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Abstract

Autonomous vehicles operating in complex real-world

environments require accurate predictions of interactive be-

haviors between traffic participants. This paper tackles

the interaction prediction problem by formulating it with

hierarchical game theory and proposing the GameFormer

model for its implementation. The model incorporates a

Transformer encoder, which effectively models the relation-

ships between scene elements, alongside a novel hierarchi-

cal Transformer decoder structure. At each decoding level,

the decoder utilizes the prediction outcomes from the previ-

ous level, in addition to the shared environmental context,

to iteratively refine the interaction process. Moreover, we

propose a learning process that regulates an agent’s be-

havior at the current level to respond to other agents’ be-

haviors from the preceding level. Through comprehensive

experiments on large-scale real-world driving datasets, we

demonstrate the state-of-the-art accuracy of our model on

the Waymo interaction prediction task. Additionally, we val-

idate the model’s capacity to jointly reason about the mo-

tion plan of the ego agent and the behaviors of multiple

agents in both open-loop and closed-loop planning tests,

outperforming various baseline methods. Furthermore, we

evaluate the efficacy of our model on the nuPlan planning

benchmark, where it achieves leading performance. Project

website: https://mczhi.github.io/GameFormer/

1. Introduction

Accurately predicting the future behaviors of surround-

ing traffic participants and making safe and socially-

compatible decisions are crucial for modern autonomous

driving systems. However, this task is highly challenging

due to the complexities arising from road structures, traffic

norms, and interactions among road users [14, 23, 24]. In

recent years, deep neural network-based approaches have

shown remarkable advancements in prediction accuracy and

scalability [7, 11, 15, 22, 40]. In particular, Transformers

have gained prominence in motion prediction [25,31,32,35,
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Figure 1. Hierarchical game theoretic modeling of agent interac-

tions. The historical states of agents and maps are encoded as

background information; a level-0 agent’s future is predicted in-

dependently based on the initial modality query; a level-k agent

responds to all other level-(k − 1) agents.

45, 47] because of their flexibility and effectiveness in pro-

cessing heterogeneous information from the driving scene,

as well as their ability to capture interrelationships among

the scene elements.

Despite the success of existing prediction models in

encoding the driving scene and representing interactions

through agents’ past trajectories, they often fail to explic-

itly model agents’ future interactions and their interaction

with the autonomous vehicle (AV). This limitation results

in a passive reaction from the AV’s planning module to the

prediction results. However, in critical situations such as

merge, lane change, and unprotected left turn, the AV needs

to proactively coordinate with other agents. Therefore, joint

prediction and planning are necessary for achieving more

interactive and human-like decision-making. To address

this, a typical approach is the recently-proposed conditional

prediction model [17,34,36,37,39], which utilizes the AV’s

internal plans to forecast other agents’ responses to the AV.

Although the conditional prediction model mitigates the in-

teraction issue, such a one-way interaction still neglects the

dynamic mutual influences between the AV and other road

users. From a game theory perspective, the current pre-

diction/planning models can be regarded as leader-follower

games with limited levels of interaction among agents.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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In this study, we utilize a hierarchical game-theoretic

framework (level-k game theory) [5, 42] to model the in-

teractions among various agents [27, 28, 41] and introduce

a novel Transformer-based prediction model named Game-

Former. Stemming from insights in cognitive science, level-

k game theory offers a structured approach to modeling in-

teractions among agents. At its core, the theory introduces a

hierarchy of reasoning depths denoted by k. A level-0 agent

acts independently without considering the possible actions

of other agents. As we move up the hierarchy, a level-1
agent considers interactions by assuming that other agents

are level-0 and predicts their actions accordingly. This pro-

cess continues iteratively, where a level-k agent predicts

others’ actions assuming they are level-(k−1) and responds

based on these predictions. Our model aligns with the spirit

of level-k game theory by considering agents’ reasoning

levels and explicit interactions.

As illustrated in Fig. 1, we initially encode the driving

scene into background information, encompassing vector-

ized maps and observed agent states, using Transformer en-

coders. In the future decoding stage, we follow the level-k
game theory to design the structure. Concretely, we set up

a series of Transformer decoders to implement level-k rea-

soning. The level-0 decoder employs only the initial modal-

ity query and encoded scene context as key and value to

predict the agent’s multi-modal future trajectories. Then, at

each iteration k, the level-k decoder takes as input the pre-

dicted trajectories from the level-(k−1) decoder, along with

the background information, to predict the agent’s trajec-

tories at the current level. Moreover, we design a learning

process that regulates the agents’ trajectories to respond to

the trajectories of other agents from the previous level while

also staying close to human driving data. The main contri-

butions of this paper are summarized as follows:

1. We propose GameFormer, a Transformer-based inter-

active prediction and planning framework. The model

employs a hierarchical decoding structure to capture

agent interactions, iteratively refine predictions, and is

trained based on the level-k game formalism.

