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Abstract

Crowd counting has recently attracted significant atten-
tion in the field of computer vision due to its wide appli-
cations to image understanding. Numerous methods have
been proposed and achieved state-of-the-art performance
for real-world tasks. However, existing approaches do not
perform well under adverse weather such as haze, rain, and
snow since the visual appearances of crowds in such scenes
are drastically different from those images in clear weather
of typical datasets. In this paper, we propose a method for ro-
bust crowd counting in adverse weather scenarios. Instead
of using a two-stage approach that involves image restora-
tion and crowd counting modules, our model learns effective
features and adaptive queries to account for large appear-
ance variations. With these weather queries, the proposed
model can learn the weather information according to the
degradation of the input image and optimize with the crowd
counting module simultaneously. Experimental results show
that the proposed algorithm is effective in counting crowds
under different weather types on benchmark datasets. The
source code is available in our project page.

1. Introduction
Crowd counting aims to estimate the number of persons in

a scene. With the advances of deep learning and construction
of large-scale datasets [69, 19, 45, 54], this topic has become
an important topic with numerous applications. State-of-
the-art approaches are mainly based on convolutional neural
networks (CNNs) [22, 24, 31, 57, 50, 13, 1, 27, 29] and
transformers [48, 47, 37, 26]. While these approaches count
crowds effectively on normal images, they typically do not
perform well under adverse weather conditions such as haze,
rain, and snow. However, adverse weather is a common and
inevitable scenario that causes large appearance variations
of crowd scenes, thereby significantly affecting the perfor-
mance of methods developed for clear weather. As shown
in Figure 1, the state-of-the-art crowd counting method [29]
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Figure 1. Performance of State-of-the-art crowd counting
methods under adverse and clear weather on the JHU-
Crowd++ [45] dataset using mean absolute error (MAE). The
MAN method [29] achieves low MAE in clear scenes but high MAE
in adverse weather. On the other hand, the two-stage method, based
on Unified [8] and MAN [29]), performs slightly better in adverse
weather but slightly worse in clear scenes. Overall, the proposed
AWCC-Net performs favorably in both scenarios.

performs well only under good weather conditions. Thus,
it is of great importance to develop robust crowd counting
methods for adverse weather conditions.

To solve the crowd counting problem under adverse
weather, a plausible solution is to consider a two-stage
model. Specifically, this strategy pre-processes images us-
ing the state-of-the-art image restoration modules [8, 49] and
then applies the state-of-the-art crowd counting method [29].
However, this two-stage method may not perform well due
to several factors. First, adopting existing image restoration
methods does not always facilitate the crowd counting task
significantly since these methods are designed to restore im-
age contents rather than visual classification or regression.
As shown in Figure 1, a two-stage approach does not ad-
dress this problem effectively. Second, this strategy requires
to collect and label images under adverse weather conditions
for the restoration process. In addition, a two-stage strategy
may increase computational complexity significantly.

In this work, we propose a method based on a trans-
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former to robustly count crowds under adverse and clear
scenes without exploiting typical image restoration modules.
We develop the adverse weather crowd counting network
(AWCC-Net) which leverages learned weather queries for
robust crowd counting. In our model, the weather queries
are adopted to match the keys and values extracted from
the VGG encoder [43] based on the cross-attention design.
However, the learned weather queries cannot well represent
the weather information without appropriate constraints. To
improve this situation, we present a contrastive weather-
adaptive module to improve the learned weather queries.
This adaptive module computes a weight vector which is
combined with the learned weather bank to construct input-
dependent weather queries. We use the proposed contrastive
loss to enforce the learned weather queries to be weather-
related. With this weather-adaptive module, more robust
weather queries can be learned which help the network un-
derstand and adapt to the various weather degradation types
in the input image.

Extensive experimental results show that the proposed
AWCC-Net model performs robustly and favorably against
the state-of-the-art schemes for crowd counting under ad-
verse weather conditions without weather annotations. We
make the following contributions in this work:

• We present the AWCC-Net for crowd counting under
adverse weather. Our method is based on a transformer
architecture that can learn weather-aware crowd count-
ing.

