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Figure 1: We exploit human collectiveness and correlation in crowds to improve human mesh recovery in large-scale crowded
scenes (more than 50 people).

Abstract

Due to the mutual occlusion, severe scale variation, and
complex spatial distribution, the current multi-person mesh
recovery methods cannot produce accurate absolute body
poses and shapes in large-scale crowded scenes. To ad-
dress the obstacles, we fully exploit crowd features for re-
constructing groups of people from a monocular image. A
novel hypergraph relational reasoning network is proposed
to formulate the complex and high-order relation corre-
lations among individuals and groups in the crowd. We
first extract compact human features and location infor-
mation from the original high-resolution image. By con-
ducting the relational reasoning on the extracted individ-
ual features, the underlying crowd collectiveness and in-
teraction relationship can provide additional group infor-
mation for the reconstruction. Finally, the updated indi-
vidual features and the localization information are used
to regress human meshes in camera coordinates. To facili-
tate the network training, we further build pseudo ground-
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truth on two crowd datasets, which may also promote fu-
ture research on pose estimation and human behavior un-
derstanding in crowded scenes. The experimental results
show that our approach outperforms other baseline meth-
ods both in crowded and common scenarios. The code and
datasets are publicly available at https://github.
com/boycehbz/GroupRec.

1. Introduction
Although immense progress has been made in monocu-

lar multi-person human mesh recovery in recent years, the
existing methods still cannot accurately reconstruct groups
of people from large-scale crowded scenes. The top-down
formulation [16, 38, 29, 34] iteratively predicts each indi-
vidual from tightly cropped image patches, which discards
the interaction relationships and location information in the
original camera coordinates. Alternatively, the bottom-up
formulation [64, 75, 63, 74] parses inter-person interac-
tions with global pixel-level cues and enables its impres-
sive performance on occluded cases. However, bottom-up
methods always fail in large-scale scenes like Fig. 1 since
they require downsampling images to low-resolution (e.g.,
512×512) to satisfy computational constraints.

Recently, a few works have attempted to estimate hu-
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man poses in large-scale crowded scenes. Several tech-
niques like composite fields [41] and occlusion augmenta-
tion [23, 28] in 2D pose estimation are proposed for ad-
dressing the low-resolution inputs. PandaNet [7] further
lifts the root-relative 3D poses from the 2D detections with
an anchor-based representation. Nevertheless, these works
cannot be used to reconstruct absolute body meshes in cam-
era coordinates due to the inherent coupling between depth
and body shape. In addition, the challenges of a huge num-
ber of people, severe mutual occlusions, and complex spa-
tial distribution make the problem far from being solved.

Different from a few people or single-person cases, it
is very common that the crowd in large-scale scenes show
significant interactive and collective motions [79, 52]. As
shown in Fig. 2, the individuals in the same group even have
similar poses. Based on this observation, our key-idea is
to fully exploit the collectiveness and social interaction
in crowds, and promote human mesh recovery in large-
scale scenes with a relational reasoning.

However, the idea faces two technical obstacles. First,
without a compact representation, the limited hardware
memory cannot afford the relational reasoning for a large
number of people. Second, the existing networks can hardly
formulate the complex and high-order correlation among
different individuals and groups in the crowd. To address
the obstacles, we propose a multiscale hypergraph to rep-
resent the individuals and groups in different scales, and
discard the redundant image features in the relational rea-
soning. Specifically, we first detect bounding-boxes [4, 22]
and extract valid human features in the original image. Dif-
ferent from previous top-down methods, we also record
the bounding-box information, which preserves the vital
global location cues [44] to regress humans in absolute cam-
era coordinates. The compact features and corresponding
bounding-boxes depict expressive and high-resolution hu-
man information in the crowd image. Then, a multiscale
hypergraph network is constructed for the relational rea-
soning. Based on the hypergraph structure [21], we rep-
resent the individuals with hypergraph nodes, and the nodes
on the same hyperedge are regarded as a group. Since hu-
man groups in a crowd image have unordered structure, the
connection relationships of hyperedges cannot be defined
with hand-crafted adjacency matrix like previous graph-
based pose estimation methods [9, 15]. We thus introduce
a differentiable optimization to infer the graph topology,
and then assign the individuals with high human feature
similarity to the same group. Subsequently, we initialize
the nodes with individual human features, and the features
for different individuals and groups can pass through the
hypergraph via node-to-hyperedge and hyperedge-to-node
phases. After the relational reasoning, the updated individ-
ual features with group information in the nodes can be uti-
lized to regress the groups of people with absolute positions.