2. We demonstrate the state-of-the-art prediction perfor-

mance of our GameFormer model on the Waymo in-

teraction prediction benchmark.

3. We validate the planning performance of the Game-

Former framework in open-loop driving scenes and

closed-loop simulations using the Waymo open motion

dataset and the nuPlan planning benchmark.

2. Related Work

2.1. Motion Prediction for Autonomous Driving

Neural network models have demonstrated remarkable

effectiveness in motion prediction by encoding contextual

scene information. Early studies utilize long short-term

memory (LSTM) networks [1] to encode the agent’s past

states and convolutional neural networks (CNNs) to pro-

cess the rasterized image of the scene [7, 12, 21, 34]. To

model the interaction between agents, graph neural net-

works (GNNs) [4, 13, 20, 30] are widely used for represent-

ing agent interactions via scene or interaction graphs. More

recently, the unified Transformer encoder-decoder structure

for motion prediction has gained popularity, e.g., Scene-

Transformer [32] and WayFormer [31], due to their com-

pact model description and superior performance. However,

most Transformer-based prediction models focus on the en-

coding part, with less emphasis on the decoding part. Mo-

tion Transformer [35] addresses this limitation by proposing

a well-designed decoding stage that leverages iterative local

motion refinement to enhance prediction accuracy. Inspired

by iterative refinement and hierarchical game theory, our

approach introduces a novel Transformer-based decoder for

interaction prediction, providing an explicit way to model

the interactions between agents.

Regarding the utilization of prediction models for plan-

ning tasks, numerous works focus on multi-agent joint mo-

tion prediction frameworks [14, 24, 30, 38] that enable effi-

cient and consistent prediction of multi-modal multi-agent

trajectories. An inherent issue in existing motion prediction

models is that they often ignore the influence of the AV’s ac-

tions, rendering them unsuitable for downstream planning

tasks. To tackle this problem, several conditional multi-

agent motion prediction models [8, 17, 36] have been pro-

posed by integrating AV planning information into the pre-

diction process. However, these models still exhibit one-

way interactions, neglecting the mutual influence among

agents. In contrast, our approach aims to jointly predict the

future trajectories of surrounding agents and facilitate AV

planning through iterative mutual interaction modeling.

2.2. Learning for Decision­making

The primary objective of the motion prediction module

is to enable the planning module to make safe and intelli-

gent decisions. This can be achieved through the use of of-

fline learning methods that can learn decision-making poli-

cies from large-scale driving datasets. Imitation learning

stands as the most prevalent approach, which aims to learn

a driving policy that can replicate expert behaviors [19,44].

Offline reinforcement learning [26] has also gained interest

as it combines the benefits of reinforcement learning and

large collected datasets. However, direct policy learning

lacks interpretability and safety assurance, and often suf-

fers from distributional shifts. In contrast, planning with a

learned motion prediction model is believed to be more in-

terpretable and robust [3, 6, 18, 46], making it a more desir-

able way for autonomous driving. Our proposed approach

aims to enhance the capability of prediction models that can

improve interactive decision-making performance.
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Figure 2. Overview of our proposed GameFormer framework. The scene context encoding is obtained via a Transformer-based encoder;

the level-0 decoder takes the modality embedding and agent history encodings as query and outputs level-0 future trajectories and scores;

the level-k decoder uses a self-attention module to model the level-(k − 1) future interaction and append it to the scene context encoding.

3. GameFormer

We introduce our interactive prediction and planning

framework, called GameFormer, which adopts the Trans-

former encoder-decoder architecture (see Fig. 2). In the fol-

lowing sections, we first define the problem and discuss the

level-k game theory that guides the design of the model and

learning process in Sec. 3.1. We then describe the encoder

component of the model, which encodes the scene context,

in Sec. 3.2, and the decoder component, which incorporates

a novel interaction modeling concept, in Sec. 3.3. Finally,

we present the learning process that accounts for interac-

tions among different reasoning levels in Sec. 3.4.

3.1. Game­theoretic Formulation

We consider a driving scene with N agents, where

the AV is denoted as A0 and its neighboring agents as

A1, · · · , AN−1 at the current time t = 0. Given the his-

torical states of all agents (including the AV) over an ob-

servation horizon Th, S = {s−Th:0
i }, as well as the map

information M including traffic lights and road waypoints,

the goal is to jointly predict the future trajectories of neigh-

boring agents Y
1:Tf

1:N−1 over the future horizon Tf , as well

as a planned trajectory for the AV Y
1:Tf

0 . In order to cap-

ture the uncertainty, the results are multi-modal future tra-

jectories for the AV and neighboring agents, denoted by

Y
1:Tf

i = {y
1:Tf

j , pj |j =1 : M}, where y
1:Tf

j is a sequence

of predicted states, pj the probability of the trajectory, and

M the number of modalities.

