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Abstract

Pre-training across 3D vision and language remains un-
der development because of limited training data. Re-
cent works attempt to transfer vision-language (V-L) pre-
training methods to 3D vision. However, the domain gap
between 3D and images is unsolved, so that V-L pre-trained
models are restricted in 3D downstream tasks. To ad-
dress this issue, we propose CLIP2Point, an image-depth
pre-training method by contrastive learning to transfer
CLIP to the 3D domain, and adapt it to point cloud clas-
sification. We introduce a new depth rendering setting
that forms a better visual effect, and then render 52,460
pairs of images and depth maps from ShapeNet for pre-
training. The pre-training scheme of CLIP2Point com-
bines cross-modality learning to enforce the depth fea-
tures for capturing expressive visual and textual features
and intra-modality learning to enhance the invariance of
depth aggregation. Additionally, we propose a novel Gated
Dual-Path Adapter (GDPA), i.e., a dual-path structure
with global-view aggregators and gated fusion for down-
stream representative learning. It allows the ensemble
of CLIP and CLIP2Point, tuning pre-training knowledge
to downstream tasks in an efficient adaptation. Experi-
mental results show that CLIP2Point is effective in trans-
ferring CLIP knowledge to 3D vision. CLIP2Point out-
performs other 3D transfer learning and pre-training net-
works, achieving state-of-the-art results on zero-shot, few-
shot, and fully-supervised classification. Codes are avail-
able at: https://github.com/tyhuang0428/CLIP2Point.

1. Introduction
Vision-language (V-L) pre-training has achieved great

success in computer vision. Benefiting from large-scale
†Corresponding Author: Wangmeng Zuo (wmzuo@hit.edu.cn)
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Figure 1. Overall architecture of CLIP transfer learning on the 3D
domain. Point clouds are first projected to multi-view depth maps,
and then aggregated by the CLIP visual encoder. Comparison with
textual prompts presents the classification prediction. However,
we argue that the domain gap exists between depth maps and CLIP
pre-training images. To this end, a pre-trained depth encoder via
CLIP2Point is proposed.

data, V-L pre-trained models [34, 47] transfer language
knowledge to visual understanding, which can be fine-tuned
to multiple downstream tasks. However, pre-training across
3D vision and language remains an open question, due to
the lack of sufficient training data. For example, Contrastive
Language-Image Pre-training (CLIP) [34] takes more than
400M image-text pairs as training data. In contrast, few
studies have been given to pre-training across 3D vision and
language. Moreover, even the conventional 3D pre-training
method PointContrast [45] is trained on ScanNet [11] with
only 100k pairs of point clouds from 1,513 scenes. Due
to the limitation of 3D pre-training, most existing 3D deep
networks [33, 42] are trained from scratch on specific down-
stream datasets.

One remedy is to leverage the existing successful V-L
pre-trained model for 3D vision tasks. To this end, one may
first convert the 3D point clouds to multi-view 2D depth
maps [37, 15, 16, 43]. By simply treating 2D depth maps as
images, PointCLIP [53] applies CLIP to 3D tasks, providing
zero-shot and few-shot settings in the point cloud classifi-
cation with textual prompting. However, its results are still
limited since the rendered depth maps are much different
from the image domain of the CLIP training dataset. And
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the sparsity and disorder of point cloud data result in var-
ious depth distributions from multiple views, further con-
fusing the aggregation of CLIP. Existing pre-training works
focus on the domain gap [1] or multi-view consistency [45]
of point clouds, while we intend to tackle similar issues
based on depth maps. In addition, a solution of adapting
pre-training knowledge to downstream tasks should be in-
cluded in the V-L transfer.

In order to transfer CLIP to the 3D domain, we pro-
pose CLIP2Point, a pre-training scheme with two learning
mechanisms: 1) cross-modality learning for the contrastive
alignment of RGB image and depth map, 2) intra-modality
learning in the depth modality to enhance the invariance of
depth aggregation. In particular, the image encoder Ei is di-
rectly from CLIP weights and is frozen during pre-training.
While the depth encoder Ed is trained to 1) align depth fea-
tures with CLIP image features in cross-modality learning
and 2) encourage the depth aggregation to be invariant to
view changes in intra-modality learning. With pre-training,
the depth features can then be well aligned with the visual
CLIP features. As for the training data, we do not adopt
the depth maps in the existing RGB-D datasets as they are
densely sampled and are contradicted to the sparsity of ren-
dered depth maps. Instead, we reconstruct multi-view im-
ages and depth maps from 3D models directly. Specifically,
we render 10 views of RGB images from ShapeNet [4],
which covers 52,460 3D models for 55 object categories.
Meanwhile, we generate corresponding depth maps, with
a new rendering setting that forms a better visual effect for
CLIP encoding. Experiments show that our CLIP2Point can
significantly improve the performance of zero-shot point
cloud classification.