• We propose a module to constrain the learned queries
to be weather-relevant, thereby improving model ro-
bustness under adverse weather.

2. Related Work
2.1. Crowd Counting

Existing crowd counting methods are mainly based on:
(i) detection [30, 40, 32, 57], (ii) density map [13, 19, 1, 14,
27, 60, 22, 44], and (iii) regression [22, 44, 18, 5, 4, 46].
Counting by detection. These approaches use detectors,
e.g., Faster RCNN [39], for crowd counting. In [32], a
method based on curriculum learning detects and learns to
predict and count bounding boxes of persons via a locally-
constrained regression loss. Sam et al. [40] leverages the
nearest neighbor distance to generate pseudo bounding boxes
and adopt the winner-take-all loss to optimize the box se-
lection during the training stage. This technique can benefit
the optimization of images with higher resolutions.
Counting by density map. In this mainstream approach,
the crowd count is derived via summing over the estimated
density map of a scene. In [19], the Gaussian Kernel is
applied to construct the density map and propose the com-
position loss to optimize the crowd counting. The DACC
method [13] leverages inter-domain features segregation to

generate coarse counter and then applies Gaussian prior to
compute the counting results. Abousamra et al. [1] de-
velops the topological constraint, which is achieved by a
persistence loss to improve the spatial arrangement of dots
for density map-based methods. Recently, the focal inverse
distance transform map [27] shows better performance in
representing person locations compared to the aforemen-
tioned Gaussian-based density map.
Counting by regression. The number of the crowd can be
regressed from the contextual information among extracted
features of cropped image patches. In [4], a closed-form
approximation based on the Bayesian Poisson regression is
proposed to compute the crowd counting. The Fourier anal-
ysis and SIFT features can be used to estimate the number
of persons in a crowded scene [18]. On the other hand,
the surrogate regression [46] achieves crowd counting and
localization based on a set of point proposals.

Although the aforementioned methods can solve the
crowd counting problem on clear images effectively, they
do not perform well when the input images are taken in ad-
verse weather. Thus, it is of great importance to develop a
solution to cope with this problem.

2.2. Image Restoration

In recent years, numerous restoration algorithms have
been proposed to handle images acquired in adverse weather,
which can be categorized as: (i) single-weather removal; (ii)
multi-degradation removal; and (iii) all-in-one weather re-
moval.
Single-purpose image restoration. These methods are de-
veloped to restore image contents degraded by one spe-
cific degradation such as rain [21, 12, 63, 62, 59, 56, 20,
11, 52, 53, 64, 61], snow [70, 36, 58, 65, 25, 68, 7], and
haze [15, 2, 67, 17, 10, 41, 38, 6]. While these methods
are effective for specific conditions, they do not generate
clear images when inputs are degraded by other or multiple
weather types.
Multi-purpose image restoration. These methods aim to
recover various weather types using a unified model. A gen-
eral architecture is developed by Pan et al. [35] to estimate
structures and details simultaneously in parallel branches.
In [66], the MPRNet exploits a multi-stage strategy and an
attention module to refine the incoming features at each
stage for effective image restoration. Although it is based
on a unified framework, different model weights need to be
learned for each weather condition.
All-purpose image restoration. In recent years, much ef-
fort has been made to all-purpose image restoration since
it only requires a set of pre-trained weights to recover im-
ages degraded by different factors. An end-to-end training
scheme based on the neural architecture search is proposed
by Li et al. [23] to investigate crucial features from multiple
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Figure 2. AWCC-Net for adverse weather crowd counting. A VGG encoder is adopted to extract image features, which are fed into
the contrastive weather-adaptive module to generate patch-wise weather queries. Then, the transformer decoder leverages crowd counting
features and weather-adaptive queries to generate weather-aware crowd counting features. The decoder computes the density map based on
the weather-aware crowd counting features.

encoders for different weather types and then reconstruct the
clear results. In [8], a two-stage learning strategy and the
multi-contrastive regularization based on knowledge distil-
lation [16] are developed to recover multi-weather types.
Most recently, the TransWeather model [49] leverages the
intra-patch visual information to extract fine detail features
for the all-purpose weather removal.

