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Abstract

The decentralized and privacy-preserving nature of fed-
erated learning (FL) makes it vulnerable to backdoor at-
tacks aiming to manipulate the behavior of the resulting
model on specific adversary-chosen inputs. However, most
existing defenses based on statistical differences take effect
only against specific attacks, especially when the malicious
gradients are similar to benign ones or the data are highly
non-independent and identically distributed (non-IID). In
this paper, we revisit the distance-based defense methods
and discover that i) Euclidean distance becomes meaning-
less in high dimensions and ii) malicious gradients with di-
verse characteristics cannot be identified by a single met-
ric. To this end, we present a simple yet effective defense
strategy with multi-metrics and dynamic weighting to iden-
tify backdoors adaptively. Furthermore, our novel defense
has no reliance on predefined assumptions over attack set-
tings or data distributions and little impact on benign per-
formance. To evaluate the effectiveness of our approach, we
conduct comprehensive experiments on different datasets
under various attack settings, where our method achieves
the best defensive performance. For instance, we achieve
the lowest backdoor accuracy of 3.06% under the most dif-
ficult Edge-case PGD, showing significant superiority over
previous defenses. The experiments also demonstrate that
our method can be well-adapted to a wide range of non-IID
degrees without sacrificing the benign performance.

1. Introduction
Federated learning (FL) [26, 35] is a distributed machine

learning paradigm that enables multiple participants to train
a quality model collaboratively without exchanging their lo-
cal data. During each round of training, the central server
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distributes the global model to a subset of clients. Each
client updates the model with the local data and submits
the parameters to the server for aggregation. By training an
efficient and quality model in a decentralized manner with-
out sacrificing the privacy of participants, FL alleviates the
possible conflict between technological developments and
regulations for data privacy protection(e.g., General Data
Protection Regulation). FL has already been applied and
achieved success in multiple fields, such as image process-
ing [32], word prediction [36], medical imaging [30], and
edge computing [56, 51].

However, FL is vulnerable to backdoors manipulat-
ing the model towards the targeted behavior on specific
adversary-chosen inputs [24, 4, 6, 47, 50, 11, 33, 39, 19, 31].
The backdoor attack is more difficult to be detected com-
pared with the untargeted poisoning attacks [6, 7, 33, 11, 19]
since it does not affect the regular function of the model and
its gradient is more similar to benign ones [47, 38]. Multi-
ple defenses have been proposed to improve the robustness
of FL, such as the scoring-based methods [17, 8, 53, 41, 10,
55, 16, 29, 2, 20], which leverage a particular metric to dis-
tinguish malicious gradients from the benign ones. Despite
its effectiveness against some backdoors, researchers dis-
covered that well-designed attacks (termed stealthy back-
doors) whose gradients are indistinguishable from benign
ones (through scaling [4, 47] or trigger split [50]) could eas-
ily bypass these defenses. Differential privacy (DP) -based
method [46, 40, 38, 49] builds upon the observation that the
DP method [14], traditionally used against DP attacks, is
also effective against backdoors. By adding Gaussian noise
to the global model, these methods can dilute the impact
of potentially poisoned model updates. Surprisingly, DP-
based methods show great ability in resisting stealthy back-
doors (e.g., Edge-case PGD [47]). Despite its ability to re-
sist the stealthy backdoors, the noises added by the DP sig-
nificantly decrease the overall performance and the conver-
gence speed. In comparison, the distance-based method less

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4652



impacts the global model by aggregating only the benign
gradients. Consequently, a natural question arises: can we
defend the stealthy backdoors without sacrificing the per-
formance of the FL model? To accomplish this, we turn to
the distance-based methods that don’t sacrifice the benign
performance and promote the research question: how can
we successfully leverage distance metrics to discriminate
hostile updates from benign ones?

To this end, we revisit the distance-based defense and
discover two limitations: 1. Euclidean distance (i.e., L2

distance) suffers from the curse of dimensionality. Param-
eters of Neural Networks (NNs) can be viewed as high-
dimensional vectors, and Euclidean distance generally fails
to discriminate between malicious and benign gradients in
high-dimensional space. 2. Single metric takes effect only
against particular attacks with detailed assumptions regard-
ing the malicious gradients. For instance, cosine distance
detects malicious gradients with sizeable angular deviations
while euclidean distance detects malicious gradients with a
large L2 norm scaled by the attacker to impact the global
models. Moreover, backdoor attacks are conducted with
different data and scenarios, resulting in malicious gradi-
ents with various characteristics that a single metric cannot
handle (i.e., both gradients with a large norm and gradients
with sizeable angular deviations exist in one round of aggre-
gation). What’s worse is that the defender has no knowledge
regarding the attacker and the underlying data distributions
due to privacy requirements by FL, which makes detecting
with a single metric even more difficult.