To further adapt our CLIP2Point to downstream tasks,
we propose a novel Gated Dual-Path Adapter (GDPA).
Since our pre-training is to align the instance-level depth
map, it can be complementary with CLIP pre-training
knowledge that focuses on category-level discrimination.
We propose a dual-path structure, where both our pre-
trained depth encoder Ed and the CLIP visual encoder Ei

are utilized. A learnable global-view aggregator is attached
to each encoder to extract an overall feature from multiple
views. And the final logits can be calculated by the gated
fusion of two encoders.

To sum up, our contributions can be summarized as:

• We propose a contrastive learning method dubbed
CLIP2Point, with a newly proposed pre-training
dataset that is pre-processed from ShapeNet, transfer-
ring CLIP knowledge to the 3D domain. Experiments
show that CLIP2Point significantly improves the per-
formance of zero-shot classification.

• We propose a novel Gated Dual-Path Adapter (GDPA),
a dual-path structure with global-view aggregators and

gated fusion to efficiently extend CLIP2Point to down-
stream representation learning.

• Extensive experiments are conducted on Model-
Net10, ModelNet40, and ScanobjectNN. In compari-
son to 3D transfer learning and pre-training networks,
CLIP2Point achieves state-of-the-art results on zero-
shot, few-shot, and fully-supervised point cloud clas-
sification tasks.

2. Related Work
2.1. Vision-Language Pre-Training

Vision-language (V-L) pre-training has been a growing
interest in multi-modal tasks. Pre-trained by large-scale
image-text [7, 5] or video-text [38] pairs, those models can
be applied to multiple downstream tasks, e.g., visual ques-
tion answering, image/video captioning, and text-to-image
generation. CLIP [34] further leverages V-L pre-training to
transfer cross-modal knowledge, allowing natural language
to understand visual concepts. Nonetheless, pre-training
across 3D vision and language [48, 20] is restricted by in-
sufficient 3D-text data pairs. And 3D downstream tasks like
shape retrieval [17] and text-guided shape generation [27]
suffer from limited performance. Considering the vacancy
between 3D vision and language, we attempt to transfer
CLIP pre-trained knowledge to the 3D domain, making lan-
guage applicable to point cloud classification.

2.2. Self-Supervised Pre-Training

Self-supervised pre-training has become an important
issue in computer vision. Since task-related annotations
are not required, it can leverage large-scale data and pre-
text tasks to learn general representation. In particu-
lar, contrastive learning [19, 6, 29, 41] and masked auto-
encoding [18, 56, 13] are two popular self-supervised
schemes. Different from directly applying masked auto-
encoding to 3D point completion [50, 32], Li and Heiz-
mann [24] argue that contrastive learning in 3D vision can
vary from granularity (point/instance/scene) or modality
(point/depth/image). In this work, we aim to adopt image-
depth contrastive learning to bridge the domain gap between
depth features and visual CLIP features, thereby allowing to
transfer CLIP knowledge to the 3D domain.

2.3. Downstream Fine-Tuning

Fine-tuning has been widely used in downstream tasks to
fit pre-trained weights to specific training datasets [51, 26,
55, 54]. One common practice is to update the entire param-
eters during training, while it may be overfitted if the scale
of training data is limited. Instead, partial tuning [3, 52]
is a data-efficient way to fit downstream data. Recently,
prompt tuning has been applied to language [2, 25] and
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Figure 2. Pre-training scheme of CLIP2Point. We propose a self-supervised pre-training scheme with intra-modality and cross-modality
contrastive learning to align depth features with CLIP visual features. We randomly choose a camera view for each 3D model and modify
the distances of the view to construct a pair of rendered depth maps. We adopt one NT-Xent loss between pairs of depth features extracted
from the depth encoder and the other between image features and average depth features. We freeze the image encoder during training,
enforcing the depth features by depth encoder to be aligned with the image features by CLIP visual encoder. Additionally, instead of all
the blue points, we only consider the red point during depth rendering, which improves the visual effect.

vision [14, 21] models. Prompt tuning provides several
learnable token sequences and specific task heads for the
adaptation, without the full tuning of pre-trained parame-
ters. Note that pre-trained models in 3D vision are still
in early exploration, and existing deep networks in point
cloud [33, 42, 30] all follow a full tuning paradigm. In
contrast, we propose a novel Gated Dual-Path Adapter for
lightweight fine-tuning. With CLIP textual prompts, a su-
pervised downstream setting is available by tuning efficient
adapters only.

