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Abstract

Part-prototype networks (e.g., ProtoPNet, ProtoTree, and
ProtoPool) have attracted broad research interest for their
intrinsic interpretability and comparable accuracy to non-
interpretable counterparts. However, recent works find that
the interpretability from prototypes is fragile, due to the se-
mantic gap between the similarities in the feature space and
that in the input space. In this work, we strive to address this
challenge by making the first attempt to quantitatively and
objectively evaluate the interpretability of the part-prototype
networks. Specifically, we propose two evaluation metrics,
termed as “consistency score” and “stability score”, to
evaluate the explanation consistency across images and the
explanation robustness against perturbations, respectively,
both of which are essential for explanations taken into prac-
tice. Furthermore, we propose an elaborated part-prototype
network with a shallow-deep feature alignment (SDFA) mod-
ule and a score aggregation (SA) module to improve the
interpretability of prototypes. We conduct systematical eval-
uation experiments and provide substantial discussions to
uncover the interpretability of existing part-prototype net-
works. Experiments on three benchmarks across nine ar-
chitectures demonstrate that our model achieves signifi-
cantly superior performance to the state of the art, in both
the accuracy and interpretability. Our code is available at
https://github.com/hqhQAQ/EvalProtoPNet.

1. Introduction

Part-prototype networks are recently emerged deep self-
explainable models for image classification, which achieve

1† Corresponding author.

Prototype

Image 1 Image 2

Prototype

Image Perturbed Image
(a) Inconsistency (b) Instability

Figure 1. (a) Inconsistency. A prototype may mistakenly corre-
spond to different object parts in different images. (b) Instability.
A prototype may mistakenly correspond to different object parts in
the original image and the slightly perturbed image. The samples
are from ProtoPNet trained on ResNet34 backbone [12].

excellent performance in an interpretable decision-making
manner. In particular, ProtoPNet [7] is the first part-prototype
network, with the follow-up part-prototype networks (e.g.,
ProtoTree [31], ProtoPool [33], TesNet [44], and ProtoP-
Share [34]) built upon its framework. At its core, part-
prototype networks define multiple trainable prototypes that
represent specific object parts and emulate human perception
by comparing object parts across images to make predictions.
Currently, part-prototype networks have been extended to
various domains (e.g., graph neural network [54], deep rein-
forcement learning [19], and image segmentation [35]).

However, the current part-prototype networks only
demonstrate their interpretability with only a few visualiza-
tion examples, and ignore the problem that the learned pro-
totypes of part-prototype networks do not have adequately
credible interpretability [13,20,36]. The reasons for such un-
reliable interpretability are twofold: (1) Inconsistency. The
basic design principle of part-prototype networks [7] is that
each prototype is associated with a specific object part, but
it is not guaranteed that the corresponding object part of a

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2011



prototype is consistent across images, as shown in Fig. 1 (a);
(2) Instability. Previous interpretability methods [1, 50, 55]
claim that the explanation results should be stable, but the
prototype in part-prototype networks is easily mapped to
a vastly different object part in a perturbed image [13], as
shown in Fig. 1 (b). Recently, Kim et al. [20] have proposed
a human-centered method named HIVE to evaluate the inter-
pretability of part-prototype networks. Nevertheless, HIVE
requires redundant human interactions and the evaluation re-
sults are subjective. Therefore, for the further research on the
part-prototype networks, there is an urgent need for more for-
mal and rigorous evaluation metrics that can quantitatively
and objectively evaluate their interpretability.

In this work, we strive to take one further step towards
the interpretability of part-prototype networks, by making
the first attempt to quantitatively and objectively evaluate
the interpretability of part-prototype networks, rather than
the qualitative evaluations by several visualization examples
or subjective evaluations from humans. To this end, we pro-
pose two evaluation metrics named “consistency score” and
“stability score”, corresponding to the above inconsistency
and instability issues. Specifically, the consistency score
evaluates whether and to what extent a learned prototype
is mapped to the same object part across different images.
Meanwhile, the stability score measures the robustness of the
learned prototypes being mapped to the same object part if
the input images are slightly perturbed. In addition, our evalu-
ation metrics generate objective and reproducible evaluation
results using object part annotations in the dataset. With the
proposed metrics, we make the first systematic quantitative
evaluations of existing part-prototype networks in Sec. 4.2.
Experiments demonstrate that current part-prototype net-
works are, in fact, not sufficiently interpretable.