To address the above two problems, we first introduce
the Manhattan distance, which we theoretically prove more
meaningful in high dimensional space than Euclidean dis-
tance. Empirically, with the Manhattan distance, our pro-
posed distance-based defense shows remarkable perfor-
mance against the stealthy backdoors. To cope with gra-
dients with various properties, we leverage multiple met-
rics cooperatively to identify the malicious gradients. We
demonstrate in Section 5.4 and Figure 7 that malicious gra-
dients of some characteristics are better identified by spe-
cific metrics, which justify our motivation. To handle the
different attacks and environments, we further propose to
apply a whitening transformation and generate dynamic
weights to handle the non-IID distribution of participants
and different scales brought by the different distances. Fi-
nally, we compute the score for each submitted gradient and
aggregate only the benign ones based on the scoring. Exten-
sive experiments illustrate that our defense maintains a high
model performance and robustness simultaneously, which
has never been achieved before. At a high level, we sum-
marize the main contributions of this paper as follows:

• We present a novel defense with multi-metrics to adap-
tively identify backdoors, which is applicable in a
generic adversary model without predefined assump-

tions over the attack strategy or data distribution.

• We show that by introducing the Manhattan distance,
our defense alleviates the “meaningfulness” problem
of Euclidean distance in high dimensions. By utilizing
multiple metrics with dynamic weighting, our defense
can resist backdoor attacks under a wide range of at-
tack settings and data distributions.

• We empirically evaluate our method on various
datasets and different attack settings. By showing that
our defense maintains both high robustness and benign
performance under the stealthy backdoors that previ-
ously have not been successfully defended, we demon-
strate the effectiveness of our approach.

2. Related work
Backdoor Attacks on Federated Learning. FL enables

multiple clients collaboratively train a model without local
data exchange. In an FL system, clients update the local
model with private data and submit the parameters to the
server for aggregation. Given a total of N participants, each
with n(i) samples. In each round t, the server randomly
selects K clients to participate. FedAvg [35] is a widely-
adopted FL algorithm, which can be formulated as:

wt = wt−1 + η ·
∑K

i=1 n
(i)∆w

(i)
t∑K

i=1 n
(i)

(1)

where wt is the global model parameters at round t, ∆w
(i)
t

is the local model updates from the client i in round t, and
η is the global model learning rate.

Empirical studies from Bagdasaryan et al. [4] demon-
strate that FedAvg [35] is vulnerable to backdoor attacks
since FL has no authority over local data and the training
process due to privacy concerns. The model replacement
attack [4] successfully injects a backdoor into the global
model by the single-shot attack. Some well-designed at-
tacks strategically target the weakness of the defenses, such
as the PGD attack [47] scaling and projecting the gradients,
or the DBA attack [50] splitting the triggers before upload-
ing them. Moreover, the Edge-case PGD attack [47] mod-
ifies the poisoned data and model. Undoubtedly, these at-
tacks present a tremendous challenge to the security of the
FL system.

Defense Against the Backdoor Attack. Various meth-
ods to defend against backdoor attacks improve the robust-
ness and security of FL. In general, we can divide these
methods into two categories. The first type of defense
strategies tries to distinguish malicious gradients from be-
nign ones by classifying or scoring with the assumption that
benign and malicious gradients show distinct differences in
the vector space [17, 8, 53, 41, 10, 55, 16, 29, 2, 20]. Krum
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and Multi-Krum [8] select the gradient with the smallest
Euclidean norm from the others to aggregate and update
the global model at each round. Foolsgold [17] assumes
that the gradients of attackers are always consistent and dis-
tinguishes them by the Cosine similarity between historical
updates. Trimmed Mean and Median [53] remove a frac-
tion of the gradients with maximum and minimum values
and then take the median value on each dimension of the
remaining gradients as the parameters of the global model.
RFA [41] leverages the geometric median of the gradients
to keep the aggregated model close to the benign model and
away from the backdoor one. The strength lies in that, if
successful, the gradients of attackers are excluded from the
aggregation process, which solves the core and fundamental
problem of defending the attack.

However, the above methods take effect only under par-
ticular attacks since they make detailed assumptions about
the attack or the data distributions. Foolsgold [17] as-
sumes the gradients of attackers are consistent while be-
nign gradients from Non-IID data differ. Krum [8] assumes
that the data of benign clients is similar under IID settings
and excludes abnormal malicious ones. These predefined
assumptions limit the applicability of these defenses un-
der various attacks and data distributions and can be eas-
ily bypassed by elaborate attacks. For example, PGD [47]
breaks any Euclidean-based defense (e.g. Krum and Multi-
Krum) by scaling the norm to a small value. Other meth-
ods, such as FLTrust [10], use a root dataset and aggregate
only those gradients with large cosine similarities with the
root dataset. FedInv [55] inverts the gradients into dummy
datasets and then identifies the malicious gradient by com-
paring these dummy datasets. These methods are limited
as well. FLTrust cannot defend against backdoors crafted
on edge cases( e.g. Edge-case PGD) since they appear less
often and are probably not in the root dataset. Inverting the
gradients into dummy datasets violates the privacy require-
ment of FL. Essentially, this method can be characterized as
another type of attack [3, 21].