Although these methods can be adopted in pre-process
stage for crowd counting under adverse weather, they are de-
signed to recover image content (visual appearance) rather
than estimate head counts (visual classification or regres-
sion). Thus, adopting them with crowd counting may have
limited performance gain under adverse weather.

3. Proposed Method
In this work, we tackle the crowd counting problem under

adverse weather. As shown in Figure 2, image features
are first extracted using a pre-trained backbone model, e.g.,
VGG-19 [43]. The contrastive weather-adaptive module
uses the image features as input to generate the weather-
adaptive queries, which are leveraged in the weather-aware
crowd counting (WACC) model to generate the weather-
aware crowd counting features. These features are then
fed into the decoder to compute the density map for crowd
estimation. We discuss the details of these modules in the
following sections.

3.1. Weather-Aware Crowd Counting Model

In this work, we learn weather conditions as queries in
our crowd counting model based on a transformer. Image
features are first extracted via a pre-trained backbone model.
The decoder is similar to that of a vision transformer [3], as
shown in the pink region of Figure 2. The key (K) and value
(V) are computed from the image features and the query
(Q) is trainable weather queries learned with the network
simultaneously. Through this operation, the output features
of transformer decoder contain crowd counting features with
weather information closest to the input scene. These fea-
tures are then fed into a decoder which contains three 3 × 3
convolution blocks with ReLU to predict the density map 𝐷.

However, as shown in Table 6, this strategy may obtain
limited performance gain since the weather queries are not
adaptive to the weather types of the input image as no con-
straints are enforced. That is, the weather information is
not learned by the weather queries, and thus they cannot
well represent the weather type. Without effective weather
queries, a transformer cannot generate effective features for
crowd counting.

3.2. Contrastive Weather-adaptive Module

To enforce the learned queries are adaptive to weather
conditions, we propose to construct input-dependent weather
queries by computing a weight vector. The input-dependent
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Figure 3. Learning weather-adaptive queries. A weight vector
is combined with the prototypes in the weather bank via weighted
sum to generate 𝑁 patch-aware weather queries for the transformer
decoder.

weather queries are constrained by the contrastive loss which
can guarantee the learned queries to be weather-related.
Pipeline. The learning process for weather-adaptive queries
is shown in the green regions of Figure 2 and Figure 3. First,
the weather encoder predicts a weight vector for the weather
bank based on the image features. This weight vector can
construct the weather queries by the weighted summation
of each prototype in the weather bank. To constrain these
weather queries, we apply the contrastive loss to enforce the
weather queries to learn weather information. A multilayer
perceptron (MLP) is then adopted to conduct non-linear op-
erations for the generated weather queries. Finally, these
weather queries and image features are adopted in the trans-
former decoder to decode the weather-aware crowd counting
features.
Weather Bank. The weather bank is a collection of multi-
ple weather prototypes which can be leveraged to construct
weather queries. The dimension of the weather bank is
𝑆 × 𝑁 ×𝐶 where 𝑆, 𝑁 , and 𝐶 denote the number of weather
prototypes, the number of tokens to represent the weather
prototype, and the number of channels, respectively. We
set 𝑆, 𝑁 , and 𝐶 as 8, 48, and 512 in our method. These
weather prototypes serve as reference templates for con-
structing weather queries, which capture weather-related in-
formation in input images. They are trainable parameters
that are learned with the network simultaneously. Since they
can be learned automatically, our network does not need to
adopt the annotations of the weather type to optimize them.

Weight Vector. To construct input-dependent weather
queries, we propose to compute a weight vector to repre-

sent the weather type of an input image. The weight vector
is computed by the weather encoder based on the image fea-
tures whose dimension is 𝑆. With the learned weather bank,
the vector can represent the input weather type and construct
input-dependent weather queries with dimension 𝑁 × 𝐶 for
the contrastive loss.
Contrastive Loss. To learn the weather-adaptive queries,
we propose the constrastive loss L𝐶𝑜𝑛:

L𝐶𝑜𝑛 = − log
[

exp(𝜑 (𝑣,𝑣+ )/𝜏 )
exp(𝜑 (𝑣 ·𝑣+ )/𝜏 )+∑𝑅

𝑟=1 exp(𝜑 (𝑣 ·𝑣−𝑟 )/𝜏 )

]
,

(1)
where 𝑣, 𝑣+, and 𝑣− are the weather queries of the input im-
age, those of the positive sample, and those of the negative
samples, respectively. In addition, 𝜑(·, ·) is the cosine simi-
larity function, 𝜏 is the scale temperature, and 𝑅 denotes the
total number of negative samples.