To strengthen the interpretability of prototypes, we pro-
pose an elaborated part-prototype network built upon a re-
vised ProtoPNet with two proposed modules: a shallow-
deep feature alignment (SDFA) module and a score ag-
gregation (SA) module. These two modules aim to accu-
rately match the prototypes with their corresponding object
parts across images, benefiting both consistency and stability
scores. Part-prototype networks match prototypes with ob-
ject parts in two steps: (1) feature extraction of object parts;
(2) matching between prototypes and features of object parts.
SDFA module improves the first step by promoting deep
feature maps to spatially align with the input images. Specif-
ically, SDFA module aligns the spatial similarity structure of
shallow and deep feature maps with the observation that shal-
low feature maps retain spatial information that deep feature
maps lack (Fig. 2 (a)). Meanwhile, SA module improves the
second step based on the observation that the matching of
each prototype with its corresponding object part is disturbed
by other categories (Fig. 2 (b)). To mitigate this problem, SA
module aggregates the activation values of prototypes only

Image
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Deep

Figure 2. (a) Shallow feature maps of an image retain spatial in-
formation that deep feature maps lack (the features are from one
channel of the feature map). (b) A prototype from Chipping Spar-
row tends to match the wing, but meanwhile it has to paradoxically
ignore almost the same wing of Field Sparrow. The samples are
from ProtoPNet trained on ResNet34 backbone.

into their allocated categories to concentrate the matching
between prototypes and their corresponding object parts.

We perform extensive experiments to validate the perfor-
mance of our proposed model. Experiment results demon-
strate that without using any object part annotations in
training, our model achieves the state-of-the-art perfor-
mance in both interpretability and accuracy on CUB-200-211
dataset [43], Stanford Cars dataset [23] and PartImageNet
dataset [11], over six CNN backbones and three ViT back-
bones. Furthermore, experiment results show that the pro-
posed consistency and stability scores are strongly positively
correlated with accuracy in part-prototype networks, nicely
reconciling the conflict between interpretability and accuracy
in most prior interpretability methods.

To sum up, the key contributions of this work can be
summarized as follows:

• We establish a benchmark to quantitatively evaluate
the interpretability of prototypes of part-prototype net-
works with the proposed evaluation metrics (consis-
tency score and stability score), uncovering pros and
cons of various part-prototype networks.

• We propose an elaborated part-prototype network built
upon ProtoPNet with a shallow-deep feature align-
ment (SDFA) module and a score aggregation (SA)
module to enhance its interpretability.

• Experiment results verify that our proposed model sig-
nificantly outperforms existing part-prototype networks
by a large margin, in both accuracy and interpretability.
Besides, the consistency and stability scores are posi-
tively correlated with accuracy, nicely reconciling the
conflict between interpretability and accuracy.
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Figure 3. Overview of our proposed model (only two categories are presented for brevity). Backbone is a deep convolutional network to
extract the features of input image x. SDFA module incorporates spatial information from shallow layers into deep layers by aligning the
spatial similarity structure in deep layers with that in shallow layers using an alignment loss Lalign. The last feature map zd is fed into
prototype layer for different categories. In the prototype layer, each prototype pi generates an activation map on zd and selects the maximum
value as the activation value gpi(x). Finally, SA module aggregates the activation values of prototypes into their allocated categories for
classification. Note that D

′
s = Hs

Hd
· Ws
Wd

·Ds, Lclst, Lsep and the loss back propagation of Lce are omitted for brevity in the figure.