The other category of defenses [46, 40, 38, 49] builds
upon the observation that the differential privacy (DP)
method [14], traditionally used against DP attacks is also
effective against backdoor attacks. Earlier studies [4] have
demonstrated that clipping and adding noise (typically used
in DP) can resist backdoor attacks without any specific as-
sumptions over the data distribution. Following these find-
ings, Weak-DP [46] clips the norm and adds the Gaus-
sian noise to the global model for mitigating the backdoors.
RLR [40] and Flame [38] apply the clustering methods be-
fore the DP process. However, the noise added significantly
decreases the performance and the convergence speed of
the FL system. In a nutshell, using DP sacrifices regular
functionality for robustness. Despite its deficiency, the DP-
based method has been the only method that has taken effect

against stealthy backdoors [38].

3. Methodology
We first provide the threat model in Section 3.1 and then

detail our design of the proposed defense method. Our goal
is to design an efficient defense with the following prop-
erties: (1) Effectiveness: To prevent the adversary from
achieving its hostile purpose, we aim to design a defense
that identifies as many malicious updates as possible to
eliminate its impact on the global model. (2) Performance:
Benign performance of the global model must be preserved
to maintain its utility. (3) Independence: The defense must
be applicable to generic adversary models under different
data distributions and attack strategies. Our defense consists
of three major components: defining and calculating the
gradient feature, computing the dynamic weight and score
for each update, and aggregating the benign gradients with
the score computed, as shown in Figure 1 and Algorithm 1.

3.1. Threat Model

Adversarial goals. Adversary aims to alter the behavior
of the model on some specific examples with no negative
impact on the benign performance. We consider the ad-
versary effective if this is met. In addition, the adversary
will make their attack as covert as possible, e.g., by scaling
down. Formally, adversaryAmanipulates the global model
G to the poisoned model G′. For any inputs x, we have the
outputs below:

G′ (x) =

{
l′ ̸= G(x) ∀x ∈ DA
G(x) ∀x /∈ DA

(2)

where DA denotes the poisoned dataset belonging to adver-
sary A, and l′ denotes the specific label modified by adver-
sary A of the input x.

Adversarial capabilities. This paper assumes the white-
box setting with full knowledge of aggregation operations,
including potential defenses. Also, adversaries can freely
alter the parameters in the local training, ensure participa-
tion in each round and compromise less than 50% of total
FL clients. However, the adversary cannot control any pro-
cess or parameter executed in the aggregator.

3.2. Feature of gradient

The essential logic of distance-based defense involves
defining some indicative metric that can well discriminate
the malicious gradients from the benign ones and removes
the hostile updates from the aggregation. Consequently, the
core problem becomes how to define a metric that identifies
the characteristics of hostile gradients. For instance, NDC
[46] utilizes the length of the gradient (i.e. Euclidean dis-
tance) while FoolGold [17] leverages Cosine similarity to
measure the difference between updates.
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Figure 1: The overview of our defense process. Step 1 and step 2 are our core contributions.
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Y
Gradient Feature:

Figure 2: Demonstration of feature of gradient on two di-
mensional space. w0 is initial global model w0 and wi is
the local model of the i-th client. wi − w0 is the gradient
and we define the feature of gradient as (|x+ y|, l, θ).

Manhattan Distance. However, the Euclidean distance
suffers from the so-called “curse of dimensionality” [48],
which renders distance metrics less sensitive in high dimen-
sional space, especially in the case of Euclidean distance.
Theorem 1 uses Dmaxk

d−Dmink
d

Dmink
d

to indicate the “meaning-
fulness” of a distance referred as the Relative Contrast.
It demonstrates that the distance metric is meaningless
in high-dimensional space because as dimensionality in-
creases, the distance between the nearest and the furthest
neighbor approximates to be the same.

Theorem 1 (Beyer et. al.[5] The curse of dimensionality)

If lim
d→∞

var

(
∥Xd∥k

E [∥Xd∥k]

)
= 0, then

Dmaxk
d −Dmink

d

Dminkd
→p 0,

where d denotes the dimensionality of the data space, E [X]
and var [X] denotes the expected value and variance of a

random variable X , Dmaxk
d and Dmink

d means the far-
thest/nearest distance of the N points to the origin using
the distance metric Lk.

To find out which distance metric is more meaningful
in high-dimensional space, we size up the relation between
the dimension d and the distance Lk. We have Lemma 1,
which shows that Dmaxk

d − Dmink
d increases at the ratio

of d(1/k)−(1/2).

Lemma 1 (Hinneburg et.al.[22]) Let F be an arbitrary
distribution of two points and the distance function ∥ · ∥
be an Lk metric. Then,

lim
d→∞

E

[
Dmaxk

d −Dmink
d

d(1/k)−(1/2)

]
= Ck,

where Ck is some constant dependent on k.