3. CLIP-Based Transfer Learning in 3D

Transfer learning works [37, 15, 16, 43] in 3D vision
are basically based on 2D pre-training networks, convert-
ing point clouds to 2D depth maps. Recently, the suc-
cess of V-L pre-training opens up potential opportunities
for 3D-Language transfer. PointCLIP [53] directly adopts a
CLIP visual encoder to projected depth maps. However, the
image-depth domain gap restricts its performance. Instead,
we manage to align depth features to the CLIP domain, al-
lowing a boost on downstream tasks.

3.1. Review of CLIP and PointCLIP

CLIP [34] is a vision-language pre-training method that
matches images and texts by contrastive learning. It con-
tains two individual encoders: a visual encoder and a lan-
guage encoder, to respectively extract image features FI ∈
R1×C and textual features FT ∈ R1×C . Here, C is the
embedding dimension of encoders. For zero-shot transfer,
the cosine similarity of FI and FT implies the matching
results. Taking a K-category classification task as an exam-
ple, textual prompts are generated with the category names

and then encoded by CLIP, extracting a list of textual fea-
tures {FT

k }
K

k=1 ∈ RK×C . For each image feature FI , we
can calculate the predicted probability p as follows,

lk = cos(FI ,FT
k ), p = softmax([l1, . . . , lK ]). (1)

where lk denotes the logit for k-th category.
PointCLIP [53] applies CLIP to 3D point cloud data. It
renders multi-view depth maps from point clouds, and then
extracts the depth map features {FD

v }Nv=1 with the CLIP
visual encoder, where N is the number of views. Log-
its of the zero-shot classification can be calculated simi-
larly to Eq.(1), while multi-view features are gathered with
searched weights. PointCLIP also proposes an inter-view
adapter for the few-shot classification. It adopts a residual
form, which concatenates multi-view features {FD

v }Nv=1 for
a global representation GD ∈ R1×C and then add GD back
to extract adapted features F̂D

v ∈ R1×C . The adapter can
be formulated as,

GD = f2(ReLU(f1(concat({FD
v }Nv=1)))), (2)

F̂D
v = ReLU(GDWT

v ), (3)

lk =

N∑
v=1

αv(cos((F
D
v + F̂D

v ),FT
k )), (4)

where concat(·) denotes the concatenation on channel di-
mensions, f1 and f2 are two-layer MLPs, and Wv ∈ RC×C

and αv denote the view transformation and the summation
weights of the v-th view. f1, f2, and Wv are learnable dur-
ing the few-shot learning, while αv is post-searched.

However, depth maps are representations of geometry in-
formation, which lack natural texture information. There-
fore, it is inappropriate to directly apply CLIP visual en-
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coder for the extraction of depth features, leaving some lee-
way for boosting point cloud classification.

3.2. Aligning with CLIP Visual Features

Instead of directly applying CLIP visual encoder to
depth maps, we suggest to learn a depth encoder for aligning
depth features with CLIP visual features. In other words, we
expect the extracted features of a rendered depth map to be
consistent with CLIP visual features of the corresponding
image. Then, CLIP textual prompts can be directly adopted
to match the depth features. Moreover, since depth maps
are presented in multiple views, the consistency of depth
distribution needs maintaining as well.

Contrastive learning is a self-supervised pre-training
method that aligns features of each sample with its pos-
itive samples, and satisfies our expectations of minimiz-
ing the distance between image and depth features, as well
as enhancing the consistency of multi-view depth features.
We reconstruct a pre-training dataset from ShapeNet, which
contains pairs of rendered RGB images and corresponding
depth maps. We propose a pre-training scheme with intra-
modality and cross-modality contrastive learning. Then, the
pre-trained depth encoder can well adapt to CLIP prompts.
To further generate depth maps with a better visual effect for
CLIP encoding, a new depth rendering setting is adopted.

