alexandru Paul Condurache, and Andreas Geiger. Spherenet: Learning spherical representations for detection and classification in omnidirectional images. In *Proceedings of the European Conference on Computer Vision (ECCV)*, September 2018. 3
- [7] Benjamin Coors, Alexandru Paul Condurache, and Andreas Geiger. Spherenet: Learning spherical representations for detection and classification in omnidirectional images. In *Proceedings of the European conference on computer vision* (ECCV), pages 518–533, 2018. 8
- [8] Yutao Cui, Cheng Jiang, Limin Wang, and Gangshan Wu. Mixformer: End-to-end tracking with iterative mixed attention. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 13608–13618, 2022. 6, 7
- [9] Feng Dai, Bin Chen, Hang Xu, Yike Ma, Xiaodong Li, Bailan Feng, Peng Yuan, Chenggang Yan, and Qiang Zhao. Unbiased iou for spherical image object detection. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pages 508–515, 2022. 2, 6

- [10] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg. Atom: Accurate tracking by overlap maximization. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 4660–4669, 2019. 6, 7
- [11] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg. Eco: Efficient convolution operators for tracking. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 6638–6646, 2017. 1, 6, 7
- [12] Martin Danelljan, Luc Van Gool, and Radu Timofte. Probabilistic regression for visual tracking. In *Proceedings of* the IEEE/CVF conference on computer vision and pattern recognition, pages 7183–7192, 2020. 6, 7
- [13] Michaël Defferrard, Martino Milani, Frédérick Gusset, and Nathanaël Perraudin. Deepsphere: a graph-based spherical cnn. arXiv preprint arXiv:2012.15000, 2020. 8
- [14] Dawei Du, Yuankai Qi, Hongyang Yu, Yifan Yang, Kaiwen Duan, Guorong Li, Weigang Zhang, Qingming Huang, and Qi Tian. The unmanned aerial vehicle benchmark: Object detection and tracking. In *Proceedings of the European conference on computer vision (ECCV)*, pages 370–386, 2018.
- [15] Matteo Dunnhofer, Antonino Furnari, Giovanni Maria Farinella, and Christian Micheloni. Is first person vision challenging for object tracking? In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 2698–2710, 2021. 2
- [16] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling. Lasot: A high-quality benchmark for large-scale single object tracking. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 5374–5383, 2019. 1, 2
- [17] Heng Fan, Halady Akhilesha Miththanthaya, Siranjiv Ramana Rajan, Xiaoqiong Liu, Zhilin Zou, Yuewei Lin, Haibin Ling, et al. Transparent object tracking benchmark. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 10734–10743, 2021. 2
- [18] Shenyuan Gao, Chunluan Zhou, Chao Ma, Xinggang Wang, and Junsong Yuan. Aiatrack: Attention in attention for transformer visual tracking. In *European Conference on Computer Vision*, pages 146–164. Springer, 2022. 6, 7
- [19] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. High-speed tracking with kernelized correlation filters. *IEEE transactions on pattern analysis and machine intelligence*, 37(3):583–596, 2014. 1
- [20] Huajian Huang and Sai-Kit Yeung. 360vo: Visual odometry using a single 360 camera. In 2022 International Conference on Robotics and Automation (ICRA), pages 5594–5600. IEEE, 2022. 3
- [21] Huajian Huang and Sai-Kit Yeung. Siamx: An efficient long-term tracker using cross-level feature correlation and adaptive tracking scheme. In *International Conference on Robotics and Automation (ICRA)*. IEEE, 2022. 3, 5, 6, 7
- [22] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A large high-diversity benchmark for generic object tracking in

the wild. *IEEE transactions on pattern analysis and machine intelligence*, 43(5):1562–1577, 2019. 1, 2