Subsequently, we use the value of Dmaxk
d − Dmink

d as
a criterion to evaluate the ability of a particular metric to
discriminate different vectors in high dimensional space.

Proposition 1 Let Md = Dmax1
d − Dmin1

d reflect the
discriminating ability of Manhattan distance and Ud =
Dmax2

d −Dmin2
d reflect the discriminating ability of Eu-

clidean distance. Then,

lim
d→∞

E

[
Md

Ud · d
1
2

]
= C ′.

where C ′ is a constant. Proof see in Appendix C.

Proposition 1 shows that Md and Ud · d
1
2 are infinite of the

same order. Since d
1
2 is also an infinite value, Md towers

above Ud, suggesting that Manhattan can discriminate more
than the Euclidean distance in high-dimension space. Given
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this, we conclude that the Manhattan distance is better than
the Euclidean metric, withstanding the curse of dimension-
ality, which chimes in with the previous experiment [1, 37].
The parameters of neural networks can be viewed as a typi-
cal high-dimensional space, especially when the number of
parameters increases as the trend in deep learning applica-
tions [9, 44, 42, 15, 34, 54, 43]. In light of this and The-
orem 1, we argue that Euclidean distance is insufficient to
discriminate between malicious and benign gradients. With
Proposition 1, we introduce the Manhattan distance metric
to describe the characteristics of gradients which captures
the difference in high dimensional space better.

Multiple Metrics as Feature of Gradient. Another
problem that we identify as discussed in Section 1 is that
current methods conduct defense on a single metric basis.
With only one metric, a sophisticated attacker could effort-
lessly bypass them with a well-designed gradient. For in-
stance, PGD attack [47] manage to break the defense based
on Euclidean distances by clipping the gradient norm to
a small value. Moreover, attackers conduct attacks under
different environments and data distributions, leading to
malicious gradients with diverse characteristics that a sin-
gle metric cannot handle. To this end, we propose mul-
tiple metrics to cooperatively identify the malicious gra-
dient by defining the feature of gradient as the angle by
the Cosine similarity, length by the Euclidean distances,
and its Manhattan norm by the Manhattan distance, namely,
x = (xMan, xEul, xCosine). Here, xMan denotes the Man-
hattan distance, xEul denotes the Euclidean distance and
xCosine denotes the Cosine similarity. Figure 2 provides
a schematic diagram of the gradient feature. We compute
the gradient feature xMan, xEul, and xCosine of the i-th
client of each round as follows: x

(i)
Man = ∥wi −w0∥1,

x
(i)
Eul = ∥wi −w0∥2, x(i)

Cosine =
⟨w0wi⟩

∥w0∥·∥wi∥ , where w0 de-
notes the global model before federated training and wi de-
notes the i-th client’s local model after training, ∥·∥1 means
the L1 norm of a vector, ∥·∥2 means the L2 norm of a vec-
tor, ⟨·, ·⟩ and represents inner product. After defining the
feature of gradient, we utilize it for malicious identifica-
tion. The goal is to identify the outlier among the gradients.
We use the sum of the distance between each gradient as the
indicator. Formally, we define it as Equation 3.

x′(i) = (

K∑
j,j ̸=i

|x(i)
Man − x

(j)
Man|,

K∑
j,j ̸=i

|x(i)
Eul − x

(j)
Eul|,

K∑
j,j ̸=i

|x(i)
Cosine − x

(j)
Cosine|),

(3)

3.3. Dynamic Weighting Through Whitening

After defining the feature of gradient and indicator, we
now provide an approach to score each gradient. Two fac-

tors are taken into account when considering an efficient
way to turn the indicator into a unified score that works un-
der various data distributions and attacks.

• Different scales of the three distance metrics are the
first obstacle before utilizing these metrics collabora-
tively. Since each metric is correlated, a novel regular-
ization is required instead of the usual normalization
by the maximum value.

• Different data distributions (e.g. different degrees of
non-IID) render the gradients of both malicious and
benign clients different. Thus, dynamic weighting is
required to cope with various environments and attacks
to achieve a universal defense.

Considering the above factors, we propose first to project
the value of the metrics in the feature of gradient to its cor-
responding principal axis by applying a whitening process:

δ(i) =

√
x′(i)⊤Σ−1x′(i). (4)

where Σ is the the covariance matrix of X =
[x′(1)x′(2) · · ·x′(K)]⊤. Since we need to calculate the in-
verse of the covariance matrix Σ, the number of samples
must be larger than the number of features, i.e., K > 3.
Please notice that the inverse of the covariance matrix is cal-
culated based on the selected gradients, which will change
the weights of the features dynamically depending on the
feature distribution, hence ”dynamic weighting”. With such
a dynamic weight, our method can better adapt to different
environments and resist various attacks.