3.2.1 Pre-Training Scheme

As shown in Fig. 2, our pre-training network includes a
depth encoder Ed and an image encoder Ei. Given the input
dataset S = {Ii}|S|

i=1, where Ii ∈ R3×H×W is the i-th ren-
dered image in a random camera view, we render the corre-
sponding depth maps Di,d1

and Di,d2
in the same view an-

gle with different distances d1 and d2. We first adopt a intra-
modality aggregation among {(Di,d1 ,Di,d2)}

|S|
i=1 with Ed,

and then extract image features from {Ii}|S|
i=1 with Ei, en-

forcing Ed to keep consistent with Ei in a cross-modality
aspect. Ed and Ei are both initialized with the weights of
the visual encoder in CLIP. We freeze the parameters of Ei

during training, while Ed is learnable.
Intra-Modality Learning. Considering the sparsity and
disorder of point clouds in the 3D space, even though we
render depth maps at the same distance, distributions of
depth values for different views vary a lot. To keep the in-
variance of distance aggregation in Ed, intra-modality con-
trastive learning is adopted. For each input depth map Di,
we randomly modify the distance of the camera view but
keep the view angle, generating two augmented depth maps
Di,d1

and Di,d2
. Di,d1

and Di,d2
are then fed into Ed, ex-

tracting depth features FD
i,d1

,FD
i,d2

∈ R1×C . Following the
NT-Xent loss in SimCLR [6], the intra-modality contrastive

loss Lintra can be formulated as,

Lintra =
1

2N

N∑
i=1

(liintra(d1, d2) + liintra(d2, d1)), (5)

where N denotes the batch size. liintra(·) is based on In-
foNCE [31] loss. Please refer to the supplementary for more
details. And the final depth feature map FD

i is the mean of
FD

i,d1
and FD

i,d2
.

Cross-Modality Learning. For a set of rendered RGB-
D data, cross-modality contrastive learning aims to mini-
mize the distance between rendered images and depth maps
in the same pair, while maximizing the distance of oth-
ers. For each input image Ii, we extract the image features
FI

i ∈ R1×C , which is exactly the same as CLIP visual fea-
tures. Together with depth features FD

i , we obtain the cross-
modality contrastive loss Lcross as follows,

Lcross =
1

2N

N∑
i=1

(licross(D, I) + licross(I,D)). (6)

Similarly, licross(·) is based on InfoNCE [31] loss.
Lintra and Lcross are independently propagated, and

Lintra drops much faster than Lcross during our pre-
training. Thus, we adopt a multi-task loss [22] to balance
the two terms. The overall loss function L is formulated as,

L =
1

σ2
Lintra + Lcross + log(σ + 1), (7)

where σ is a learnable balance parameter.

3.2.2 Depth Rendering

To convert point cloud data into rendered depth images,we
need to project 3D coordinates (X,Y, Z) ∈ R3 to 2D
coordinates (X̂, Ŷ ) ∈ Z2 in a specific view. Here we
choose rendering from the front view as an example: a point
at (x, y, z) can simply match the corresponding pixel at
(⌈x/z⌉, ⌈y/z⌉) by perspective projection. However, there
are still two issues: 1) multiple points can be projected
to the same pixel in a specific plane; 2) a large area of
the rendered depth maps remains blank since points are
sparsely distributed in the 3D space. For the first issue, ex-
isting works [15, 53] prefer weighted summation of multi-
ple points,

d(x̂, ŷ) =

∑
(x,y,z) z/(z + ϵ)∑

(x,y,z) 1/z
, (8)

where (x, y, z) is the set of points matching (x̂, ŷ), and ϵ
denotes a minimal value, e.g., 1e−12. We argue that the
minimum depth value of those points is more intuitive in
2D vision, as we cannot watch an object perspectively with
naked eyes. For the second issue, few pixels can be covered
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Figure 3. Gated Dual-Path Adapter (GDPA) for downstream learning. We design a dual-path structure, combining our pre-trained depth
encoder with CLIP visual encoder. We propose a global-view aggregator and attach it to each encoder, which is parameter-efficient for
downstream training. GDPA allows a fusion of knowledge in CLIP and our pre-training, enhancing the adaptation ability of CLIP2Point.

due to the sparsity of point clouds. In order that the visual
continuity of the depth value can be refined, we extend each
point to its neighborhood pixels. Taking R as a dilation rate,
we have the matching set M(x̂, ŷ, R) as follows,

M(x̂, ŷ, R) = {(x, y, z)|(x, y, z) ∈ P and

x̂− R

2
≤ ⌈x

z
⌉ < x̂+

R

2
, ŷ − R

2
≤ ⌈y

z
⌉ < ŷ +

R

2
},

(9)

where P denotes the set of point clouds. Previous rendering
settings can be regarded as a special case when R = 1. We
set R = 2, thus obtaining final rendered values as follows:

d(x̂, ŷ) = min(z|(x, y, z) ∈ M(x̂, ŷ, 2)), (10)

where min(·) denotes the minimum value of the input set.
We illustrate the rendering process in the bottom of Fig. 2.
We take the value of the red point in the airplane as the depth
in (0, 0), but previous works need to additionally consider
all the blue points.