Figure 2: Collective motions are common in human crowd.
In addition, since no existing 3D human dataset is captured
in real large-scale scenes, we further build pseudo ground-
truth on Panda [67] and CrowdPose [42] to relieve the do-
main gap for synthetic data. The datasets may promote fu-
ture research on pose estimation and human behavior un-
derstanding in large-scale scenes. The main contributions
of this work are summarized as follows.

• We reconstruct crowds from single color images and
verify that crowds can provide essential knowledge for
multi-person mesh recovery.

• We propose a hypergraph relational reasoning net-
work to formulate correlations among individuals and
groups, which exploits crowd collectiveness and so-
cial interaction to improve human mesh recovery in
crowded scenes.

• We build pseudo ground-truth on 2 crowd datasets to
promote the research on pose estimation and human
behavior understanding in large-scale crowded scenes.

2. Related Work
2D multi-person pose estimation. 2D multi-person pose
estimation explicitly considers person-person interactions
and occlusions [82], which can be generally divided into
two categories: top-down and bottom-up methods. The
top-down strategy [11, 57, 26, 25] iteratively performs pose
estimation on each individual in the image. The method
achieves high accuracy, but the detection errors in crowded
scenes may result in poor performance [20]. The bottom-up
strategy [59, 31, 33, 40] distinguishes the body parts of dif-
ferent people simultaneously and produces more robust re-
sults in interactive cases. Some representative grouping ap-
proaches like Part Affinity Field [10], Associative Embed-
ding [55], and mid-range offset fields [56] are introduced to
assemble limbs. However, directly applying these methods
in large-scale images (e.g., gigapixel-level [67] and surveil-
lance [17] video) may fail to obtain satisfactory results. The
top-down models discard the interactive cues in the orig-
inal image from the very beginning, while the bottom-up
models confront severe scale variations. Only a few works
attempt to address the challenges of low resolution and mu-
tual occlusions in larger-scale crowd images with synthesis
data [19, 23], composite fields [41] and association mech-
anism [42]. Nevertheless, all of them do not utilize rela-
tionships among individuals like pose similarity and crowd
collectiveness [79] in the pose estimation.
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3D multi-person pose and shape reconstruction. 3D
multi-person pose estimation [53, 61, 51, 18, 60] directly
regresses joint positions from images, which faces inherent
depth ambiguity. To obtain correct depth order in camera-
centric coordinate, compressed volumetric heatmap [18],
ordinal relation [66], camera prior knowledge [53, 50, 27],
and root depth map [77, 35, 46, 12, 68] are proposed for
absolute pose prediction. Due to the inherent shape-depth
coupling, the multi-person shape reconstruction is more
ambiguous than pure pose estimation. The absolute posi-
tion may not be available [63, 16], or the estimation re-
quires additional ground plane constraints [73, 65]. Some
works [74, 29] can regress translations with 2D poses and
focal length, but the strategy is strongly affected by the
accuracy of 2D poses and predicted body shapes. Other
works utilize 6D pose estimation [54], point-based repre-
sentation [75], bird’s-eye-view-based representation [64],
and depth ordering-aware loss [34, 38] to address the ob-
stacles. However, these solutions in multi-person mesh re-
covery cannot easily be applied to large-scale scenes due
to the low resolution and computational constraints. Re-
cently, Crowd3D [69] estimates SMPL maps for cropped
patches, and relies on a calibrated ground plane to combine
the results in global coordinates. In this work, we incor-
porate group features and location information [44] in the
network inference, and supervise 3D humans in the original
camera coordinate system. Unlike the recent relation-aware
work [39], our method explicitly considers the group-wise
relations with crowd collectiveness, producing more accu-
rate results for the occluded people in crowded scenes.