We leverage level-k game theory to model agent interac-

tions in an iterative manner. Instead of simply predicting a

single set of trajectories, we predict a hierarchy of trajecto-

ries to model the cognitive interaction process. At each rea-

soning level, with the exception of level-0, the decoder takes

as input the prediction results from the previous level, which

effectively makes them a part of the scene, and estimates the

responses of agents in the current level to other agents in the

previous level. We denote the predicted multi-modal trajec-

tories (essentially a Gaussian mixture model) of agent i at

reasoning level k as π
(k)
i , which can be regarded as a policy

for that agent. The policy π
(k)
i is conditioned on the poli-

cies of all other agents except the i-th agent at level-(k−1),

denoted by π
(k−1)
¬i . For instance, the AV’s policy at level-2

π
(2)
0 would take into account all neighboring agents’ poli-

cies at level-1 π
(1)
1:N−1. Formally, the i-th agent’s level-k

policy is set to optimize the following objective:

min
πi

Lk
i

(

π
(k)
i | π

(k−1)
¬i

)

, (1)

where L(·) is the loss (or cost) function. It is important to

note that policy π here represents the multi-modal predicted

trajectories (GMM) of an agent and that the loss function is

calculated on the trajectory level.
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For the level-0 policies, they do not take into account

probable actions or reactions of other agents and instead

behave independently. Based on the level-k game theory

framework, we design the future decoder, which we elabo-

rate upon in Section 3.3.

3.2. Scene Encoding

Input representation. The input data comprises histor-

ical state information of agents, Sp ∈ R
N×Th×ds , where ds

represents the number of state attributes, and local vector-

ized map polylines M ∈ R
N×Nm×Np×dp . For each agent,

we find Nm nearby map elements such as routes and cross-

walks, each containing Np waypoints with dp attributes.

The inputs are normalized according to the state of the ego

agent, and any missing positions in the tensors are padded

with zeros.

Agent History Encoding. We use LSTM networks to

encode the historical state sequence Sp for each agent, re-

sulting in a tensor Ap ∈ R
N×D, which contains the past

features of all agents. Here, D denotes the hidden feature

dimension.

Vectorized Map Encoding. To encode the local map

polylines of all agents, we use the multi-layer percep-

tron (MLP) network, which generates a map feature tensor

Mp ∈ R
N×Nm×Np×D with a feature dimension of D. We

then group the waypoints from the same map element and

use max-pooling to aggregate their features, reducing the

number of map tokens. The resulting map feature tensor is

reshaped into Mr ∈ R
N×Nmr×D, where Nmr represents

the number of aggregated map elements.

Relation Encoding. We concatenate the agent fea-

tures and their corresponding local map features to cre-

ate an agent-wise scene context tensor Ci = [Ap,M
i
p] ∈

R
(N+Nmr)×D for each agent. We use a Transformer en-

coder with E layers to capture the relationships among all

the scene elements in each agent’s context tensor Ci. The

Transformer encoder is applied to all agents, generating a fi-

nal scene context encoding Cs ∈ R
N×(N+Nmr)×D, which

represents the common environment background inputs for

the subsequent decoder network.

3.3. Future Decoding with Level­k Reasoning

Modality embedding. To account for future uncertain-

ties, we need to initialize the modality embedding for each

possible future, which serves as the query to the level-0 de-

coder. This can be achieved through either a heuristics-

based method, learnable initial queries [31], or through a

data-driven method [35]. Specifically, a learnable initial

modality embedding tensor I ∈ R
N×M×D is generated,

where M represents the number of future modalities.

Level-0 Decoding. In the level-0 decoding layer, a

multi-head cross-attention Transformer module is utilized,

which takes as input the combination of the initial modality

embedding I and the agent’s historical encoding in the final

scene context Cs,Ap
(by inflating a modality axis), result-

ing in (Cs,Ap
+ I) ∈ R

N×M×D as the query and the scene

context encoding Cs as the key and value. The attention is

applied to the modality axis for each agent, and the query

content features can be obtained after the attention layer as

ZL0
∈ R

N×M×D. Two MLPs are appended to the query

content features ZL0
to decode the GMM components of

predicted futures GL0
∈ R

N×M×Tf×4 (corresponding to

(µx, µy, log σx, log σy) at every timestep) and the scores of

these components PL0
∈ R

N×M×1.
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Figure 3. The detailed structure of a level-k interaction decoder.