3.3. Zero-Shot Classification

With newly rendered depth maps and a pre-trained depth
encoder, we can obtain better performance of zero-shot
classification via a similar operation in CLIP. And since
depth features have a similar distribution to image fea-
tures after pre-training, we can simply use the prompt, i.e.,
“image of a [class name]” as the textual prompts. After ex-
tracting depth features {FD

v }Nv=1, we calculate the average
logits of all the views as follows,

lk =
1

N

N∑
v=1

cos(FD
v ,FT

k ). (11)

Note that PointCLIP exploits post-search to find a set of
view weights {αv}Nv=1 that achieves the highest accuracy.
We argue that post-search is a time-consuming procedure,
which is typically unfair for zero/few-shot tasks that require
efficiency. Hence, we avoid post-search during training and
evaluation, replacing it with the mean of multi-view logits.

4. Downstream Representation Learning
Albeit zero-shot learning is an efficient transfer pipeline

to downstream tasks, lightweight fine-tuning is also use-
ful for further refining the prediction accuracy. To apply
CLIP2Point to more tasks, we propose a novel Gated Dual-
Path Adapter (GDPA) for representation learning.

4.1. Gated Dual-Path Adapter

Dual-Path Structure. CLIP2Point can achieve a signifi-
cant improvement on zero-shot point cloud classification,
as our pre-training narrows the domain gap between depth
maps and images. While in few-shot learning, lightweight
adapters also help transfer domains in a more direct way
somehow, focusing on minimizing the category-level dis-
tance. That is the reason why PointCLIP can enjoy promis-
ing accuracy in few-shot classification. However, the do-
main transfer in our pre-training is based on instance-level
discrimination, extracting and comparing global features.
Thus, our pre-trained depth encoder and the CLIP visual en-
coder can be complementary, where the depth encoder can
be adjusted to an appropriate feature domain, and the visual
encoder can pay more attention to category selection.
Global-View Aggregator. The ultimate goal of 3D-2D
transferring is to aggregate a global representation of 3D ob-
jects from multi-view images. While in PointCLIP, an inter-
view adapter extracts global features and then expands them
back to the dimension of input multi-view depth features
RN×C , which increases computational costs and the risk of
information loss. Moreover, remaining multi-view features
still require aggregation, whether by time-consuming post-
search or coarse feature averaging. Instead, global features
of multiple views can directly estimate a global logits vec-
tor. Therefore, we propose the global-view aggregator g:

g({Fv}Nv=1) = f2(ReLU(f1(concat({Fv}Nv=1)))), (12)

where f1 and f2 are linear layers. We can then reduce the
learnable parameters and avoid post-search, presenting an
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efficient feature aggregation as follows:

GC = g({FC
v }Nv=1),G

D = g({FD
v }Nv=1), (13)

where superscripts C of features are related to CLIP.
Gated Fusion. Attention mechanisms are a common strat-
egy in multi-modal interaction modules [39]. However, a
lightweight adapter cannot afford such a large computation.
A gate [35] acts as a threshold to distinguish when to build
an identity connection between layers, which can be natu-
rally applied to the interaction of multiple layers. To con-
trol the fusion of our multi-modal knowledge in an efficient
way, we propose a gating strategy that adds learnable gating
weights σ to CLIP features. Then, we can calculate the final
global feature G and logits as follows,

G = σ ·GC +GD, lk = cos(G,FT
k ). (14)

4.2. Downstream Supervision

GDPA extends CLIP2Point to supervised downstream
learning. Both few-shot and fully-supervised recognition
tasks are available, and even scene-level tasks can be ac-
cessible if possible proposals are provided. Since GDPA
is an object-level discrimination, we can simply use cross-
entropy [12] loss for the supervision.