Crowd analysis. Crowd analysis has broad applications in
visual surveillance, social behavior understanding, density
measurement, and abnormal activity detection. The earli-
est work in crowd analysis is found in crowd counting [24],
which counts individuals [78] or approximates the density
of the crowd [47, 62]. Other works further exploit the in-
teractions within crowds for behavior understanding. The
underlying relationships among people are utilized in activ-
ity recognition [30], dominant motion extraction [14], and
trajectory prediction [71, 70]. Nevertheless, previous works
in crowd analysis always adopt simplified models (e.g., par-
ticle system [5]) to represent the crowd, which discards
a lot of human details. In this work, we recover multi-
person meshes with absolute positions from a monocular
crowd image. To address the occlusions and interactions in
crowds, we exploit the crowd collectiveness [79, 52], which
indicates the degree of individuals acting as a union in col-
lective motion, and formulate the complex and high-order
relation correlation with a hypergraph relational reasoning
network. The reconstructed high-fidelity 3D human pro-
vides more information to describe the crowd, which may
promote future research on human behavior understanding.

3. Method

Our method reconstructs groups of people from a large-
scale crowd image. The compact human features are first
extracted for each individual (Sec. 3.2). Then, a hypergraph
relational reasoning network is constructed to fully exploit
the collectiveness and interaction relationship among indi-
viduals and groups in the crowd (Sec. 3.3). Finally, the
group features can compensate for insufficient individual
information to regress the 3D crowd with accurate body
poses and shapes (Sec. 3.4).

3.1. Preliminaries

Representation. We adopt SMPL model [48] with 6D
rotation representation [81] to represent the 3D human. The
model consists of pose θ ∈ R144, shape β ∈ R10 and trans-
lation t ∈ R3 parameters. Finally, the output of our network
for N people are {θ1, β1, t1, · · · , θN , βN , tN} ∈ RN×157.

Hypergraph neural networks (HGNN). HGNN can
formulate complex and high-order data correlation with
high efficiency through its hypergraph structure [21]. It can
be defined as G = (V, E), where V and E are the set of
nodes and hyperedges. Different from the simple graph, a
hyperedge connects two or more nodes, where the connec-
tion relationships are defined by an adjacency matrix H. In
this work, we adopt the nodes and hyperedges to represent
individuals and groups, and exploit the crowd collectiveness
and interactions with a hypergraph relational reasoning.

3.2. Individual feature extraction

We first extract human features from the crowd image for
the relational reasoning. Since each person occupies only a
small proportion of pixels in a large-scale image [67], it is
nontrivial to extract valid and high-quality human features
from such inputs. The previous bottom-up methods directly
rescale the original image for network input, which results
in extremely low resolution and then leads to poor recon-
struction performance. Consequently, we predict bounding-
boxes for each human and then extract valid image features
from the original image as input.

Specifically, we first predict all bounding-boxes [22]
from the large image. To preserve the localization informa-
tion, we transform the box coordinates to bn = 1

f [cx, cy, d],
where n ∈ [1, . . . , N ]. N is the number of people in the
image. (cx, cy) is the box location relative to the original
image center, and d is its size. f is the focal length of the
original image. With the predicted bounding-boxes, the im-
age patches for all people I2D = {In} on the original im-
age can be cropped. We then extract the high-resolution
human image features qn ∈ Rm from the image patch with
a backbone network.
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Figure 3: Overview of our method. We first extract location information b and high-resolution human features q from the
original crowd image. Then, we infer the graph topology according to crowd collectiveness, and then represent the individuals
and groups in the crowd with nodes V and hyperedges E of multiscale hypergraphs G. By conducting the hypergraph relational
reasoning, we exploit the group features to provide additional cues to regress a crowd of people in camera coordinates.