3.4. Aggregation of Benign Gradients

After obtaining the score of each gradient, we aggregate
the gradients with high scoring. A higher score indicates
that the gradient is less divergent among all. After the se-
lection of ”benign” gradients, we can aggregate them with
any existing aggregation methods (e.g. Averaging of gradi-
ents). We follow [35] and perform standard FedAvg on the
”benign” gradients. A detailed analysis of aggregation of
benign gradients is in Appendix A.1.

4. Experiment Setup
We will first introduce the settings and then the objective

of our experiments.
Datasets. We conduct our experiments on multiple

datasets, including two visual datasets, CIFAR-10 [27] and
EMNIST [12]. We also experiment on other datasets to
prove the generalization ability, including CINIC10 [13],
LOAN [25] and Sentiment140 [18] as follows:

• CIFAR-10 dataset [27] is a vision classification
dataset containing 50, 000 training samples and
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Algorithm 1 Our aggregation algorithm
Input: Total number of clients in each round K, models of

clients w(1),w(2), ...,w(K), last global model w0,fraction
selected to aggregation p, global learning rate η, size of the
i− th client dataset n(i)

Output: Global model w∗

1: for i ∈ {1, 2, ...,K} do ▷ compute the gradients
features

2: x
(i)
Man ← ∥w0 −wi∥1

3: x
(i)
Eul ← ∥w0 −wi∥2

4: x
(i)
Cos ←

⟨w0,wi⟩
∥w0∥·∥wi∥

5: x(i) ← (x
(i)
Man, x

(i)
Eul, x

(i)
Cos)

6: end for
7: for i, j ∈ {1, 2, ...,K} do ▷ compute the sum of the

distance be- tween each gradient
8: x′(i)

Man ←
∑K

j,j ̸=i|x
(i)
Man − x

(j)
Man|

9: x′(i)
Eul ←

∑K
j,j ̸=i|x

(i)
Eul − x

(j)
Eul|

10: x′(i)
Cos ←

∑K
j,j ̸=i|x

(i)
Cos − x

(j)
Cos|

11: x′(i) ← (x′(i)
Man, x

′(i)
Eul, x

′(i)
Cos)

12: end for
13: X ← [x′(1),x′(2), ...,x′(K)

]⊤

14: Σ← the Covariance of X ▷ compute the adaptive
weight matrix in this round

15: for i ∈ {1, 2, ...,K} do
16: δ(i) ←

√
x′(i)⊤ · Σ−1 · x′(i) ▷ dynamically

compute the divergency
17: end for
18: Remove the K ·(1−p) models with the high divergency

δ(i), remaining models as B
19: w∗ ← w0 + η ·

∑
i∈B n(i)·(w(i)−w0)∑

i∈B n(i)

10, 000 testing samples with ten classes. To simulate
the FL environment, we set the a of the Dirichlet dis-
tribution to be 0.5, representing a non-IID distribution.
Smaller a means a larger degree of non-IID.

• EMNIST dataset [12] is a digit classification dataset
consisting of 280, 000 real-world handwritten images
of digits from 0 to 9. We also set the degree of non-IID
to be a = 0.5.

• CINIC10 [13] has a total of 270,000 images, 4.5 times
that of CIFAR-10, which is constructed from two dif-
ferent sources: ImageNet and CIFAR-10. We set the
non-IID degree as a = 0.5.

• Lending Club Loan dataset (LOAN) [25] contains
financial information such as loan information and
credit scores for loan status prediction. There are
2,260,668 samples with a total of 9 classes. To sim-
ulate a more realistic situation, we divide the data by
US states, where each state represents one client. We

set the non-IID parameter a = 0.9.
• Sentiment140 [18] is a publicly available English

Twitter sentiment classification dataset containing 1.6
million tweets, of which 800,000 are for training, and
the other 800,000 are for testing. Each tweet in the
dataset is labeled with a sentiment polarity (positive,
neutral, or negative).

Models. Different models are used on different datasets
to demonstrate the generality of our approach. A 9-layer
VGG style network (VGG-9) [45] is trained on the CIFAR-
10. On the EMNIST, we train LeNet-5 model [28]. We train
the LSTM model [23] for Sentiment140 and a network with
three fully-connected layers for LOAN.

Backdoor Attacks. We implement both pixel-pattern
and semantic backdoors. To make the attack more challeng-
ing, we use the multiple-shot attack instead of the single-
shot. The following are the attack methods we use:

• Model Replacement Attack [4]: Malicious clients
generate backdoor gradients during their local training.
Attackers scale up their gradients to ensure that the ma-
licious model will replace the global model. Usually,
the scaling factor is N/K.;

• DBA Attack [50]: DBA decomposes a global trigger
pattern into separate local patterns and embeds them
into the training sets of different attackers, resulting in
a more negligible difference between benign and back-
door gradients;

• PGD Attack [47]: To bypass the Euclidean-based
defense, PGD Attack projects the model parameter
within the ball centered around the global model;

• Edge-case PGD Attack [47]: Attackers have a set of
edge-case samples and some benign samples as their
poisoned datasets. Edge-case samples are unlikely to
exist in the benign training set. Thus, the benign gradi-
ents cannot dilute the backdoor. We launch this attack
in the form of PGD. The Edge-case PGD attack is so
stealthy that most defenses cannot defend against it.