5. Experiments
5.1. Datasets

Pre-Training Datasets. Numerous RGB-D datasets are
available now, while depth images in those datasets can-
not replace rendered depth maps, as they are densely anno-
tated. To align images with sparsely marked depth maps,
we have to directly convert 3D point clouds to depth maps.
ShapeNet [4] is a large-scale dataset of 3D shapes, with
52,460 3D models in 55 categories. Previous works [46, 10]
render a subset of ShapeNet in limited views. Instead, we
render RGB images in 10 views with shapes and texture in-
formation from the complementary set of ShapeNet. The
implementation follows MVTN [16] on Pytorch3D [23].
Meanwhile, we sample the farthest 1,024 points of corre-
sponding 3D models, and then render those points to depth
maps as Eq.(10). To access the CLIP representation, the size
of rendered images and depth maps is 224×224. Following
the separation of the classification benchmark on ShapeNet,
we have 41,943 pairs for training and 10,517 pairs for vali-
dation. For each training sample in the batch, we randomly
choose a view out of the ten views. To evaluate the ren-
dering quality, we conduct zero-shot classification experi-
ments. The accuracy of RGB images and depth maps in our
validation set are 54.21% and 19.98%, respectively.
Downstream Datasets. We evaluate zero-shot classifica-
tion on ModelNet10 [44], ModelNet40 [44], and ScanOb-
jectNN [40], and 16-shot and fully-supervised classification

Table 1. Quantitative results of zero-shot classification. Our pre-
training significantly improves the accuracy, especially on Model-
Net10, ModelNet40, and S-OBJ ONLY.

Models PointCLIP Ours w/o Pre. Ours w/ Pre.
ModelNet10 30.23 30.51 66.63
ModelNet40 20.18 29.71 49.38
S-OBJ ONLY 15.15 28.40 35.46
S-OBJ BG 12.74 23.92 30.46
S-PB T50 RS 14.12 18.18 23.32

on ModelNet40. ModelNet is a synthetic indoor 3D dataset,
where ModelNet10 and ModelNet40 are both its subsets
for classification. ModelNet10 contains 4,899 CAD mod-
els from 10 categories, including 3,991 for training and 908
for testing. While ModelNet40 contains 12,311 CAD mod-
els from 40 categories, with 9,843 for training and 2,468 for
testing. Since the original ModelNet40 is not aligned in ori-
entation, we use the aligned version [36]. ScanObjectNN is
a real-world dataset, which contains 2,902 samples of point
cloud data from 15 categories. Different from clean CAD
models in ModelNet, objects in ScanObjectNN are partially
presented and attached with backgrounds. Thus, it is much
harder than ModelNet. For all three datasets, we sample
1,024 points of each model as the input point cloud.

5.2. Implementation Details

W use the basic version of Vision Transformer [14] with
a patch size of 32 (namely ViT-B/32) as our visual en-
coders for the encoding of both image and depth. In pre-
training, we use LAMB [49] optimizer with a weight decay
of 1×10−4 and initialize the learning rate to 6×10−3. Our
pre-training takes 100 epochs with a batch size of 256. We
choose the checkpoint with the highest accuracy in our eval-
uation set as the final weights for downstream tasks. In few-
shot and fully-supervised learning, we use AdamW [28] op-
timizer with a weight decay of 1 × 10−4 and initialize the
learning rate to 1× 10−3. The training batch size is 32.

5.3. Zero-Shot Classification

To the best of our knowledge, PointCLIP is the only at-
tempt to conduct zero-shot classification on the whole 3D
dataset. Previous works [9, 8] divide 3D datasets into two
parts: “seen” and “unseen” categories. Models are trained
on the former and evaluated on the latter, which is easier
than our zero-shot task. To evaluate the effectiveness of our
depth rendering setting and pre-training transfer, we com-
pare PointCLIP on ModelNet10, ModelNet40, and Scanob-
jectNN. For ScanobjectNN, we test on the object-only split
(S-OBJ ONLY), the background split (S-OBJ BG), and the
hardest split (S-PB T50 RS), respectively.

As shown in Tab. 1, even without pre-training, our
method can outperform PointCLIP, simply by using the
newly rendered depth maps. Especially on S-OBJ ONLY,
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Table 2. Quantitative results of few-shot classification. Our few-
shot pipeline has already achieved state-of-the-art results, and the
pre-trained version can further improve the performance.