3.3. Hypergraph relational reasoning

Due to the occlusions and depth ambiguity, the individ-
ual features are insufficient to regress an accurate 3D hu-
man in crowded scenes. However, crowds always show
significant collective and interactive motions. The group
information can provide additional knowledge for the re-
construction. The core of our work is to exploit the col-
lectiveness and interaction relationship in crowds for multi-
person mesh recovery. We propose a novel multiscale hy-
pergraph network to formulate complex correlations among
individuals and groups. Mathematically, the individuals
are denoted as nodes V = {v1, v2, · · · , vN}, and the
groups at scale s are represented with hyperedges E(s) ={
e
(s)
1 , e

(s)
2 , · · · , e(s)Ms

}
. The nodes on the same hyperedge

belong to the same group, and a larger s indicates a larger
group size. Hence, the multiscale hypergraph are defined as
G =

{
G(0),G(1), . . .G(S)

}
, where G(s) =

(
V, E(s)

)
.

Previous graph-based relational reasoning methods [3,
43] only focus on modeling the pair-wise interaction, which
ignores the group-wise correlations. In contrast, our hy-
pergraph explicitly forms group structures to exploit human
collectiveness and considers the group’s influence on indi-
viduals. Besides, the multiscale design also alleviates the
over-smoothing in conventional graph networks [80].

Collectiveness based group inference. To define the
connection relationship of hyperedges, adjacency matrices
H(s) ∈ R|V|×|E(s)| are also required. They show the topol-
ogy of hypergraph, where H(s)

i,j = 1 if the ith node is in-

cluded in the jth hyperedge, otherwise H(s)
i,j = 0. Existing

graph-based pose estimation [9, 15] builds hand-crafted ad-
jacency matrices with known human skeletal and symmet-
rical relationships. However, human groups are unordered
structures without intuitive interpretations. Thus, we infer
the topology with an implicit human pose similarity.

The people with similar human features vn = [qn, bn] ∈

Rm+3 are assigned to the same group. We first compute
an affinity matrix A ∈ RN×N based on the human feature
correlation:

Ai,j = v⊤i vj/
(
∥vi∥2 ∥vj∥2

)
. (1)

The element of Ai,j measures the pose similarity and spatial
proximity between ith and jth individuals. For G(0), we
consider the common pair-wise relationship. The two nodes
with the largest affinity scores will be connected, leading
to adjacency matrix H(0) and hyperedge E(0). The other
hypergraphs consider group-wise relationships. Assuming
the group size at sth scale is K(s), we then find the K(s) ×
K(s) high-density submatrices in A. The K(s) nodes in the
group have the highest correlation, and we use a hyperedge
e
(s)
i at scale s to represent the group. The hyperedge can be

obtained with:

e
(s)
i = argmax

Ω⊆V
∥AΩ,Ω∥1,1

s.t. |Ω| = K(s), vi ∈ Ω, i = 1, . . . , N,
(2)

where ∥ · ∥1,1 is the sum of the absolute values of all el-
ements. The optimization can be efficiently solved with a
greedy algorithm. For each node vi, we find other K(s) − 1
nodes to form a group. Therefore, the hypergraph at scale
s has N hyperedges. That is, the hypergraphs at different
scales have the same number of nodes. Finally, we obtain all
H =

{
H(0),H(1), . . .H(S)

}
to construct the hypergraphs.