The main idea of our method is that the weather queries
of the input image should be similar to those of the positive
sample while dissimilar to those of the negative samples. To
this end, we adopt the random crop and the random flip op-
erations to construct the positive sample. Since the positive
sample is generated with spatial augmentation, the weather
information should be the same as the input image, and thus
the two weather queries should be similar. We use the rest of
the images as our negative samples whose weather queries
should be dissimilar. Although the negative samples may
possibly have a similar weather type as the input image, ac-
cording to [51], the contrastive loss contains the tolerance to
potential positive samples. Thus, the images with the same
weather types still have the smaller distance in the feature
space. We show one example in Figure 6.
Compact Prototype Loss. To reduce the redundancy of
learned prototypes in the weather bank, we propose the com-
pact prototype loss L𝐶𝑃:

L𝐶𝑃 =

𝑆∑︁
𝑖=1

∑︁
𝑗≠𝑖

|𝜑(𝑃𝑖 , 𝑃 𝑗 ) |, (2)

where 𝑃𝑖 and 𝑃 𝑗 present the 𝑖𝑡ℎ and 𝑗 𝑡ℎ prototype in the
weather bank. With this operation, the diversity and dis-
tinctiveness of prototypes in the weather bank are improved.
The similarity between different prototypes is reduced, pro-
moting better representation of various weather conditions
for enhanced adaptability in crowd-counting tasks.

3.3. Overall Loss

The proposed AWCC-Net is optimized via multiple loss
functions including the compact prototype loss, the con-
trastive loss, and the crowd counting loss. The first two loss
functions have been defined in the previous sections. The
crowd counting loss L𝐶𝐶 aims to constrain the learning of
crowd counting and we adopt the Baysesian loss [33, 29] for
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the robustness and the better performance:

L𝐶𝐶 = |
∑︁
𝑘

𝑃0 (𝑘) · 𝐷𝑘 | +
𝐿∑︁
𝑖=1

|1 −
∑︁
𝑘

𝑃𝑖 (𝑘) · 𝐷𝑘 |, (3)

where 𝑖 and 𝐿 denote the index of the annotated point and
the number of annotated points, respectively. In addition, 𝐷
is the computed density map, 𝑃𝑖 (𝑘) indicates the posterior
of the occurrence of the 𝑖𝑡ℎ annotation given the position 𝑘 ,
and 𝑃0 (𝑘) denotes the background likelihood at position 𝑘 .

The overall loss function of the AWCC-Net is:

L𝐴𝑊𝐶𝐶 = L𝐶𝐶 + 𝜆1L𝐶𝑃 + 𝜆2L𝐶𝑜𝑛, (4)

where 𝜆1 and 𝜆2 are scaling factors.

4. Implementation Details
4.1. Datasets

We use the ShanghaiTech [69], UCF-QNRF [19], JHU-
Crowd++ [45], and NWPU-CROWD [54] datasets to eval-
uate the performance of the proposed method against the
state-of-the-art approaches.
JHU-Crowd++ [45]. It consists of 4,372 images and 1.51
million annotated points totally. This dataset divides 2,272
images for training, 500 for validation, and the remaining
1,600 images for testing. In the testing set, there are 191
images are under adverse weather and 1409 images under
normal scenes.
ShanghaiTech A [69]. It contains 482 images and 244, 167
annotated points. 300 images are split for training and the
rest of 182 images are for testing.
UCF-QNRF [19]. It includes 1,535 high-resolution images
collected from the Web, with 1.25 million annotated points.
There are 1,201 images in the training set and 334 images
in the testing set. The UCF-QNRF dataset has a wide range
of people count between 49 and 12,865.
NWPU-CROWD [54]. It consists of 5,109 images with
2.13 million annotated points. 3,109 images are divided
into the training set and 500 images are in the validation set,
and the remaining 1,500 images are for testing.