Method Encoder w/o Pre. w/ Pre.
CrossPoint DGCNN 81.56 84.48
Point-MAE Transformer 79.70 84.20
PointCLIP ViT-B/32 83.83 -
PointCLIP ResNet101 87.20 -
CLIP2Point ViT-B/32 87.46 89.79

we have an over 10% gain on the accuracy, which means our
rendered depth maps can draw close to the CLIP domain,
even in real-world noisy data. After pre-training, the ac-
curacy is significantly improved on ModelNet10 and Mod-
elNet40, by 36.40% and 29.20%. Nonetheless, a 20.31%
gain can also be attained on S-OBJ ONLY. While the im-
provement on S-OBJ BG and S-PB T50 RS is relatively
small. We think that is because we generate our pre-
training dataset from ShapeNet, which is a clean synthetic
dataset without background. Background points may some-
what disturb object discrimination. We also notice that
PointCLIP has better accuracy on S-PB T50 RS than on
S-OBJ BG. S-PB T50 RS is an augmented version, which
contains much more cases than S-OBJ BG. Since both of
the results are relatively low, we judge that its performance
on real-world datasets like ScanObjectNN may be unstable.

5.4. 16-Shot Classification

To further evaluate the transfer ability of our pre-training
and verify the Gated Dual-Path Adapter, we compare
with PointCLIP, as well as two self-supervised pre-training
methods: CrossPoint [1] and Point-MAE [32] in 16-shot
classification. We choose a DGCNN [42] backbone for
CrossPoint and a 12-layer Transformer encoder for Point-
MAE. Although we only use ViT-B/32 as our encoder,
PointCLIP in ResNet101 is included in the experiments.

We present the quantitative results of our few-shot exper-
iments in Tab. 2. Initialized by CLIP weights, our few-shot
pipeline w/o pre-training has already outperformed other
methods, thanks to the global-view aggregator. Moreover,
our pre-trained version can reach an accuracy of 89.79%,
which is very close to some traditional supervised networks
such as PointNet++ [33].

5.5. Fully-Supervised Classification

Although GDPA is a lightweight adapter that is fit for
few-shot tasks, we can also apply it to fully-supervising.
We conduct fully-supervised classification experiments on
ModelNet40, comparing with 5 state-of-the-art 3D trans-
fer networks MVCNN [37], SimpleView [15], MVTN [16],
PointCLIP [53], and P2P [43]. Similar to CLIP2Point, these
networks convert point cloud data to depth maps, leveraging
2D pre-trained backbones to extract corresponding shape

Table 3. Fully-supervised classification on ModelNet40. Data
Type presents numbers of input points and views respectively.

Methods Data Type Acc.(%)
MVCNN image, 12 90.1
SimpleView 1,024, 6 93.4
MVTN 2,048, 12 93.8
PointCLIP 1,024, 10 92.1
P2P: ResNet-101 4,096, 40 93.1
P2P: ConvNeXt-L 4,096, 40 93.2
P2P: HorNet-L 4,096, 40 94.0
Transformer 1,024, - 91.4
+ Point-BERT 1,024, - 93.2
+ Point-MAE 1,024, - 93.8
CLIP2Point (Ours) 1,024, 10 94.2

features. We also compare with 3D self-supervised pre-
training methods Point-BERT [50] and Point-MAE [32].

As shown in Tab. 3, CLIP2Point outperforms P2P
(HorNet-L), but with much lower input requirements. Ad-
ditionally, our training only fine-tunes learnable adapters,
which is more efficient than those full-tuning methods. Ex-
perimental results prove that we achieve state-of-the-art
with low requirements of inputs and parameters.

5.6. Ablation Study

Intra-Modality Learning. In CLIP2Point, cross-modality
learning is necessary to bridge the image-depth domain gap,
while intra-modality learning is an extra enhancement of
depth invariance. To evaluate the effectiveness of our intra-
modality learning, we conduct a pre-training experiment
with cross-modality only, in which the accuracy of zero-
shot classification is only 38.29%. Regardless of random
view distances, we simply extract the features of original
depth maps as FD

i . The final loss can be formulated as
Eq.(6). We keep the same pre-training setting, while the re-
sult of zero-shot classification in this version of pre-training
is 11.09% lower than the version with intra-modality. Our
intra-modality contrastive learning allows the depth en-
coder to keep a depth invariance among different camera
views. Without randomized distances and corresponding
contrastive restrictions, the encoder may easily fail when
depth values vary a lot in different views.
Gated Dual-Path Adapter. To evaluate the design of the
Gated Dual-Path Adapter, we experiment with the dual-
path structure, global-view aggregators, and gated weights.
For the single-path adapter, we extract features with a pre-
trained depth encoder in CLIP2Point.