2. Related Work

2.1. Part-Prototype Networks

ProtoPNet [7] is the first work of part-prototype networks
which define interpretable prototypes to represent specific
object parts for image classification. ProtoPNet has explicit
explanations of DNNs and comparable performance with
its analogous non-interpretable counterpart, which inspires
many variants of ProtoPNet. ProtoTree [31] aggregates pro-
totype learning into a decision tree, which generates local
explanations of prototypes through a specific route of the
decision tree. TesNet [44] organizes the prototypes on the
Grassmann manifold with several regularization loss func-
tions as constraints. Deformable ProtoPNet [8] proposes
deformable prototypes, which consist of multiple prototypi-
cal parts with changeable relative positions to capture pose
variations. PW-Net [19] extends part-prototype networks into
deep reinforcement learning and ProtoPDebug [5] proposes
to utilize part-prototypes to correct the mistakes of network.
However, these methods rely on the assumption that deep
features of networks retain spatial information which is not
guaranteed, and they lack a quantitative metric to evaluate
their explanation results.

2.2. Evaluation of Interpretability Methods

With the development of many tasks in computer vi-
sion (e.g., image classification [12, 38–40], detection [45,
46, 52, 53], and generation [15, 16, 48], 3D object process-

ing [9, 17, 18], dataset condensation [25, 26, 51], and model
reassembly [47, 49]), numerous XAI (i.e., explainable AI)
methods and the corresponding evaluation methods are also
proposed. Zhou et al. [55] propose that current interpretabil-
ity evaluation methods can be categorized into human-
centered methods [4,6,24] and functionality-grounded meth-
ods [2, 10, 14, 29, 30, 32, 37, 41, 50]. Human-centered meth-
ods require end-users to evaluate the explanations of XAI
methods, which typically demand high labor costs and
cannot guarantee reproducibility. Conversely, functionality-
grounded methods utilize the formal definition of XAI meth-
ods as a policy to evaluate them. Model size, runtime opera-
tion counts assess the quality of explanations according to
their explicitness, e.g., a shallow decision tree tends to have
better interpretability. Many functionality-grounded methods
are also proposed to evaluate the eminent attribution-based
XAI methods. However, these functionality-grounded meth-
ods are not directed against part-prototype networks, and our
work aims to propose quantitative metrics to evaluate the
interpretability of part-prototype networks.

3. Method

3.1. Preliminaries

Existing part-prototype networks are built upon the frame-
work of ProtoPNet [7], and this section specifies this frame-
work. ProtoPNet mainly consists of a regular convolutional
network f , a prototype layer gp and a fully-connected layer
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h (wh denotes the parameters of h). The prototype layer gp
contains M learnable prototypes P = {pj ∈ R1×1×D}Mj=1

for total K categories (D is the dimension of prototypes).
Given an input image x, ProtoPNet uses the convolutional

network f to extract the feature map z = f(x) of x (z ∈
RH×W×D). The prototype layer gp generates an activation
map vpj (x) ∈ RH×W of each prototype pj on the feature
map z by calculating and concatenating the similarity score
between pj and all units z̃ ∈ R1×1×D of z (z consists of
H ×W units). Then the activation value gpj (x) of pj on x
is computed as the maximum value in vpj (x):

gpj (x) = max vpj (x)

= max
z̃∈units(z)

Sim(z̃,pj).
(1)

Here, Sim(·, ·) denotes the similarity score between two
vectors (named activation function). ProtoPNet allocates
N pre-determined prototypes to each category k (note that
M = N ·K), and Pk ⊆ P denotes the prototypes from cat-
egory k. Finally, the total M activation values {gpj (x)}Mj=1

are concatenated and multiplied with the weight matrix
wh ∈ RK×M in the fully-connected layer h to generate
the classification logits of x. Specifically, ProtoPNet sets
wh

k,j to be positive for all j with pj ∈ Pk, and wh
k,j to be

negative for all j with pj /∈ Pk. This design ensures that the
high activation value of a prototype increases the probability
that the image belongs to its allocated category and decreases
the probability that the image belongs to other categories.

After training, the value of gpj (x) reflects whether the
object part represented by prototype pj exists in image x.
Besides, ProtoPNet visualizes the corresponding region of
prototype pj on x by resizing the activation map vpj (x) to
be a visualization heatmap with the same shape as image x.

3.2. Interpretability Benchmark of Part-Prototype
Networks

The interpretability benchmark of part-prototype net-
works includes two evaluation metrics: consistency score (or
named part-consistency score) and stability score (or named
stability score under perturbations). To calculate these two
metrics, we first calculate the corresponding object part of
each prototype on the images. Next, we determine the consis-
tency of each prototype according to whether the correspond-
ing object parts of it are consistent across different images,
and determine the stability of each prototype according to
whether the corresponding object parts of it are the same on
the original and perturbed images.