4.2. Evaluation Protocol
Similar to the existing approaches, we apply Mean Ab-

solute Error (MAE) and Mean Squared Error (MSE) for
performance evaluation:

𝑀𝐴𝐸 =
1
𝑄

𝑄∑︁
𝑖=1

��𝐺𝑇𝑖 − 𝑁𝑖

��, 𝑀𝑆𝐸 =

√√√
1
𝑄

𝑄∑︁
𝑖=1

(𝐺𝑇𝑖 − 𝑁𝑖)2, (5)

where 𝑄 is the number of images, 𝐺𝑇𝑖 and 𝑁𝑖 denote the
ground truth and predicted crowd count of the 𝑖-th image.

Method Clear Adverse Weather Average
MAE MSE MAE MSE MAE MSE

SFCN [55] 71.4 225.3 122.8 606.3 77.5 297.6
BL [33] 66.2 200.6 140.1 675.7 75.0 299.9

BL [33]-U 65.3 208.4 134.0 645.6 73.5 296.6
BL [33]-UF 62.6 205.7 130.4 638.4 70.7 293.1

LSCCNN [40] 103.8 399.2 178.0 744.3 112.7 454.4
CG-DRCN-V [45] 74.7 253.4 138.6 654.0 82.3 328.0
CG-DRCN-R [45] 64.4 205.9 120.0 580.8 71.0 278.6

UOT [34] 53.1 148.2 114.9 610.7 60.5 252.7
GL [50] 54.2 159.8 115.9 602.1 61.6 256.5

GL [50]-U 64.4 207.0 127.2 617.3 71.9 288.5
GL [50]-UF 56.3 174.1 127.6 658.5 64.8 280.1
CLTR [26] 52.7 148.1 109.5 568.5 59.5 240.6
MAN [29] 46.5 137.9 105.3 478.4 53.4 209.9

MAN [29]-U 56.9 182.5 100.7 548.2 62.1 255.4
MAN [29]-UF 60.8 187.7 117.1 623.2 67.6 278.2
AWCC-Net 47.6 153.9 87.3 430.1 52.3 207.2

Table 1. Quantitative comparison on the JHU-Crowd++ [45]
dataset with existing methods. We evaluate the performance in
adverse weather scenes and clear scenes. The words with boldface
indicate the best results, and those with underline indicate the
second-best results.

4.3. Training Details

In this work, the learning rate is 10−5, and the Adam
optimizer is applied. We set the batch size to be 1, and
randomly crop all input images to 512 × 512 in the training
process. The proposed network is trained on an Nvidia Tesla
V100 GPU and implemented using the PyTorch framework.
Our model is based on a hybrid CNN-Transformer backbone
which contains a VGG-19 model pre-trained on ImageNet,
a transformer decoder, and a CNN-based regression layer.
The scaling factors of the losses 𝜆1 and 𝜆2 are both set to 1.
In addition, the total number of negative samples 𝑅 is 64,
and the scale temperature 𝜏 is 0.2.

In the spatial augmentation, we crop two patches of the
training image. We apply random horizontal flipping on the
first patch. Then, we crop a second patch overlapped with
the first one with an overlap factor sampled from a uniform
distribution. The first patch serves as the training input for
crowd counting and the anchor for the contrastive loss. The
second patch is the positive sample for the contrastive loss
and is not directly involved in crowd counting.

5. Experimental Results
In this section, we present the evaluation results of the

proposed method for crowd counting in both adverse weather
scenes and normal scenes. More results are available in the
supplementary material.

5.1. Performance Evaluation

We evaluate our method against the state-of-the-art ap-
proaches including SFCN [55], BL [33], LSCCNN [40],
CG-DRCN [45], UOT [34], S3 [28], GL [50], ChfL [42],
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Figure 4. Comparison of density maps of the proposed method and other baselines in adverse weather (i.e., haze, snow, rain). The
proposed method can predict more accurate density maps compared to the results estimated by other strategies.