Group message passing Once the graph topologies are
constructed, we initialize the node with the individual fea-
tures vn. Different from simple graphs, we can directly
exploit group-wise correlations of all group members with
the hypergraph structure, and then use the group features to
compensate for each individual. To achieve the group mes-
sage passing, we design node-to-hyperedge and hyperedge-
to-node phases. In the node-to-hyperedge phase, the in-
dividual features in the nodes are first aggregated to hy-
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peredge to obtain group features. Then, the group fea-
tures are used to update the corresponding individual in the
hyperedge-to-node phase. We iteratively execute the two
phases at different scales. Finally, the individual features at
all scales are concatenated to decode the human pose pa-
rameters.

Specifically, the group features are obtained with the fol-
lowing function in the node-to-hyperedge phase:

ei = ciFe

 ∑
vj∈ei

λjvj

 , (3)

where λj = Fλ

(
vj ,

∑
vm∈ei

vm
)
, which denotes the con-

tribution of the jth node to the ith group. ci is the group
collectiveness factor:

ci = σ

Fc

 ∑
vj∈ei

(vj − v̄i)

 , (4)

where σ(·) is a sigmoid function, and v̄i is the average fea-
tures of the ith group. Fe, Fλ, and Fc are learnable func-
tions implemented by MLPs.

In the hyperedge-to-node phase, the aggregated group
features on all associated hyperedges are used to update the
individual features.

vi = Fv

vi,
∑
ej∈Ei

ej

 , (5)

where Ei = {ej | vi ∈ ej} denotes the all hyperedges that
associate with vi. Fv is also implemented with MLPs.

The node-to-hyperedge and hyperedge-to-node phases
are simultaneously repeated for several times in all scales
of hypergraphs. The final individual features on the nodes
contain group features and interaction information, which
promote more reasonable spatial distribution. Furthermore,
the group with high pose similarity can provide additional
gesture knowledge for the occluded person to infer a plau-
sible 3D mesh.

3.4. Human parameter regression

After the relational reasoning, the node features on dif-
ferent scales are concatenated with the bounding-box infor-
mation to obtain the final individual representation v′i =[
v
(0)
i , v

(1)
i , · · · , v(S)

i , bi

]
, which is used to regress the pose

θ, shape β and camera [fc, tx, ty] parameters. The predicted
camera can be further transformed into absolute translation:

tX = tx +
2cx
dfc

, tY = ty +
2cy
dfc

, tZ =
2f

dfc
, (6)

where t = [tX , tY , tZ ] is the translation. More details on
the transformation can refer to [44]. Finally, the network
output all SMPl parameters {θ1, β1, t1, · · · , θN , βN , tN} ∈
RN×157 for N people.

3.5. Network training

The network is trained in an end-to-end manner with the
following loss function:

L = λ1Lreproj + λ2Lsmpl + λ3Ljoint + λ4Lcrowd, (7)

where λ1 = 5.0, λ2 = 5.0, λ3 = 5.0, and λ4 = 0.1 are loss
weights. With the transformation in Equ. (6), we can su-
pervise the reprojection error in the original image, which
enforces the network to regress reasonable absolute trans-
lations. Specifically, we add the translation t to the SMPL
3D joint positions J3D and calculate the loss with following
function:

Lreproj =
1

N

N∑
n=1

∥Π(Jn
3D + tn)− ˆJn

2D∥22, (8)

where Π projects the 3D joints to 2D image with camera pa-
rameters, and ˆJn

2D is ground-truth 2D pose for nth person.
The SMPL parameters and 3D joint positions are also used
for supervision:

Lsmpl =
1

N

N∑
n=1

∥[βn, θn]− [β̂n, θ̂n]∥22. (9)

Ljoint =
1

N

N∑
n=1

∥Jn
3D − ˆJn

3D∥22. (10)

The β̂, θ̂, and ˆJ3D are ground-truth annotations. Although
the network can produce accurate body poses with the
above constraints, the absolute positions may be totally un-
reasonable due to the depth-shape coupling. For example,
a short person close to the camera can get a similar re-
projection error as a tall person in the distance. Previous
works [73, 50] rely on a known ground plane to decouple
the ambiguities. However, the ground plane is not always
available in a single in-the-wild crowd image. Thus, we fur-
ther exploit the crowd cues and propose a crowd constraint
to promote more accurate absolute position prediction.