Interaction Decoding. The interaction decoding stage

contains K decoding layers corresponding to K reason-

ing levels. In the level-k layer (k ≥ 1), it receives all

agents’ trajectories from the level-(k − 1) layer S
Lk−1

f ∈

R
N×M×Tf×2 (the mean values of the GMM GLk−1

) and

use an MLP with max-pooling on the time axis to encode

the trajectories, resulting in a tensor of agent multi-modal

future trajectory encoding A
Lk−1

mf ∈ R
N×M×D. Then, we

apply weighted-average-pooling on the modality axis with

the predicted scores from the level-(k − 1) layer PLk−1
to

obtain the agent future features A
Lk−1

f ∈ R
N×D. We use

a multi-head self-attention Transformer module to model

the interactions between agent future trajectories A
Lk−1

fi and

concatenate the resulting interaction features with the scene

context encoding from the encoder part. This yields an up-
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dated scene context encoding for agent i, denoted by Ci
Lk

=

[A
Lk−1

fi , Ci
s] ∈ R

(N+Nm+N)×D. We adopt a multi-head

cross-attention Transformer module with the query content

features from the level-(k−1) layer Zi
Lk−1

and agent future

features A
Lk−1

mf , (Zi
Lk−1

+A
i,Lk−1

mf ) ∈ R
M×D as query and

the updated scene context encoding Ci
Lk

as key and value.

We use a masking strategy to prevent an agent from access-

ing its own future information from the last layer. For ex-

ample, agent A0 can only get access to the future interaction

features of other agents {A1, · · · , AN−1}. Finally, the re-

sulting query content tensor from the cross-attention mod-

ule Zi
Lk

is passed through two MLPs to decode the agent’s

GMM components and scores, respectively. Fig. 3 illus-

trates the detailed structure of a level-k interaction decoder.

Note that we share the level-k decoder for all agents to gen-

erate multi-agent trajectories at that level. At the final level

of interaction decoding, we can obtain multi-modal trajec-

tories for the AV and neighboring agents GLK
, as well as

their scores PLK
.

3.4. Learning Process

We present a learning process to train our model using

the level-k game theory formalism. First, we employ imi-

tation loss as the primary loss to regularize the agent’s be-

haviors, which can be regarded as a surrogate for factors

such as traffic regulations and driving styles. The future be-

havior of an agent is modeled as a Gaussian mixture model

(GMM), where each mode m at time step t is described by

a Gaussian distribution over the (x, y) coordinates, charac-

terized by mean µt
m and covariance σt

m. The imitation loss

is computed using the negative log-likelihood loss from the

best-predicted component m∗ (closest to the ground truth)

at each timestep, as formulated:

LIL =

Tf
∑

t=1

LNLL(µ
t
m∗ , σt

m∗ , pm∗, st). (2)

The negative log-likelihood loss function LNLL is de-

fined as follows:

LNLL = log σx+log σy+
1

2

(

(

dx

σx

)

2

+

(

dx

σx

)

2
)

−log(pm∗),

(3)

where dx = sx − µx and dy = sy − µy , (sx, sy) is ground-

truth position; pm∗ is the probability of the selected compo-

nent, and we use the cross-entropy loss in practice.

For a level-k agent A
(k)
i , we design an auxiliary loss

function inspired by prior works [4, 16, 29] that considers

the agent’s interactions with others. The safety of agent

interactions is crucial, and we use an interaction loss (ap-

plicable only to decoding levels k ≥ 1) to encourage the

agent to avoid collisions with the possible future trajecto-

ries of other level-(k − 1) agents. Specifically, we use a

repulsive potential field in the interaction loss to discourage

the agent’s future trajectories from getting too close to any

possible trajectory of any other level-(k − 1) agent A
(k−1)
¬i .

The interaction loss is defined as follows:

LInter =
M
∑

m=1

Tf
∑

t=1

max
∀j ̸=i

∀n∈1:M

1

d
(

ŝ
(i,k)
m,t , ŝ

(j,k−1)
n,t

)

+ 1
, (4)

where d(·, ·) is the L2 distance between the future states

((x, y) positions), m is the mode of the agent i, n is the

mode of the level-(k − 1) agent j. To ensure activation of

the repulsive force solely within close proximity, a safety

margin is introduced, meaning the loss is only applied to

interaction pairs with distances smaller than a threshold.

The total loss function for the level-k agent i is the

weighted sum of the imitation loss and interaction loss.

Lk
i (π

(k)
i ) = w1LIL(π

(k)
i ) + w2LInter(π

(k)
i , π

(k−1)
¬i ), (5)

where w1 and w2 are the weighting factors to balance the

influence of the two loss terms.

4. Experiments

4.1. Experimental Setup

Dataset. We set up two different model variants for dif-

ferent evaluation purposes. The prediction-oriented model

is trained and evaluated using the Waymo open motion

dataset (WOMD) [9], specifically addressing the task of

predicting the joint trajectories of two interacting agents.