Query-
ShanghaiTech A JHU-Crowd++

Figure 5. Probe the weather type of an image of the Shan-
haiTech A dataset from the JHU-Crowd++ dataset based on
the weather-adaptive queries. The learned weather prototypes
and the weight vector can well represent the weather type of the
input image from the unseen dataset.

CLTR [26], MAN [29], and GauNet [9]. We present the
evaluation results of our AWCC-Net on the JHU-Corwd++
dataset for adverse weather crowd counting since only this

dataset contains the annotations of bad weather. We also re-
port the performance on the ShanghaiTech A, UCF-QNRF,
and NWPU-CROWD datasets.
Evaluation on the JHU-Crowd++ dataset. We use two
settings in the experiments:

1. Vanilla crowd counting: We apply vanilla crowd
counting methods trained with the training set of the
JHU-Crowd++ dataset.

2. Two-stage strategy: We use the Unified model [8] to
restore image content under adverse weather and then
apply vanilla crowd counting methods to estimate the
counts. We denote this strategy with ’-U’. Note the
crowd counting models are not fine-tuned by restored
images. For fair comparisons, we adopt these restored
images to finetune the crowd counting models. We
denote this strategy with ’-UF’.

Table 1 shows that, although existing methods achieve
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Figure 6. Visual comparison of the proposed contrastive weather-adaptive queries. The proposed contrastive weather-adaptive queries
can achieve a better representation of the weather type. We term the proposed contrastive weather-adaptive module as ’CWM’.

state-of-the-art results in clear scenes, they do not perform
well in adverse weather scenes. Second, the two-stage strat-
egy may not help the improvement of the performance com-
pared to the vanilla crowd counting approaches since the
goal of the image restoration process is not the same as
counting. This is because the image restoration methods
are designed for restoring content rather than crowd count-
ing, and thus the restored results may not suitable for crowd
computation. Third, our method performs favorably against
state-of-the-art approaches in adverse weather. For the clear
scenes, our method can achieve comparable performance
in MAE. In terms of average performance, our method can
achieve the first place in both MAE and MSE. Overall, the
proposed method is effective and robust when the input im-
ages are degraded by bad weather while it can retain the
performance of clear scenes. In addition, we present the
quantitative results across different weather types in Table 2
and demonstrate the density maps under different adverse
weather predicted by the proposed method and other al-
gorithms in Figure 4. The results show that the proposed
method can compute the more accurate density distribution
and counts of crowds under bad weather.

Evaluation on other datasets. We present the evaluation
results of our algorithm on other datasets in Table 3. As
these images do not contain annotations of weather types
in the images, we can only compare them in the averaged
performance. The results indicate that the proposed method
performs favorably in the JHU-Crowd++ and UCF-QNRF
datasets while comparable performance in the ShanghaiTech
A and NWPU-CROWD datasets.

Generalization to other datasets. We analyze the general-
ization ability of our method on other datasets. Specifically,
we train the AWCC-Net and other baselines on the JHU-
Crowd++ dataset and directly test on the ShanghaiTech A,

Weather Clear Fog Rain Snow
Method MAE MSE MAE MSE MAE MSE MAE MSE
MAN 46.5 137.9 85.2 183.4 112.4 375.3 117.4 666.6

MAN-U 56.9 182.5 86.3 231.5 71.1 200.1 131.0 816.5
AWCC-Net 47.6 153.9 77.2 162.5 67.9 179.2 107.7 641.2

Table 2. Quantitative results across different weather types.

and UCF-QNRF datasets. Table 4 shows that the proposed
method achieves the best performance in terms of MAE
and MSE. Moreover, we use an image in the ShanghaiTech
A dataset and search for the most similar two images in
the JHU-Crowd++ dataset. The two images whose weather
queries from the training dataset are most similar to the
weather queries of the input from the unseen dataset are pre-
sented in Figure 5. Our model can locate the images with
the similar weather type in the training set based on the com-
bination of the weight vector and the weather bank. Thus,
the proposed weather-aware crowd counting mechanism and
the weather-adaptive queries can benefit our network to be
robust to the weather types in the unseen datasets.
Comparison with Other Baseline. We compare another
simple solution with our method in Table 5 which is to as-
sign higher weights of loss functions to adverse weather
images during the training phase on JHU-Crowd++ dataset.
This modified approach is based on MAN, which we refer to
as "MAN-W", allocates weights of 10 and 1 to the adverse
weather data and clear data, respectively. This weight allo-
cation is based on the data distribution in the dataset. Com-
parative results demonstrate that our method outperforms
others, especially in adverse weather and average scenarios.