3.2.1 Corresponding Object Part of Prototype

The corresponding object part of each prototype on the im-
age is calculated using object part annotations in the dataset,

Prototype ... ... ...
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Mean
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Figure 4. (a) Example for determination of consistency of a pro-
totype. (b) Example for determination of stability of a prototype.
The colorful points represent the object part annotations.

which guarantees objective and reproducible evaluation re-
sults. First, given a prototype pj and an input image x, we fol-
low ProtoPNet to resize the activation map vpj (x) ∈ RH×W

to be ṽpj (x) with the same shape as x, then calculate the cor-
responding region rpj (x) of pj on x as a fix-sized bounding
box (with a pre-determined shape Hb ×Wb) whose center is
the maximum unit in ṽpj (x). Next, let C denote the number
of categories of object parts in the dataset, and the corre-
sponding object part opj (x) ∈ RC of prototype pj on x is
calculated from rpj (x) and the object part annotations in x.
Specifically, opj (x) is a binary vector with o

pj

i (x) = 1 if the
i-th object part is inside rpj (x) and o

pj

i (x) = 0 otherwise,
as shown in Fig. 4. Note that “i-th” is the index of this object
part in the dataset.

3.2.2 Consistency Score

We generate the averaged corresponding object part apj ∈
RC of each prototype pj over the test images from the allo-
cated category of pj , and determine the consistency of pj

according to whether the maximum element in apj exceeds a
threshold. Specifically, let Ik denote the test images belong-
ing to category k, and for each prototype pj , c(j) denotes
the allocated category of pj , and the averaged corresponding
object part apj of pj is calculated as below (∥ · ∥ denotes
cardinality of a set):

apj =

∑
x∈Ic(j)

opj (x)

∥Ic(j)∥
. (2)

For ∀i ∈ {1, 2, ..., C}, a
pj

i ∈ [0, 1] since each o
pj

i is
either 0 or 1. If there exists an element in apj not less than
a pre-defined threshold µ, the prototype pj is determined
to be consistent. Finally, the consistency score Scon of a
part-prototype network is defined concisely as the ratio of
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consistent prototypes over all M prototypes (1{·} is the
indicator function):

Scon =
1

M

M∑
j=1

1{max(apj ) ⩾ µ}. (3)

3.2.3 Stability Score

Stability score estimates whether prototypes retain the same
corresponding object parts in the images perturbed by noise
ξ. As consistency score, the stability of a prototype is esti-
mated using all the test images from its allocated category.
Finally, the stability score Ssta of a part-prototype network
is calculated averagely over all prototypes:

Ssta=
1

M

M∑
j=1

∑
x∈Ic(j)

1{opj (x) = opj (x+ ξ)}
∥Ic(j)∥

. (4)

We implement two types of noise ξ: (1) Random noise.
In this way, the noise ξ is randomly sampled from the
same Gaussian Distribution for all models: ξ ∼ N (0, σ2).
(2) Adversarial noise. We utilize the famous PGD-attack
method [28] to generate adversarial noise, which attempts to
perturb the activation map of prototypes.

3.3. Towards a Stronger Part-Prototype Network

The interpretability benchmark for part-prototype net-
works can be established using the proposed consistency
and stability scores. Next, we propose an elaborated part-
prototype network built upon a revised ProtoPNet with two
proposed modules: shallow-deep feature alignment (SDFA)
module and score aggregation (SA) module. Part-prototype
networks match prototypes with object parts in two steps:
(1) feature extraction of object parts; (2) matching between
prototypes and features of object parts. SDFA and SA mod-
ules respectively optimize these two steps to concentrate the
matching between prototypes and their corresponding object
parts, improving both consistency and stability scores.

3.3.1 Shallow-Deep Feature Alignment Module

The shallow-deep feature alignment (SDFA) module is pro-
posed to improve the feature extraction of object parts. Part-
prototype networks extract the features of object part as the
feature unit z̃ with the corresponding spatial position in z,
requiring that deep feature maps preserve spatial informa-
tion and spatially align with the input images. However, this
requirement is not guaranteed and leads to inaccurate feature
extraction of object parts. According to previous work [3,27]
and our pre-experiments, units of shallow feature maps have
small effective receptive fields and thereby retain spatial in-
formation. Therefore, SDFA module preserves the spatial

information of deep feature maps by incorporating spatial
information from shallow layers into deep layers.