For the planning tasks, we train and test the models on both

WOMD with selected interactive scenarios and the nuPlan

dataset [2] with a comprehensive evaluation benchmark.

Prediction-oriented model. We adopt the setting of the

WOMD interaction prediction task, where the model pre-

dicts the joint future positions of two interacting agents 8

seconds into the future. The neighboring agents within the

scene will serve as the background information in the en-

coding stage, while only the two labeled interacting agents’

joint future trajectories are predicted. The model is trained

on the entire WOMD training dataset, and we employ the

official evaluation metrics, which include minimum aver-

age displacement error (minADE), minimum final displace-

ment error (minFDE), miss rate, and mean average preci-

sion (mAP). We investigate two different prediction model

settings. Firstly, we consider the joint prediction setting,

where only M = 6 joint trajectories of the two agents are

predicted [32]. Secondly, we examine the marginal predic-

tion setting and train our model to predict M = 64 marginal

trajectories for each agent in the interaction pair. During in-

ference, the EM method proposed in MultiPath++ [40] is

employed to generate a set of 6 marginal trajectories for

each agent, from which the top 6 joint predictions are se-

lected for these two agents.
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Planning-oriented model. We introduce another model

variant designed for planning tasks. Specifically, this vari-

ant takes into account multiple neighboring agents around

the AV and predicts their future trajectories. The model

is trained and tested across two datasets: WOMD and nu-

Plan. For WOMD, we randomly select 10,000 20-second

scenarios, where 9,000 of them are used for training and

the remaining 1,000 for validation. Then, we evaluate

the model’s joint prediction and planning performance on

400 9-second interactive and dynamic scenarios (e.g., lane-

change, merge, and left-turn) in both open-loop and closed-

loop settings. To conduct closed-loop testing, we utilize

a log-replay simulator [18] to replay the original scenar-

ios involving other agents, with our planner taking control

of the AV. In open-loop testing, we employ distance-based

error metrics, which include planning ADE, collision rate,

miss rate, and prediction ADE. In closed-loop testing, we

focus on evaluating the planner’s performance in a realistic

driving context by measuring metrics including success rate

(no collision or off-route), progress along the route, longi-

tudinal acceleration and jerk, lateral acceleration, and po-

sition errors. For the nuPlan dataset, we design a compre-

hensive planning framework and adhere to the nuPlan chal-

lenge settings to evaluate the planning performance. Specif-

ically, we evaluate the planner’s performance in three tasks:

open-loop planning, closed-loop planning with non-reactive

agents, and closed-loop with reactive agents. These tasks

are evaluated using a comprehensive set of metrics pro-

vided by the nuPlan platform, and an overall score is derived

based on these tasks. More information about our models is

provided in the supplementary material.

4.2. Main Results

4.2.1 Interaction Prediction

Within the prediction-oriented model, we use a stack of

E = 6 Transformer encoder layers, and the hidden feature

dimension is set to D = 256. We consider 20 neighboring

agents around the two interacting agents as background in-

formation and employ K = 6 decoding layers. The model

only generates trajectories for the two labeled interacting

agents. Moreover, the local map elements for each agent

comprise possible lane polylines and crosswalk polylines.

Quantitative results. Table 1 summarizes the predic-

tion performance of our model in comparison with state-of-

the-art methods on the WOMD interaction prediction (joint

prediction of two interacting agents) benchmark. The met-

rics are averaged over different object types (vehicle, pedes-

trian, and cyclist) and evaluation times (3, 5, and 8 seconds).

Our joint prediction model (GameFormer (J, M=6)) outper-

forms existing methods in terms of position errors. This can

be attributed to its superior ability to capture future interac-

tions between agents through an iterative process and to pre-

dict future trajectories in a scene-consistent manner. How-

ever, the scoring performance of the joint model is limited

without predicting an over-complete set of trajectories and

aggregation. To mitigate this issue, we employ the marginal

prediction model (GameFormer (M, M=64)) with EM ag-

gregation, which significantly improves the scoring perfor-

mance (better mAP metric). The overall performance of

our marginal model is comparable to that of the ensemble

and more complicated MTR model [35]. Nevertheless, it

is worth noting that marginal ensemble models may not be

practical for real-world applications due to their substan-

tial computational burden. Therefore, we utilize the joint

prediction model, which provides better prediction accuracy

and computational efficiency, for planning tests.