Lcrowd = std(Jroot · l), (11)

where std(·) denotes standard deviation, and Jroot ∈ RN×3

is the root positions of all people in the image. (·) means dot
product.

l =
1

N

N∑
n=1

Jn
top − Jn

bottom

∥Jn
top − Jn

bottom∥
. (12)

Jtop is 3D keypoint on the head, and Jbottom is the middle
point of two ankle keypoints. The constraint penalizes un-
reasonable absolute positions and enforces more accurate
body shapes. We found the constraint can be pretty robust
in common crowded scenes with an appropriate loss weight.
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Figure 4: Our method produces accurate body poses and reasonable spatial distribution on Internet images [2].

4. Pseudo ground-truth for crowd data

Although 3D human data have seen prosperous develop-
ments in recent years, the crowd data in large-scale scenes is
still scarce due to the requirement of complex hardware [67]
and expensive annotation [32]. To promote the research on
crowd analysis, recent works [19, 58] produce photorealis-
tic crowd data using game engines, rendering techniques or
generative models [76]. However, a large domain gap ex-
ists between synthetic and real data since the illumination
conditions and human textures are more complex in the real
world. In addition, the natural human behavior in crowds
can hardly be simulated in virtual environments.

Therefore, we follow the previous pseudo annotator [37]
to build 3D pseudo ground-truth (GT) for Panda [67] and
CrowdPose [42]. CrowdPose is a crowd dataset for 2D pose
estimation, and Panda is the first gigapixel-level human
dataset, which captures real-world crowds ranging from 80
to 900 people. Since Panda does not contain 2D poses, we
first predict the 2D keypoints with ViTPose [72]. To gener-
ate 3D annotations, we first train our hypergraph relational
reasoning network on common crowd data. Once the net-
work is trained, we then estimate initial SMPL parameters
from the 2D poses. Due to the domain gap, the initial values
may not be accurate enough. We thus finetune the network
parameters to adapt to 2D poses via reprojection error in
Equ. (8). Like [37], we optimize the network parameters
for several iterations and finally output the estimated results
as the pseudo GT. Additional constraints are also used in
the finetuning. The detailed procedure can be found in the
Sup. Mat.

We also manually filter the incorrect estimations in the

camera view. Different from previous pseudo annota-
tors [37, 44], the adaption explicitly considers the crowd
interactions and constraints in multi-person scenarios. The
3D models in the final dataset have plausible ordinal rela-
tionships and are consistent with image observations. The
experiment in Tab. 1 shows that crowd reconstruction meth-
ods can gain significant improvement with the proposed
datasets.

5. Experiments

5.1. Datasets

We use 3 benchmarks, Panoptic [36], GigaCrowd [1],
and JTA [19], to evaluate our method. Panoptic is a multi-
person dataset captured in an indoor environment, and we
use it for evaluation only. We follow previous work [64] to
train the network on Human3.6M [32], MuCo-3DHP [51],
MSCOCO [45], MPII [6] and CrowdPose [42]. To further
evaluate our method on more complex crowded scenes, we
use GigaCrowd [1], a large-scale 3D crowd reconstruction
dataset containing 3D root positions and 2D poses, as a
benchmark. For the evaluation on GigaCrowd, besides the
mentioned training data, the proposed Panda dataset is also
used for training. On JTA dataset, we use its standard train
and test split protocols to conduct the experiments. More
details about each dataset can be found in Sup. Mat.