To this end, SDFA module utilizes the spatial similarity
structure to represent the spatial information of a feature
map and constrain the feature map of deep layers to have
the identical spatial similarity structure with that of shallow
layers, which is inspired by Kornblith et al. [22] that similar-
ity structures within representations can be used to compare
two representations. Specifically, the spatial similarity struc-
ture t(z) ∈ RHW×HW of a feature map z ∈ RHW×D (z is
resized from H ×W ×D to HW ×D for convenience) is
defined as a matrix whose element represents the similarity
between two units in z:

ti,j(z) = Sim(zi, zj). (5)

We adopt cosine similarity for Sim(·, ·) here, because
cosine similarity is invariant to the norm of units which
differ a lot in different layers. zs ∈ RHs×Ws×Ds , zd ∈
RHd×Wd×Dd are used to denote the feature map of a shal-
low layer and a deep layer, respectively. To keep consistent
with zd, zs is first resized to be Hd× Wd×(Hs

Hd
· Ws

Wd
·Ds),

which implies that each unit of zd corresponds to an “image
patch” in zs. Besides, SDFA module adopts a ReLU function
to restrain only the extremely dissimilar pairs, which is to
stabilize model training. Finally, the shallow-deep feature
alignment loss Lalign is calculated as below (Z̃ = HdWd):

Lalign =
1

Z̃2

Z̃−1∑
i=0

Z̃−1∑
j=0

max(|ti,j(zd)−ti,j(zs)|−γ, 0). (6)

Here, γ denotes the threshold for ReLU function. Besides,
t(zs) is set to be detached so that it never requires gradient.

3.3.2 Score Aggregation Module

The score aggregation (SA) module is proposed to address
the problem that the matching of each prototype with its
corresponding object part is disturbed by other categories.
This problem stems from the fully-connected layer h that the
classification score of a category is dependent on prototypes
of other categories. The vanilla ProtoPNet has proposed a
convex optimization step to mitigate this problem, which
optimizes the weight wh of last layer by minimizing this
loss: Lce +

∑K
k=1

∑
j:pj /∈Pk

|wh
k,j | (Lce is the classification

loss). However, we find that this optimization step will make
some wh

k,j with pj ∈ Pk be negative, which causes high
activation values of these prototypes to paradoxically con-
tribute negatively to their allocated categories and hurts the
interpretability of the model.

Instead, our work directly addresses this problem by re-
placing the fully-connected layer with the SA module. SA
module aggregates the activation values of prototypes only
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into their allocated categories, followed by a learnable layer
with weights wSA ∈ RM to adjust the importance of all M
prototypes. Specifically, let w̃SA

j = ew
SA
j /(

∑
pi∈Pk

ew
SA
i ),

the classification score logitk of category k is calculated in
SA module as below:

logitk =
∑

pj∈Pk

w̃SA
j · gpj

(x). (7)

3.3.3 Revised Baseline & Loss Function

The vanilla ProtoPNet adopts some components for model
training: a cluster loss Lclst, a separation loss Lsep. The de-
tails of them are presented in Section A.4 of the appendix.
Besides, we additionally adopt several simple but effective
modifications on the vanilla ProtoPNet: (1) Activation func-
tion. We select inner product as the activation function fol-
lowing TesNet [44] (another part-prototype network), which
enlarges the gap between high activations and low activa-
tions, and thus better discriminates regions with different
activations. (2) Orthogonality loss. We use the orthogonal-
ity loss following Deformable ProtoPNet [8] to diversify
prototypes within the same category, as shown in Eq. (8)
(Pk ∈ RN×D denotes the concatenation of prototypes from
category k and IN is an N ×N identity matrix). (3) Hyper-
parameters. We select some different hyper-parameters, as
shown in Section A.5 of the appendix.