Table 1. Comparison with state-of-the-art models on the WOMD

interaction prediction benchmark

Model minADE (↓) minFDE (↓) Miss rate (↓) mAP (↑)

LSTM baseline [9] 1.9056 5.0278 0.7750 0.0524

Heat [30] 1.4197 3.2595 0.7224 0.0844

AIR2 [43] 1.3165 2.7138 0.6230 0.0963

SceneTrans [32] 0.9774 2.1892 0.4942 0.1192

DenseTNT [15] 1.1417 2.4904 0.5350 0.1647

M2I [37] 1.3506 2.8325 0.5538 0.1239

MTR [35] 0.9181 2.0633 0.4411 0.2037

GameFormer (M, M=64) 0.9721 2.2146 0.4933 0.1923

GameFormer (J, M=6) 0.9161 1.9373 0.4531 0.1376

Qualitative results. Fig. 4 illustrates the interaction

prediction performance of our approach in several typical

scenarios. In the vehicle-vehicle interaction scenario, two

distinct situations are captured by our model: vehicle 2 ac-

celerates to take precedence at the intersection, and vehicle

2 yields to vehicle 1. In both cases, our model predicts that

vehicle 1 creeps forward to observe the actions of vehicle 2

before executing a left turn. In the vehicle-pedestrian sce-

nario, our model predicts that the vehicle will stop and wait

for the pedestrian to pass before starting to move. In the

vehicle-cyclist interaction scenario, where the vehicle in-

tends to merge into the right lane, our model predicts the

vehicle will decelerate and follow behind the cyclist in that

lane. Overall, the results manifest that our model can cap-

ture multiple interaction patterns of interacting agents and

accurately predict their possible joint futures.

4.2.2 Open-loop Planning

We first conduct the planning tests in selected WOMD sce-

narios with a prediction/planning horizon of 5 seconds. The

model uses a stack of E = 6 Transformer encoder layers,

and we consider 10 neighboring agents closest to the ego

vehicle to predict M = 6 joint future trajectories for them.

Determining the decoding levels. To determine the op-

timal reasoning levels for planning, we analyze the impact

of decoding layers on open-loop planning performance, and

the results are presented in Table 2. Although the planning

ADE and prediction ADE exhibit a slight decrease with ad-
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Figure 4. Qualitative results of the proposed method in interaction prediction (multi-modal joint prediction of two interacting agents). The

red boxes are interacting agents to predict and the magenta boxes are background neighboring agents.
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Figure 5. Qualitative results of the proposed method in open-loop planning. The red box is the AV and the magenta boxes are its neighboring

agents; the red trajectory is the plan of the AV and the blue ones are the predictions of neighboring agents.

ditional decoding layers, the miss rate and collision rate are

at their lowest when the decoding level is 4. The intuition

behind this observation is that humans are capable of per-

forming only a limited depth of reasoning, and the optimal

iteration depth empirically appears to be 4 in this test.

Table 2. Influence of decoding levels on open-loop planning

Level Planning ADE Collision Rate Miss Rate Prediction ADE

0 0.9458 0.0384 0.1154 1.0955

1 0.8846 0.0305 0.0994 0.9377

2 0.8529 0.0277 0.0897 0.8875

3 0.8423 0.0269 0.0816 0.8723

4 0.8329 0.0198 0.0753 0.8527

5 0.8171 0.0245 0.0777 0.8361

6 0.8208 0.0238 0.0826 0.8355

Quantitative results. Our joint prediction and planning

model employs 4 decoding layers, and the results of the fi-

nal decoding layer (the most-likely future evaluated by the

trained scorer) are utilized as the plan for the AV and predic-

tions for other agents. We set up some imitation learning-

based planning methods as baselines, which are: 1) vanilla

imitation learning (IL), 2) deep imitative model (DIM) [33],

3) MultiPath++ [40] (which predicts multi-modal trajecto-

ries for the ego agent), 4) MTR-e2e (end-to-end variant with

learnable motion queries) [35], and 5) differentiable inte-

grated prediction and planning (DIPP) [18]. Table 3 reports

the open-loop planning performance of our model in com-

parison with the baseline methods. The results reveal that

our model performs significantly better than vanilla IL and

DIM, because they are just trained to output the ego’s trajec-

tory while not explicitly predicting other agents’ future be-

haviors. Compared to performant motion prediction models

(MultiPath++ and MTR-e2e), our model also shows better

planning metrics for the ego agent. Moreover, our model

outperforms DIPP (a joint prediction and planning method)

in both planning and prediction metrics, especially the col-

lision rate. These results emphasize the advantage of our

model, which explicitly considers all agents’ future behav-

iors and iteratively refines the interaction process.