Evaluation. We leverage the following two metrics for
evaluating the effectiveness of our defense:

• Backdoor Accuracy (BA) indicates whether the at-
tacker succeeds. It shows the accuracy of the model
on the backdoor task. The attackers aim to maximize
this metric, and the lower the BA, the more efficient
the defense.

• Main Task Accuracy (MA) is the accuracy on the
main task. The overall objective of all participants in
an FL system is to maximize MA. The benign clients
maximize the model performance, while the attackers
seek to be stealthy and maintain MA. Thus, the defense
should not cause a significant drop in MA, which we
report to demonstrate that our defense does not affect
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the functionality of the FL system. We report all BA
and MA values in percentages.

Hyperparameters are detailed in Appendix B.
Objectives of Experiments. Firstly, we aim to illustrate

the effectiveness of our proposed defense under different at-
tacks by comparing it with the current and previous state-of-
the-art defenses. Secondly, we demonstrate that the perfor-
mance of our defense is consistent under different scenarios
(e.g., different degrees of non-IID a and different attack fre-
quencies). Thirdly, we figure out the reason for our defense
works through the ablation study in Section 5.4.

5. Experiment Results

5.1. Robustness against Different Attacks and Com-
parison with SOTA

We first demonstrate the robustness of our approach un-
der different attacks and then compare our methods with the
state-of-the-art defense methods such as Krum [8], Multi-
Krum [8], Foolsgold [17], RFA [41], Weak-DP [46], and
Flame [38] in Table 1. All the defenses except RFA and
Weak-DP successfully defended against the model replace-
ment attack since RFA and Weak-DP still incorporate some
malicious gradient into the global model. Our defense
achieves the lowest BA on both datasets(0.56% and 0.00%)
with little impact on the MA. Under the DBA attack, Multi-
Krum almost has no effect. Flame and our method also de-
teriorate because 40% of the participants in each round are
malicious, which significantly impacts the method of select-
ing multiple clients for aggregation. Although Krum and
Foolsgold successfully defend against the DBA attack, they
also negatively affect the overall performance of the global
model. Our defense can reduce the BA to less than 10%
without affecting the MA.

PGD attack is much stealthier than the above two which
Krum, RFA, and Multi-Krum fail to detect. Moreover, once
they select the wrong gradient for aggregation, the global
model is replaced, leading to a worse BA than FedAvg.
Ours and Flame achieve the best effect of 0.56% and 0.00%
on the two datasets, respectively. Edge-case PGD is the
hardest of all since it is both stealthy and effective since it at-
tacks with edge-case samples and projects the gradient back
to the L2 norm ball. All the previous defenses have limited
effect on this attack. Flame reduces the BA to 5.12%. How-
ever, Flame suffers from a 6% drop on MA, which is a result
of adding noise. In comparison, ours achieves a much lower
BA of 3.06% with almost no impact on MA.

On EMNIST, we also achieve better defense compared
to up-to-date methods. Remarkably, we achieve 0.0% BA
under both PGD and Edge-case PGD attacks meaning that
we defend entirely against these two adversaries. We also
achieve similar performance without sacrificing the benign

performance against model replacement and DBA. To pro-
vide an overall comparison with previous methods, we fol-
low [52] and design an improved version of the ranking
score for each defense with respect to baseline FedAvg.
We use the percentage of improvement over the baseline to
score and compute it on MA/BA respectively, formally as
KMA/BA−BMA/BA

BMA/BA
where K denotes some methods and B de-

notes baseline. Adding up (scoreMA − scoreBA) across
all attacks produces the ranking score for each defense. As
shown in the last column of Table 1, we show that our
method obtains the highest ranking score with almost 400%
better than the baseline and outperforms the second-best
Flame by around 0.5. We detail the ranking score in Ap-
pendix D.
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Figure 3: MA(%) and BA(%) of various defenses under
Edge-case PGD attack.

We show the MA and BA along the training process of
the seven defenses under the Edge-case PGD attack in Fig-
ure 3. Only our method and Flame successfully resist the
attack during the entire training process, and Flame also
dampens the MA. The disadvantage of our approach is that
the convergence speed is slightly slowed down compared to
FedAvg, but it is still much better than the compared de-
fenses, e.g., Krum and Foolsgold.

5.2. Impact of Training Environment

In this section, we demonstrate that our defense is in-
variant to the different training environments, i.e. degrees
of non-IID, and attack frequency.

Impact of Different Degrees of Non-IID. As mentioned
abundantly in Section 3.3, the different data distributions
contribute to one of the hardest problems in distance-based
defense. Thus, to illustrate the effectiveness of our method,
we demonstrate that our defense is invariant to the different
degrees of non-IID. The experiment is conducted with the
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Table 1: Robustness of our approach compared to the SOTA defenses for various challenging attacks.