5.2. Metrics

We follow [69] to use the Procrustes-aligned pair-wise
percentual distance similarity (PA-PPDS) [69] and object
keypoint similarity (OKS) [45] to evaluate the absolute po-
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Figure 5: Qualitative comparison with BEV [64] on GigaCrowd. Our method is more robust to scale variations and occlu-
sions. In addition, the proposed approach can also reconstruct crowds with more reasonable ordinal relationships.

Method PA-PPDS↑ OKS↑ PCOD↑ RP↓
CRMH [34] 63.29 64.52 75.28 0.17
BEV [64] 71.37 71.96 83.27 0.23
Ours 82.21 77.31 88.21 0.17
CRMH w/o Panda [34] 52.16 56.31 60.48 0.17
BEV w/o Panda [64] 55.41 62.47 62.38 0.22
Ours w/o Panda 67.22 70.80 71.42 0.17

Table 1: Comparisons on GigaCrowd. ”w/o Panda”
means the model is trained without our Panda dataset.

sitions and pose accuracy on GigaCrowd. In addition, the
percentage of correct ordinal depth (PCOD) [77] is adopted
to measure the correctness of ordinal depth relations. The
redundant punishment (RP) [69] is also used to penalize re-
dundant detections. On other datasets, we adopt the 3D ex-
tension of the Percentage of Correct Keypoints (3DPCK)
and the Mean per Joint Position Error (MPJPE) to measure
the joint accuracy. To consider the missing detections, we
follow [12, 18] to use F1-score with thresholds 0.4m, 0.8m,
and 1.2m for evaluating absolute positions. The detailed
definition of metrics can be found in Sup. Mat.

5.3. Comparison to state-of-the-art methods

We conduct several experiments to demonstrate the ef-
fectiveness of our method on large-scale crowded scenes.
Tab. 1 shows a quantitative comparison on GigaCrowd with
CRMH and BEV. CRMH and BEV are the current SOTA
methods that can obtain absolute body meshes in large-scale
scenes. For a fair comparison, we train the baseline meth-
ods with the same data. Since rescaling the full image for
BEV input causes extremely low resolution, we use BEV’s
released code to crop the original image and combine the
predicted results from each patch. Due to the crowd con-
straints, our method can obtain more reasonable absolute
positions and thus results in better performance in terms of
PA-PPDS and PCOD. Since some crowds in GigaCrowd
dataset show significant collectiveness, our method bene-
fits from the group features and can outperform previous
top-down and bottom-up approaches by a large margin on
OKS. Besides, we found that the models trained on com-
mon multi-person data do not generalize well on large im-

Method 3DPCKall ↑ F1(0.4)↑ F1(0.8)↑ F1(1.2)↑
PandaNet [7] 83.2 – – –
Benzine et al. [8] 43.9 – – –
LoCO [18] – 50.82 64.76 70.44
Cheng et al. [13] – 57.22 68.51 72.86
Cheng et al. [12] – 58.15 69.32 74.19
Ours 86.7 59.59 70.81 76.67

Table 2: Comparisons on JTA. Due to the lack of SMPL
annotations, we regress joint positions on this dataset for
fair comparisons. Our method outperforms previous joint
regression baseline methods. ”–” means the results are not
available.

Method Haggling↓ Mafia↓ Ultim↓ Pizza↓ Mean↓
Zanfir et al. [73] 140.0 165.9 150.7 156.0 153.4
MubyNet [74] 141.4 152.3 145.0 162.5 150.3
CRMH [34] 129.6 133.5 153.0 156.7 143.2
BMP [75] 120.4 132.7 140.9 147.5 135.4
Pose2UV [29] 104.2 136.0 123.2 151.0 128.6
ROMP [63] 110.8 122.8 141.6 137.6 128.2
3DCrowdNet [16] 109.6 135.9 129.8 135.6 127.3
Luvizon et al. [49] 93.6 – 133.8 145.9 –
BEV [64] 90.7 103.7 113.1 125.2 109.5
Ours 86.8 107.8 110.7 121.1 106.6