Qualitative results. Fig. 5 displays qualitative results

of our model’s open-loop planning performance in complex

driving scenarios. For clarity, only the most-likely trajecto-

ries of the agents are displayed. These results demonstrate

that our model can generate a plausible future trajectory for

the AV and handle diverse interaction scenarios, and predic-

tions of the surrounding agents enhance the interpretability

of our planning model’s output.
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Table 3. Evaluation of open-loop planning performance in selected WOMD scenarios

Method Collision rate (%) Miss rate (%)
Planning error (m) Prediction error (m)

@1s @3s @5s ADE FDE

Vanilla IL 4.25 15.61 0.216 1.273 3.175 – –

DIM 4.96 17.68 0.483 1.869 3.683 – –

MultiPath++ 2.86 8.61 0.146 0.948 2.719 – –

MTR-e2e 2.32 8.88 0.141 0.888 2.698 – –

DIPP 2.33 8.44 0.135 0.928 2.803 0.925 2.059

Ours 1.98 7.53 0.129 0.836 2.451 0.853 1.919

Table 4. Evaluation of closed-loop planning performance in selected WOMD scenarios

Method
Success rate Progress Acceleration Jerk Lateral acc. Position error to expert driver (m)

(%) (m) (m/s2) (m/s3) (m/s2) @3s @5s @8s

Vanilla IL 0 6.23 1.588 16.24 0.661 9.355 20.52 46.33

RIP 19.5 12.85 1.445 14.97 0.355 7.035 17.13 38.25

CQL 10 8.28 3.158 25.31 0.152 10.86 21.18 40.17

DIPP 68.12±5.51 41.08±5.88 1.44±0.18 12.58±3.23 0.31±0.11 6.22±0.52 15.55±1.12 26.10±3.88

Ours 73.16±6.14 44.94±7.69 1.19±0.15 13.63±2.88 0.32±0.09 5.89±0.78 12.43±0.51 21.02±2.48

DIPP (w/ refinement) 92.16±0.62 51.85±0.14 0.58±0.03 1.54±0.19 0.11±0.01 2.26±0.10 5.55±0.24 12.53±0.48

Ours (w/ refinement) 94.50±0.66 52.67±0.33 0.53±0.02 1.56±0.23 0.10±0.01 2.11±0.21 4.87±0.18 11.13±0.33

4.2.3 Closed-loop Planning

We evaluate the closed-loop planning performance of our

model in selected WOMD scenarios. Within a simulated

environment [18], we execute the planned trajectory gener-

ated by the model and update the ego agent’s state at each

time step, while other agents follow their logged trajectories

from the dataset. Since other agents do not react to the ego

agent, the success rate is a lower bound for safety assess-

ment. For planning-based methods (DIPP and our proposed

method), we project the output trajectory onto a reference

path to ensure the ego vehicle’s adherence to the roadway.

Additionally, we employ a cost-based refinement planner

[18], which utilizes the initial output trajectory and the pre-

dicted trajectories of other agents to explicitly regulate the

ego agent’s actions. Our method is compared against four

baseline methods: 1) vanilla IL, 2) robust imitative planning

(RIP) [10], 3) conservative Q-learning (CQL) [26], and 4)

DIPP [18]. We report the means and standard deviations of

the planning-based methods over three training runs (mod-

els trained with different seeds). The quantitative results

of closed-loop testing are summarized in Table 4. The re-

sults show that the IL and offline RL methods exhibit subpar

performance in the closed-loop test, primarily due to distri-

butional shifts and casual confusion. In contrast, planning-

based methods perform significantly better across all met-

rics. Without the refinement step, our model outperforms

DIPP because it captures agent interactions more effectively

and thus the raw trajectory is closer to an expert driver.

With the refinement step, the planner becomes more robust

against training seeds, and our method surpasses DIPP be-

cause it can deliver better predictions of agent interactions

and provide a good initial plan to the refinement planner.

4.2.4 nuPlan Benchmark Evaluation

To handle diverse driving scenarios in the nuPlan plat-

form [2], we develop a comprehensive planning framework

GameFormer Planner. It fulfills all important steps in the

planning pipeline, including feature processing, path plan-

ning, model query, and motion refinement. We increase the

prediction and planning horizon to 8 seconds to meet bench-

mark requirements. The evaluation is conducted over three

tasks: open-loop (OL) planning, closed-loop (CL) planning

with non-reactive agents, and closed-loop planning with re-

active agents. The score for each individual task is calcu-

lated using various metrics and scoring functions, and an

overall score is obtained by aggregating these task-specific

scores. It is important to note that we reduce the size of our

model (encoder and decoder layers) due to limited compu-

tational resources on the test server. The performance of our

model on the nuPlan test benchmark is presented in Table 5,

in comparison with other competitive learning-based meth-

ods and a rule-based approach (IDM Planner). The results

reveal the capability of our planning framework in achiev-

ing high-quality planning results across the evaluated tasks.

Moreover, the closed-loop visualization results illustrate the

ability of our model to facilitate the ego vehicle in making

interactive and human-like decisions.