Dataset Defense Model Replacement [4] DBA [50] PGD [47] Edge-case PGD [47] Ranking Score ↑
MA ↑ BA ↓ MA ↑ BA ↓ MA ↑ BA ↓ MA ↑ BA ↓

C
IF

A
R

10

FedAvg [35] 86.95 64.80 79.23 90.44 87.04 14.44 87.14 55.10 0
RFA [41] 86.69(+0.00) 25.56(-0.61) 79.6(+0.00) 57.69(-0.36) 87.1(+0.00) 52.56(+2.64) 86.47(-0.01) 65.31(+0.19) -1.86
Foolsgold [17] 85.71(-0.01) 6.67(-0.90) 77.56(-0.02) 3.43(-0.96) 84.92(-0.02) 14.44(+0.00) 85.72(-0.02) 45.41(-0.18) +1.96
Krum [8] 82.17(-0.05) 6.11(-0.91) 78.18(-0.01) 6.01(-0.93) 82.32(-0.05) 66.67(+3.62) 81.23(-0.07) 59.18(+0.07) -2.04
Multi-Krum [8] 86.55(+0.00) 1.67(-0.97) 79.33(0.00) 91.39(+0.01) 86.52(-0.01) 17.78(+0.23) 87.4(+0.00) 60.2(+0.09) +0.63
Weak-DP [46] 74.41(-0.14) 46.11(-0.29) 10.00(-0.87) 0.00(-1.00) 73.61(-0.15) 12.78(-0.11) 73.84(-0.15) 53.06(-0.04) +0.12
Flame [38] 80.58(-0.07) 0.56(-0.99) 76.78(-0.03) 37.24(-0.59) 81.24(-0.07) 0.56(-0.96) 81.41(-0.07) 5.12(-0.91) +3.21

Ours 86.34(-0.01) 0.56(-0.99) 79.61(+0.00) 9.98(-0.89) 86.44(-0.01) 0.56(-0.96) 86.86(+0.00) 3.06(-0.94) +3.77

E
M

N
IS

T

FedAvg [35] 99.54 96.00 97.68 94.13 99.55 10.00 99.37 96.00 0
RFA [41] 99.57(+0.00) 6.00(-0.94) 97.87(+0.00) 1.39(-0.99) 99.32(+0.00) 4.00(-0.60) 99.29(+0.00) 97.00(+0.01) +2.51
Foolsgold [17] 96.42(-0.03) 98.00(+0.02) 97.24(+0.00) 0.64(-0.99) 99.07(+0.00) 94.00(+8.40) 99.13(+0.00) 98.00(+0.02) -7.49
Krum [8] 99.22(+0.00) 0.00(-1.00) 97.7(+0.00) 0.56(-0.99) 99.12(+0.00) 1.00(-0.90) 99.14(+0.00) 12.00(-0.88) +3.76
Multi-Krum [8] 99.58(+0.00) 0.00(-1.00) 97.85(+0.00) 47.43(-0.50) 99.54(+0.00) 0.00(-1.00) 99.57(+0.00) 84.00(-0.13) +2.63
Weak-DP [46] 99.37(+0.00) 86.00(-0.10) 10.00(-0.90) 0.00(-1.00) 99.41(+0.00) 14.00(+0.40) 99.39(+0.00) 89.00(-0.07) -0.12
Flame [38] 99.39(+0.00) 0.00(-1.00) 97.12(-0.01) 17.38(-0.82) 99.39(+0.00) 0.00(-1.00) 99.44(+0.00) 13.00(-0.86) +3.67

Ours 99.53(+0.00) 0.00(-1.00) 97.39(+0.00) 4.23(-0.96) 99.54(+0.00) 0.00(-1.00) 99.58(+0.00) 0.00(-1.00) +3.95

Edge-case PGD attack. Figure 4 shows that the BA remains
low in all cases. Our method only slightly impacts the MA
with a = 0.2.
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Figure 4: Accuracy(%) of our defense under Edge-case
PGD attack on different degrees of non-IID, which is in-
dicated by the a parameter of the Dirichlet distribution.
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Figure 5: BA(%) of various defenses under the backdoor
attack versus percentage of attackers among all clients.

Impact of Attacker Percentage. We show the BA per-
formance with different ratios of attackers under the back-
door attack in Figure 5, where we compare ours with other
methods. As a result of our rigorous experiment settings,
it usually selects more than K/2 adversarial models in each
round, so all defenses, especially the clustering-based meth-
ods, fail to defend when 50% of clients are compromised.

For EMNIST, BA rises steeply as the simplicity of the
task, achieving high accuracy with few parameters injected.
Nonetheless, our method performs significantly superior to
other methods, and exhibits invariance to the number of at-
tackers encountered.
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Figure 6: Accuracy(%) of our defense under Edge-case
PGD attack versus attack interval.