Lortho =

K∑
k=1

∥Pk(Pk)⊤ − IN∥2. (8)

This revised ProtoPNet significantly improves the perfor-
mance of the vanilla ProtoPNet, and we add SDFA and SA
modules into it for further improvement (Fig. 3). The total
loss Ltotal of our final model is as below (Lce denotes the
cross entropy loss, λalign denotes the coefficient of Lalign):

Ltotal = Lce + Lclst + Lsep + Lortho︸ ︷︷ ︸
Previous Methods

+λalignLalign︸ ︷︷ ︸
Ours

. (9)

4. Experiments

4.1. Experimental Settings

Datasets. We follow existing part-prototype networks to
conduct experiments on CUB-200-2011 [43] and Stanford
Cars [23]. CUB-200-2011 contains location annotations of
object parts for each image, including 15 categories of object
parts (back, breast, eye, leg, ...) that cover the bird’s whole
body. Therefore, our interpretability benchmark is mainly
established based on this dataset. Besides, we also validate
the performance of our model on PartImageNet [11].
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Figure 5. The test accuracy on images from each class correlates
positively with its ratio of consistent prototypes in ProtoPNet (over
three backbones).
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Figure 6. The consistency score increases along with the training
process of ProtoPNet (over three backbones).

Benchmark Setup. Our benchmark evaluates five current
part-prototype networks: ProtoPNet [7], ProtoTree [31], Tes-
Net [44], Deformable ProtoPNet [8] and ProtoPool [33]. The
consistency score and stability score of these methods are
re-implemented faithfully following their released codes.
Parameters. We set Hb, Wb, µ and σ to be 72, 72, 0.8 and
0.2 for the interpretability evaluation of all part-prototype
networks. Our models are trained for 12 epochs with Adam
optimizer [21] (including 5 epochs for warm-up). We set
the learning rates of the backbone, the add-on module and
the prototypes to be 1e−4, 3e−3 and 3e−3 for our method.
0.5 and 0.1 are chosen for λalign and γ. The number of
prototypes per category and the dimension of prototypes are
10 and 64 for our method. More details of our experiment
setup are presented in Section A of the appendix.

4.2. Benchmark of Part-Prototype Networks

With the proposed consistency and stability scores, the
benchmark of part-prototype networks on CUB-200-2011
can be established (over five convolutional backbones pre-
trained on ImageNet), as shown in Tab. 1. The stability score
in this table is calculated with random noise, we provide the
evaluation results of other variants of stability score (includ-
ing adversarial noise) in Section B.3 of the appendix and
find that they are consistent with the random-noise version.
In the table, “Baseline” is the simplest non-interpretable
model with a fully-connected layer on the last feature map
for classification. Existing part-prototype networks are listed
in ascending order of their accuracy in the table, and some
important conclusions can be drawn from it.
The vanilla ProtoPNet has poor interpretability. The con-
sistency score of the vanilla ProtoPNet ranges from 15.1 to
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Method ResNet34 ResNet152 VGG19 Dense121 Dense161
Con. Sta. Acc. Con. Sta. Acc. Con. Sta. Acc. Con. Sta. Acc. Con. Sta. Acc.

Baseline N/A N/A 82.3 N/A N/A 81.5 N/A N/A 75.1 N/A N/A 80.5 N/A N/A 82.2
ProtoTree [31] 10.0 21.6 70.1 16.4 23.2 71.2 17.6 19.8 68.7 21.5 24.4 73.2 18.8 28.9 72.4
ProtoPNet [7] 15.1 53.8 79.2 28.3 56.7 78.0 31.6 60.4 78.0 24.9 58.9 80.2 21.2 58.2 80.1
ProtoPool [33] 32.4 57.6 80.3 35.7 58.4 81.5 36.2 62.7 78.4 48.5 55.3 81.5 40.6 61.2 82.0
Deformable [8] 39.9 57.0 81.1 44.2 53.5 82.0 40.6 61.5 77.9 61.4 64.7 82.6 46.7 63.9 83.3

TesNet [44] 53.3 65.4 82.8 48.6 60.0 82.7 46.8 58.2 81.4 63.1 66.1 84.8 62.2 67.5 84.6
Ours 52.9 66.3 82.3 50.7 65.7 83.8 44.6 56.9 80.6 52.9 59.1 83.4 56.3 61.5 84.7