Table 5. Results on the nuPlan planning test benchmark

Method Overall OL CL non-reactive CL reactive

Hoplan 0.8745 0.8523 0.8899 0.8813

Multi path 0.8477 0.8758 0.8165 0.8506

GameFormer 0.8288 0.8400 0.8087 0.8376

Urban Driver 0.7467 0.8629 0.6821 0.6952

IDM Planner 0.5912 0.2944 0.7243 0.7549
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4.3. Ablation Study

Effects of agent future modeling. We investigate the

impact of different agent future modeling settings on open-

loop planning performance in WOMD scenarios. We com-

pare our base model to three ablated models: 1) No future:

agent future trajectories from the preceding level are not

incorporated in the decoding process at the current level,

2) No self-attention: agent future trajectories are incorpo-

rated but not processed through a self-attention module,

and 3) No interaction loss: the model is trained without

the proposed interaction loss. The results, as presented in

Table 6, demonstrate that our game-theoretic approach can

significantly improve planning and prediction accuracy. It

underscores the advantage of utilizing the future trajecto-

ries of agents from the previous level as contextual infor-

mation for the current level. Additionally, incorporating a

self-attention module to represent future interactions among

agents improves the accuracy of planning the prediction.

Using the proposed interaction loss during training can sig-

nificantly reduce the collision rate.

Table 6. Influence of future modeling on open-loop planning

Planning ADE Collision Rate Miss Rate Prediction ADE

No future 0.9210 0.0295 0.0963 0.9235

No self-attention 0.8666 0.0231 0.0860 0.8856

No interaction loss 0.8415 0.0417 0.0846 0.8486

Base 0.8329 0.0198 0.0753 0.8527

Influence of decoder structures. We investigate the in-

fluence of decoder structures on the open-loop planning task

in WOMD scenarios. Specifically, we examine two ablated

models. First, we assess the importance of incorporating

k independent decoder layers, as opposed to training a sin-

gle shared interaction decoder and iteratively applying it k
times. Second, we explore the impact of simplifying the de-

coder into a multi-layer Transformer that does not generate

intermediate states. This translates into applying the loss

solely to the final decoding layer, rather than all intermedi-

ate layers. The results presented in Table 7 demonstrate bet-

ter open-loop planning performance for the base model (in-

dependent decoding layers with intermediate trajectories).

This design allows each layer to capture different levels of

relationships, thereby facilitating hierarchical modeling. In

addition, the omission of intermediate trajectory outputs can

degrade the model’s performance, highlighting the neces-

sity of regularizing the intermediate state outputs.

Table 7. Influence of decoder structures on open-loop planning

Planning ADE Collision Rate Miss Rate Prediction ADE

Base 0.8329 0.0198 0.0753 0.8547

Shared decoder 0.9196 0.0382 0.0860 0.9095

Multi-layer decoder 0.9584 0.0353 0.0988 0.9637

Ablation results on the interaction prediction task.

We investigate the influence of the decoder on the WOMD

interaction prediction task. Specifically, we vary the decod-

ing levels from 0 to 8 to determine the optimal decoding

level for this task. Moreover, we remove either the agent

future encoding part from the decoder or the self-attention

module (for modeling agent future interactions) to investi-

gate their influences on prediction performance. We train

the ablated models using the same training set and evalu-

ate their performance on the validation set. The results in

Table 8 reveal that the empirically optimal number of de-

coding layers is 6 for the interaction prediction task. It is

evident that fewer decoding layers fail to adequately cap-

ture the interaction dynamics, resulting in subpar predic-

tion performance. However, using more than 6 decoding

layers may introduce training instability and overfitting is-

sues, leading to worse testing performance. Similarly, we

find that incorporating predicted agent future information

is crucial for achieving good performance, and using self-

attention to model the interaction among agents’ futures can

also improve prediction accuracy.

Table 8. Decoder ablation results on interaction prediction

Decoding layers minADE minFDE Miss Rate mAP

K=0 1.0505 2.2905 0.5113 0.1226

K=1 1.0169 2.1876 0.5061 0.1281

K=3 0.9945 2.1143 0.5026 0.1265

K=6 0.9133 1.9251 0.4564 0.1339

K=8 0.9839 2.1515 0.5003 0.1255

K=6 w/o future 0.9862 2.0848 0.4979 0.1256

K=6 w/o self-attention 0.9263 1.9931 0.4599 0.1281

5. Conclusions

This paper introduces GameFormer, a Transformer-

based model that utilizes hierarchical game theory for in-

teractive prediction and planning. Our proposed approach

incorporates novel level-k interaction decoders in the Trans-

former prediction model that iteratively refine the future

trajectories of interacting agents. We also implement a

learning process that regulates the predicted behaviors of

agents based on the prediction results from the previous

level. Experimental results on the Waymo open motion

dataset demonstrate that our model achieves state-of-the-art

accuracy in interaction prediction and outperforms baseline

methods in both open-loop and closed-loop planning tests.

Moreover, our proposed planning framework delivers lead-

ing performance on the nuPlan planning benchmark.
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