5.2. Ablation Study

We evaluate the effectiveness of weather-aware crowd
counting and contrastive weather-adaptive queries using the
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Dataset ShanghaiTechA UCF-QNRF JHU-Crowd++ NWPU-CROWD
Method MAE MSE MAE MSE MAE MSE MAE MSE

SFCN [55] 64.8 107.5 102.0 171.4 77.5 297.6 105.7 424.1
BL [33] 62.8 101.8 88.7 154.8 75.0 299.9 105.4 454.2

LSCCNN [40] 66.5 101.8 120.5 218.2 112.7 454.4 - -
CG-DRCN-VGG16 [45] 64.0 98.4 112.2 176.3 82.3 328.0 - -
CG-DRCN-Res101 [45] 60.2 94.0 95.5 164.3 71.0 278.6 - -

UOT [34] 58.1 95.9 83.3 142.3 60.5 252.7 87.8 387.5
S3 [28] 57.0 96.0 80.6 139.8 59.4 244.0 83.5 346.9
GL [50] 61.3 95.4 84.3 147.5 59.9 259.5 79.3 346.1

ChfL [42] 57.5 94.3 80.3 137.6 57.0 235.7 76.8 343.0
CLTR [26] 56.9 95.2 85.8 141.3 59.5 240.6 74.3 333.8
MAN [29] 56.8 90.3 77.3 131.5 53.4 209.9 76.5 323.0
GauNet [9] 54.8 89.1 81.6 153.7 58.2 245.1 - -
AWCC-Net 56.2 91.3 76.4 130.5 52.3 207.2 74.4 329.1

Table 3. Quantitative comparison on the ShanghaiTech A [69], UCF-QNRF [19], JHU-Crowd++ [45], and NWPU-CROWD [54]
datasets with existing methods. The words with boldface indicate the best results, and those with underline indicate the second-best
results.

Figure 7. t-SNE visualization of the training set from JHU-
Crowd++ based on weather queries.

Dataset ShanghaiTechA UCF-QNRF
Method MAE MSE MAE MSE
BL [33] 102.6 186.1 164.7 297.0
GL [50] 103.7 188.8 155.0 283.9

MAN [29] 81.2 160.4 132.8 241.9
AWCC-Net 73.2 132.4 120.9 216.7

Table 4. Analysis on the generalization ability of the proposed
AWCC-Net. Our method presents better generalization ability on
other datasets.

JHU-Crowd++ dataset.
Effectiveness of Weather-aware Crowd Counting. We
evaluate the proposed WACC mechanism in Table 6. With
only the proposed WACC architecture (MAE of 60.1 and
MSE of 229.5), moderate improvements over the baseline
model (MAE of 60.7 and MSE of 230.4) are achieved. As

Weather Clear Adverse Weather Average
Method MAE MSE MAE MSE MAE MSE
MAN 46.5 137.9 105.3 478.4 53.4 209.9

MAN-U 56.9 182.5 100.7 548.2 62.1 255.4
MAN-W 49.8 177.4 103.4 469.6 56.2 232.5

AWCC-Net 47.6 153.9 87.3 430.1 52.3 207.2

Table 5. Comparison of model performance using different
weighting strategies for adverse weather and clear data during
training on JHU-Crowd++.