As shown in Tab. 4, all the components play a role in
the improvement. Extra weights in the inter-view adapter
make few-shot training much easier to overfit. And both
the expanding of global features and the gathering of multi-
view features may cause information loss. Additionally,
the dual-path structure greatly improves the performance
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Figure 4. Visualization results of our rendered images with different rendering settings.

in our global-view aggregator, which demonstrates that
knowledge from CLIP2Point and CLIP are complementary.
While the improvement in the inter-view adapter is rela-
tively small, we think multi-view gathering in a single en-
coder may disturb the combination of encoders.

We further evaluate a GDPA, in which encoders of both
paths are initialized with the CLIP visual encoder. Its accu-
racy is 87.20%, which is even lower than the single-path
version (87.46%, Tab. 2). It means the improvement of
the dual-path structures comes from the fine fusion of pre-
training knowledge, rather than increased parameters.
Depth Rendering. To analyze the depth rendering set-
ting, we evaluate several settings in Tab. 5. “Weighted” and
“Minimum” represent the depth values described in Eq.(8)
and Eq.(10), respectively. The dilation rate is set to 1, 2, and
4 for ablation studies. To fairly compare all the settings, we
use a single-path adapter without pre-training.

As shown in Tab. 5, using the minimum depth value has
much higher accuracy in both zero-shot and few-shot clas-
sification. We think that is because the visual effects in the
“Minimum” depth value can be close to CLIP pre-training
images. However, the larger is not the better for the dilation
rate. A too-large dilation rate may blur depth maps, espe-
cially near the corners of objects. The visualization in Fig. 4
further demonstrates that our setting has the best visual ef-
fect. It seems a global-view aggregator with our depth ren-
dering is the main growth point in few-shot. While we argue
that, without a pre-training ensemble, it can hardly achieve
accuracy close to fully-supervised networks, since we only
use 16 samples per category for few-shot learning.
Visualization of Feature Distribution. To further verify
the effectiveness of CLIP2Point, we visualize features on
ModelNet10 in Fig. 5. Features extracted by PointCLIP
(a) and CLIP2Point w/o pre-training (b) are both chaotic.
After pre-trained, CLIP2Point (c) works well in separat-
ing classes in feature space, which indicates that our pre-
training greatly improves the feature representation. How-
ever, there still exist two similar categories that are mixed
up. After few-shot training, all classes are clearly separated.

It is consistent with the results in the main text.

bathhub

bed

(a) PointCLIP

(c) w/ pre-training

(b)w/o pre-training

(d) w/ few-shot learning

chair
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Figure 5. Visualization of feature distributions on ModelNet10.

Table 4. Few-shot classification with different components.
Dual-Path Inter-view Global-view

% 86.06 87.32

✓ 86.18 89.21 (w/o gating) / 89.79 (gating)

Table 5. Classification performance in different rendering settings.
Task Depth Value R=1 R=2 R=4

Zero-Shot
Weighted 16.86 17.63 21.11

Minimum 24.87 29.71 28.36

Few-Shot
Weighted 83.91 83.87 84.08

Minimum 86.47 87.46 87.40

6. Conclusion
In this paper, we propose CLIP2Point, which pre-trains

a depth encoder for adapting CLIP knowledge to the 3D
domain. We introduce a depth-image pre-training method,
which consists of both intra-modality and cross-modality
contrastive learning to bridge the domain gap between depth
features by depth encoder and image features by CLIP
visual encoder, and to maintain the invariance of multi-
view depth distribution. For the pre-training data, we
render 52,560 images from 3D models in ShapeNet, and
meanwhile generate corresponding depth maps with a new
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depth rendering setting. After pre-training, the performance
of zero-shot point cloud classification is significantly im-
proved. To further adapt our pre-trained weights to down-
stream tasks, we newly propose Gated Dual-Path Adapter.
With global-view aggregators and gated fusion in a dual-
path structure, we achieve state-of-the-art results in com-
parison with 3D transfer learning and pre-training methods.

CLIP2Point is effective in transferring CLIP knowledge
to 3D vision, opening up the possibilities to apply CLIP
for zero-shot and open-world 3D tasks. Moreover, a sim-
ilar idea can also be used to transfer CLIP knowledge to
other visual modalities such as near-infrared (NIR) images.
Nonetheless, its performance and generalization ability are
affected by the amount and quality of pre-training data. For
example, synthetic pre-training data is limited to real-world
downstream tasks that contain noise and complicated back-
ground information. In future, we will leverage more re-
alistic data in pre-training, and extend CLIP2Point to other
complex 3D tasks (e.g., detection and segmentation).
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