Impact of Attack Frequency. The frequency of the at-
tack affects the strength and persistence of the attack. We
demonstrate that our defense is invariant to the frequency of
attack in Figure 6 where we show that our defense achieves
consistently low BA under all attack intervals. Since the
other defenses cannot resist the edge-case PGD with the
minimum frequency(attack interval of 10), we do not plot
their results.

5.3. Generalization to Different Datasets

We experiment on the LOAN and Sentiment140, as
shown in Table 2. Our method achieves high MA and
low BA on both datasets, proving the adaptivity to differ-
ent models and tasks.

5.4. Ablation Study

The above experiments present the remarkable defense
ability of our approach. In this section, we conduct an abla-
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Table 2: Effectiveness of our method against backdoor at-
tack on other types of datasets.

Defense CINIC10 LOAN Sentiment140

MA ↑ BA ↓ MA ↑ BA ↓ MA ↑ BA ↓
FedAvg 80.02 36.22 89.05 61.36 82.59 89.17

Ours 76.24 4.59 88.52 0 81.67 5.83

Table 3: Effectiveness of the metrics in our approach to de-
fending against the various attacks on CIFAR10.

Defenses
Model

Replacement PGD
Edge-case

PGD

MA/BA MA/BA MA/BA

Man 83.86/0.56 83.74/25.56 85.3/64.80
Eul 86.24/0.56 85.52/17.78 87.12/54.08
Cos 84.22/2.22 83.84/30.00 85.38/66.84

Man+Eul 84.09/1.11 84.17/28.63 84.3/67.35
Man+Cosine 85.74/1.67 85.16/23.68 85.86/6.63
Cosine+Eul 86.31/0.56 85.44/16.11 85.14/63.78

Man+Cosine+Eul 86.34/0.56 86.44/0.56 86.86/3.06

tion study to understand the role of each component.
Multi-metrics Identifies the Stealthiest Attacks. We

first conduct an ablation study on the multi-metrics, as
shown in Table 3. We observe the following: 1. All three
metrics perform poorly individually. 2. Manhattan dis-
tance improves the defense ability when combined with the
other metrics. 3. Cosine similarity combined with Man-
hattan distance provides the best defense against the Edge-
case PGD. Given the above observations, we conclude that
multi-metrics adaptively defends against universal back-
doors. The introduced Manhattan metric contributes to the
defense against the stealthiest attack (e.g., Edge-case PGD).
To further demonstrate the claim that a single metric cannot
identify malicious gradients of diverse characteristics, we
show the dominance of each metric under different attacks.
We take the metric as the dominant one with the most con-
siderable contribution to this round’s scoring and plot their
frequency in Figure 7.

Firstly, we show that Manhattan distance contributes to
the defense of PGD and Edge-case PGD, complementing
the Cosine similarity justifying the above observations 2
and 3. We also notice that Euclidean is never dominant
under PGD and Edge-case PGD, consistent with the anal-
ysis that these two attacks bypass L2 norm through projec-
tion back to L2 norm ball. We also notice that Manhattan
distance plays no role under the model replacement attack,
consistent with the above experiment that Manhattan does
not affect the final BA. It is because model replacement at-
tack scales the gradient of the malicious client, making it
susceptible to Cosine and Euclidean distances. Finally, we

conclude that better defense can be achieved if multiple in-
stead of single metrics are utilized since different metrics
dominantly detect different malicious gradients.
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Figure 7: Frequency of dominance of each metric under
different attacks on CIFAR10.

Dynamic Weighting through Whitening Process
Adaptively Adjust the Scoring. We illustrate the effec-
tiveness of our whitening process discussed in Section 3.3
in Table 4 by comparing it with the standard max normal-
ization. BA increases by a large margin if only max nor-
malization is applied, which illustrates that the whitening
process plays an essential role in identifying the malicious
under non-IID distributions. Moreover, we notice the MA
increases as we apply the whitening process, which shows
that it can flexibly identify the benign but different gradients
(due to non-IID) and the true malicious ones.

Table 4: Effectiveness of different weighting methods on
defense against various attacks on CIFAR10.

Model Replacement PGD Edge-case PGD
Weighting MA ↑ BA ↓ MA↑ BA ↓ MA ↑ BA ↓
Max Norm 83.86 0.56 83.74 25.56 84.08 62.24
Whitening 86.34 0.56 86.44 0.56 86.86 3.06

6. Conclusion
Existing defense methods fail to handle backdoor attacks

with malicious updates similar to benign ones, especially
when benign clients possess data of non-independent and
iden tical distribution. In this paper, we propose a novel
adaptive multi-metrics defense method by leveraging multi-
ple metrics with dynamic weighting to defend against back-
door attacks in FL, withstanding a wide range of stealthy
and elaborate attacks. We conduct exhaustive experiments
to evaluate our approach proving its effectiveness over a
wide range of attack settings.
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