Module Metric
WACC IWQ L𝐶𝑜𝑛 L𝐶𝑃 MAE MSE

- - - - 60.7 230.4
✓ - - - 60.1 229.5
✓ ✓ - - 59.3 226.1
✓ ✓ ✓ - 53.1 211.4
✓ ✓ ✓ ✓ 52.3 207.2

Table 6. Analysis on alternatives of AWCC-Net. Note that we
term the input-dependent weather queries as ’IWQ’. We demon-
strate that the contrastive weather-adaptive queries can improve the
performance of crowd counting effectively.

Probe Dataset JHU-Crowd++
Query Dataset QNRF JHU-Crowd++

WACC 0.12 0.18
CWM 0.42 0.53

Table 7. Quantitative results of using adverse weather images
from QNRF and JHU-Crowd++ validation sets, highlighting
top-4 closest matches from the JHU-Crowd++ training set and
their mean average precision (mAP) based on weather annota-
tions.

stated in 3.1, it is due to the learning of weather-unrelated
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Strategy MAE MSE
AWCC-Net-Label 56.1 220.3

AWCC-Net 52.3 207.2
Table 8. Analysis on the necessity of using weather label in
the AWCC-Net. We demonstrate adopting weather labels may
potentially degrade the performance of crowd counting.

information in the weather queries.
Effectiveness of Contrastive Weather-adaptive Module.
The contrastive weather-adaptive module facilitates the
weather queries in WACC to be effective for crowd counting,
as shown in Table 6. The proposed input-dependent weather
queries and contrastive loss can improve the performance of
WACC effectively since the learned weather queries are con-
strained to learn weather information effectively. Moreover,
the compact prototype loss facilitates learning compact pro-
totypes in the weather bank.

We validate the effectiveness of the proposed module
visually in Figure 6. We compute the weather queries on
images outside of the training set. Then, we randomly pick
images of different weather types (i.e., snow, rain, and haze)
and clear scenes as queries. Based on the chosen weather
queries, we identify the images with the top-4 smallest dis-
tance from the remaining weather queries. Also, in Table 7,
we conduct a quantitative evaluation to evaluate the effec-
tiveness by using 30 and 64 images in adverse weather from
the QNRF and JHU-Crowd++ validation sets as queries.
These queries are used to probe the images in the training
set of JHU-Crowd++ dataset, selecting the top-4 images with
the smallest distance. We calculate the mean average pre-
cision (mAP) considering the adverse weather annotations.
The results show that the proposed mechanism can repre-
sent the various weather types effectively while the results
without the proposed mechanism may find the images with
different weather types since the learned weather queries
can not well represent weather information. Additionally,
as shown in Figure 7, we provide a t-SNE visualization
based on the weather queries from the training set in JHU-
Crowd++. Our approach effectively discriminates among
different weather types.
Necessity of Weather Annotations. We analyze the perfor-
mance of adopting annotations of weather type and the pro-
posed learning weather queries strategy in the AWCC-Net.
We construct a baseline based on the proposed AWCC-Net
and leverage the annotations of weather types as guidance.
Specifically, we remove the weight vector in the contrastive
weather-adaptive module and set four weather prototypes
in the weather bank since the JHU-Crowd++ dataset only
contains annotations of haze, rain, snow, and clear scenes.
We manually adopt one of these prototypes as the queries
in the transformer according to the weather label of the in-
put image. The results are reported in Table 8 where the

aforementioned baseline is denoted as ’AWCC-Net-Label’.
The results show that using annotations of weather type in
our method may degrade the performance of crowd count-
ing since human-defined weather labels may potentially be
mislabeled and contain the weather ambiguity problem. In
contrast, our network does not adopt the human label of
the weather types and learns the weather prototypes auto-
matically, which shows the better performance in adverse
weather crowd counting problems.

6. Conclusion
In this paper, we propose the AWCC-Net model to address

the crowd counting problem under adverse weather. We in-
troduce the weather query mechanism to the crowd counting
network, which enables our network to learn weather-aware
feature extraction. To enforce the weather queries to learn
the weather information effectively, we propose a module
and contrastive loss to learn weather-adaptive queries for
robust crowd counting. Moreover, the compact prototype
loss is proposed to improve the model performance. Ex-
tensive experimental results show that the proposed method
performs favorably against the state-of-the-art methods in
both adverse weather and clear images.
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