Ours + SA 67.5 69.9 83.6 59.2 68.4 84.3 50.4 60.5 82.1 65.3 61.5 84.8 70.0 66.6 85.8
Ours + SA + SDFA 70.6 72.1 84.0 62.1 70.8 85.1 56.5 63.5 82.5 68.1 67.6 85.4 72.0 71.8 86.5

Table 1. The comprehensive evaluation of interpretability and accuracy of part-prototype networks on CUB-200-2011 dataset. The results
are over five convolutional backbones pre-trained on ImageNet. Con., Sta. and Acc. denote consistency score, stability score and accuracy,
respectively. Our results are averaged over 4 runs with different seeds. Bold font denotes the best result.

Method Backbone Con. Sta. Acc.

ProtoTree ResNet50 (iN) 16.4 18.4 82.2
ProtoPool ResNet50 (iN) 34.6 45.8 85.5

Deformable ResNet50 (iN) 39.7 48.5 85.6
Ours ResNet50 (iN) 56.9 67.8 87.1

ProtoPNet VGG + ResNet + Dense 23.9 57.7 84.8
TesNet VGG + ResNet + Dense 54.4 63.2 86.2

ProtoTree ResNet50 (iN) × 3 17.2 19.8 86.6
ProtoPool ResNet50 (iN) × 3 34.3 46.2 87.5

Ours ResNet50 (iN) × 3 56.7 67.4 88.3
ProtoTree ResNet50 (iN) × 5 16.8 18.5 87.2
ProtoPool ResNet50 (iN) × 5 34.4 45.7 87.6

Ours ResNet50 (iN) × 5 57.0 67.5 88.5

Table 2. Results of the benchmark on CUB-200-2011 dataset over
ResNet50 backbone pre-trained on iNaturalist2017 dataset and
combination of multiple backbones. “× 3” denotes combining the
classification logits of 3 models trained with different seeds. Bold
font denotes the best result.

31.6 on five backbones, meaning that most of its prototypes
are not interpretable because they cannot represent the same
object parts in different images. This points out that qual-
itative analysis (cherry picks) of explanation results is not
reliable, and quantitative analysis is more meaningful and
essential. However, many current methods directly transfer
the paradigm of the vanilla ProtoPNet to other domains (e.g.,
image segmentation, person re-identification, deep reinforce-
ment learning) with only qualitative analysis.
The accuracy of part-prototype networks correlates posi-
tively with their consistency and stability scores overall.
For each backbone in Tab. 1, the part-prototype network
with higher accuracy generally has higher consistency and
stability scores. This phenomenon accords with the defini-
tion of part-prototype networks that a prototype represents a
specific object part, and part-prototype networks make pre-

dictions by comparing the object parts which are activated
by the same prototypes in the test image and training images.
In this definition, the mismatch of object parts in the test
image and training images will severely drop the accuracy
of the model. For example, a non-consistent and non-stable
part-prototype network will make wrong predictions by mis-
takenly comparing the head part in the test image with the
stomach part in the training images.

Besides, we conduct two experiments to analyze the re-
lation between interpretability and accuracy of ProtoPNet.
First, we calculate the accuracy of each category and get
the average accuracy of categories with the same ratio of
consistent prototypes in Fig. 5, showing that the accuracy
on different categories positively correlates with the ratio of
consistent prototypes. Second, we calculate the consistency
score after each training epoch in Fig. 6, showing that the
consistency score increases along with the model training
and thus has a positive correlation with the model accuracy.

4.3. Comparisons with State-of-the-Art Methods

As shown in Tab. 1, we integrated the SDFA and SA mod-
ules into our revised ProtoPNet (“Ours” denotes this revised
ProtoPNet), and the consistency score, stability score and
accuracy of final model are significantly superior to current
part-prototype networks on CUB-200-2011 (the main dataset
adopted by previous methods) over five backbones. Tab. 2
demonstrates the experiment results on ResNet50 backbone
pre-trained on iNaturalist2017 dataset [42] and combination
of multiple backbones, which also verifies the significant per-
formance of our model. Besides, our model achieves the best
performance on Stanford Cars and PartImageNet, shown in
Section B.1 and B.2 of the appendix.