- [23] Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva Ramanan, and Simon Lucey. Need for speed: A benchmark for higher frame rate object tracking. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 1125–1134, 2017. 2
- [24] Matej Kristan, Jiri Matas, Aleš Leonardis, Tomas Vojir, Roman Pflugfelder, Gustavo Fernandez, Georg Nebehay, Fatih Porikli, and Luka Čehovin. A novel performance evaluation methodology for single-target trackers. *IEEE Transactions* on Pattern Analysis and Machine Intelligence, 38(11):2137– 2155, Nov 2016. 1, 2
- [25] Annan Li, Min Lin, Yi Wu, Ming-Hsuan Yang, and Shuicheng Yan. Nus-pro: A new visual tracking challenge. *IEEE transactions on pattern analysis and machine intelli*gence, 38(2):335–349, 2015. 2
- [26] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing, and Junjie Yan. Siamrpn++: Evolution of siamese visual tracking with very deep networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 4282–4291, 2019. 1, 6, 7
- [27] Siyi Li and Dit-Yan Yeung. Visual object tracking for unmanned aerial vehicles: A benchmark and new motion models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 31, 2017. 2
- [28] Pengpeng Liang, Erik Blasch, and Haibin Ling. Encoding color information for visual tracking: Algorithms and benchmark. *IEEE transactions on image processing*, 24(12):5630– 5644, 2015. 2
- [29] Christoph Mayer, Martin Danelljan, Goutam Bhat, Matthieu Paul, Danda Pani Paudel, Fisher Yu, and Luc Van Gool. Transforming model prediction for tracking. In *Proceedings* of the IEEE/CVF conference on computer vision and pattern recognition, pages 8731–8740, 2022. 6, 7
- [30] Matthias Mueller, Neil Smith, and Bernard Ghanem. A benchmark and simulator for uav tracking. In Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part I 14, pages 445-461. Springer, 2016. 1, 2
- [31] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Alsubaihi, and Bernard Ghanem. Trackingnet: A large-scale dataset and benchmark for object tracking in the wild. In *Proceedings of the European conference on computer vision* (ECCV), pages 300–317, 2018. 2, 6
- [32] Hyeonseob Nam and Bohyung Han. Learning multi-domain convolutional neural networks for visual tracking. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2016. 1, 6, 7
- [33] Eunbyung Park and Alexander C Berg. Meta-tracker: Fast and robust online adaptation for visual object trackers. In *Proceedings of the European Conference on Computer Vi*sion (ECCV), pages 569–585, 2018. 6, 7
- [34] Esteban Real, Jonathon Shlens, Stefano Mazzocchi, Xin Pan, and Vincent Vanhoucke. Youtube-boundingboxes: A large high-precision human-annotated data set for object detection in video. In proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 5296–5305, 2017. 2

- [35] Arnold WM Smeulders, Dung M Chu, Rita Cucchiara, Simone Calderara, Afshin Dehghan, and Mubarak Shah. Visual tracking: An experimental survey. *IEEE transactions* on pattern analysis and machine intelligence, 36(7):1442– 1468, 2013. 2
- [36] John P Snyder. Flattening the earth: two thousand years of map projections. University of Chicago Press, 1997. 2
- [37] Konstantin Sofiiuk, Ilya A Petrov, and Anton Konushin. Reviving iterative training with mask guidance for interactive segmentation. In 2022 IEEE International Conference on Image Processing (ICIP), pages 3141–3145. IEEE, 2022. 5
- [38] Jack Valmadre, Luca Bertinetto, Joao F Henriques, Ran Tao, Andrea Vedaldi, Arnold WM Smeulders, Philip HS Torr, and Efstratios Gavves. Long-term tracking in the wild: A benchmark. In Proceedings of the European conference on computer vision (ECCV), pages 670–685, 2018. 2
- [39] Ning Wang, Yibing Song, Chao Ma, Wengang Zhou, Wei Liu, and Houqiang Li. Unsupervised deep tracking. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2019. 6, 7
- [40] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and Philip HS Torr. Fast online object tracking and segmentation: A unifying approach. In *Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition*, pages 1328–1338, 2019. 6, 7
- [41] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object tracking: A benchmark. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 2411–2418, 2013. 2
- [42] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object tracking benchmark. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 37(9):1834–1848, 2015. 1, 2, 6
- [43] Hang Xu, Qiang Zhao, Yike Ma, Xiaodong Li, Peng Yuan, Bailan Feng, Chenggang Yan, and Feng Dai. Pandora: A panoramic detection dataset for object with orientation. In ECCV, 2022. 2, 3
- [44] Bin Yan, Houwen Peng, Jianlong Fu, Dong Wang, and Huchuan Lu. Learning spatio-temporal transformer for visual tracking. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 10448–10457, 2021. 6, 7
- [45] Dawen Yu and Shunping Ji. Grid based spherical cnn for object detection from panoramic images. *Sensors*, 19(11):2622, 2019. 3
- [46] Zhipeng Zhang, Yihao Liu, Xiao Wang, Bing Li, and Weiming Hu. Learn to match: Automatic matching network design for visual tracking. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 13339–13348, 2021. 6, 7
- [47] Zhipeng Zhang and Houwen Peng. Deeper and wider siamese networks for real-time visual tracking. In *The IEEE Conference on Computer Vision and Pattern Recognition* (CVPR), June 2019. 6, 7
- [48] Zhipeng Zhang, Houwen Peng, Jianlong Fu, Bing Li, and Weiming Hu. Ocean: Object-aware anchor-free tracking. In

Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXI 16, pages 771–787. Springer, 2020. 6, 7

- [49] Pengyu Zhao, Ansheng You, Yuanxing Zhang, Jiaying Liu, Kaigui Bian, and Yunhai Tong. Spherical criteria for fast and accurate 360° object detection. *Proceedings of the AAAI Conference on Artificial Intelligence*, 34(07):12959–12966, 2020. 3
- [50] Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan, and Weiming Hu. Distractor-aware siamese networks for visual object tracking. In *Proceedings of the European conference* on computer vision (ECCV), pages 101–117, 2018. 3