4.4. Ablation Study

Tab. 1 demonstrates that the SDFA and SA modules both
effectively improve consistency score, stability score and
accuracy of the model. We provide ablation experiments of
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Method ResNet34 ResNet152 VGG19 Dense121

w/o SDFA 12.4 22.8 9.8 15.9
w/ SDFA 70.8(+58.4) 74.3(+51.5) 30.5(+20.7) 47.1(+31.2)

Table 3. Similarity (%) between spatial similarity structures of
shallow layers and deep layers without/with SDFA module on the
whole test set of CUB-200-2011.

Test Image Shallow Layer Deep Layer 

(w/o SDFA) 

(w/ SDFA) 

Similarity Score 

12.18

73.94

Figure 7. Visualization of feature maps from shallow layers and
deep layers without/with SDFA module.

Method ResNet34 ResNet152 VGG19 Dense121

w/o SA 3.9 4.7 7.3 6.2
w/ SA 8.5(+4.6) 9.8(+5.1) 10.8(+3.5) 11.8(+5.6)

Table 4. Average number of similar prototypes from other categories
of each prototype on CUB-200-2011 dataset.

the hyper-parameters used in our method in Section B.5 of
the appendix. Besides, we conduct two ablation experiments
to analyze the effect of SDFA and SA modules.
SDFA Module. We calculate the similarity between spa-
tial similarity structures (t(zs) and t(zd) with shape
RHdWd×HdWd) of shallow and deep layers with/without
SDFA module, and generate the average results over all
test images. Specifically, the similarity Sim(t(zs), t(zd)) be-
tween t(zs) and t(zd) is calculated in Eq. (10) (Z̃ = HdWd).
Tab. 3 shows that SDFA module improves the similarity be-
tween spatial similarity structure of shallow layers and deep
layers by a large margin. Besides, Fig. 7 shows that the shal-
low feature maps both explicitly contain spatial information,
and the deep feature map can highlight the object instead of
background with SDFA module.

Sim(t(zs), t(zd)) =
1

Z̃

Z̃−1∑
i=0

e−∥ti(zs)−ti(zd)∥2

. (10)

SA Module. We calculate the number of similar prototypes
from other categories for each prototype and present the
averaged results without/with SA module (two prototypes
with cosine similarity over 0.6 are considered to be similar
here). As shown in Tab. 4, each prototype has fewer similar
prototypes from other categories without SA module, indi-
cating that prototypes are suppressed to represent similar

Loggerhead Shrike

a:

b:

Activation Maps In Test SetPrototype

Figure 8. A consistent prototype (a) and a non-consistent prototype
(b). Note that max(apa) = 0.97 and max(apb) = 0.33. The first
image in each row is the training image representing this prototype.

object parts among categories without SA module, due to
the original paradoxical learning paradigm.

4.5. Visualization Results

Consistency Score. To analyze the effect of our proposed
consistency score, we provide visualization of activation
maps of a consistent prototype pa and a non-consistent proto-
type pb from Yellow Billed Cuckoo category (max(apa) =
0.97 and max(apb) = 0.13). As shown in Fig. 8, prototype
pa consistently activates the head part in test images and
training images, while prototype pb desultorily activates the
wing part, belly part and feet part.

Additionally, we demonstrate more comprehensive visu-
alization analysis on the corresponding regions of consistent
prototypes from our model in Section C of the appendix.

5. Conclusion

This work establishes an interpretability benchmark to
quantitatively evaluate the interpretability of prototypes for
part-prototype networks, based on two evaluation metrics
(consistency score and stability score). Furthermore, we pro-
pose a SDFA module to incorporate the spatial information
from shallow layers into deep layers and a SA module to
concentrate the learning of prototypes. We add these two
modules into a simply revised ProtoPNet, and it significantly
surpasses the performance of existing part-prototype net-
works on three datasets, in both accuracy and interpretability.
Our work has great potential to facilitate more quantitative
metrics to evaluate the explanation results of interpretabil-
ity methods, instead of using limited visualization samples
which can be easily misled by cherry picks. In the future, we
will extend this work to other concept embedding methods
towards a unified benchmark for visual concepts.
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