Table 3: Comparison with multi-person mesh recovery
methods on Panoptic dataset. All methods do not use the
data from Panoptic for training. The results for baseline
methods are directly obtained from the original papers. The
numbers are MPJPE.
ages due to severe scale variations and complex spatial dis-
tributions. The comparisons between rows 1-3 and rows 4-6
in Tab. 1 reveal that the proposed Panda dataset can close
the gap between common and large-scale scenarios. In
Fig. 5, although BEV estimates the crowd from the cropped
images, it still misses some people in the distance. Besides,
BEV fails to estimate correct absolute positions in large-
scale scenes, while our method produces a reasonable spa-
tial distribution with the relational reasoning.

With the group information and crowd constraints, our
method also produces accurate body meshes and reasonable
absolute positions on Internet images in Fig. 4. For the im-
ages that show significant collectiveness, the occluded peo-
ple can obtain additional knowledge from others in the same
group and result in appropriate poses.
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RGB Individual Ours OursIndividual

Figure 6: ”Individual” removes the relational reasoning.
Our method can produce reasonable absolute positions and
accurate body poses with the relational reasoning.

Method CRMH [34] BEV [64] Individual Ours

FPS 21.9 24.1 26.4 23.2

Table 4: Running time on Panoptic with an RTX 3090 GPU.
All top-down methods use YOLOX [22] for detection.

We further conduct a comparison with previous pose es-
timation methods on JTA dataset in Tab. 2. PandaNet [7] is
the first 3D pose estimation framework designed for large-
scale scenes. Due to our top-down strategy, our method
outperforms PandaNet in terms of 3DPCK. We also follow
recent works [12, 18] to use F1-score to validate the effec-
tiveness of our method for absolute multi-person position
prediction. For a fair comparison, we also regress 3D joint
positions on this dataset. Our method constrains individuals
with group features and still outperforms these works on all
metrics.

To demonstrate the performance of our work on common
multi-person scenarios, we compare existing multi-person
mesh recovery works on Panoptic. Panoptic is captured in
an indoor studio with designed activities, and the people in
the image have a high pose similarity. Although the dataset
has different camera views and severe mutual occlusions,
our method still works well under this challenging setting.
In Tab. 3, the Pizza sequence contains truncations, object
and human occlusions, and our method also outperforms
other baseline methods. The results show that the group
features can compensate for insufficient individual informa-
tion to address the occlusion, which reveals the importance
of group features in multi-person mesh recovery.

5.4. Ablation study

Relational reasoning. We investigate the importance
of group features for multi-person mesh recovery. In
Tab. 5 (Individual), we adopt the network without rela-
tional reasoning and directly regress human meshes from
individual features via the head network in Sec. 3.4, which
shows a significant decrease. In Fig. 6, all individuals are
improved from the collectiveness with the relational rea-
soning. Then, we replace the proposed hypergraph net-
work with a transformer for the relational reasoning (Trans-
former). The transformer-based network is similar to [39],
which receives individual features for N people and out-
puts corresponding SMPL parameters. It implicitly learns
human correlations with attention mechanisms and ignores
group-wise relations. Conversely, our hypergraph relational

Method PA-PPDS↑ OKS↑ Params↓
Individual 70.20 69.44 26.47M
Transformer 76.47 70.28 29.24M
hypergraph-(1) 75.71 71.06 27.15M
hypergraph-(1,3) 78.11 73.30 29.17M
hypergraph-(1,3,5) 82.21 77.31 29.18M
hypergraph-(1,2,3,5) 82.61 76.78 30.19M
hypergraph-(1,3,5,11) 81.84 75.41 30.19M
hypergraph-(1,3,5) w/o Lcrowd 77.07 73.41 29.18M

Table 5: Ablation studies on GigaCrowd. ”Transformer”
uses a transformer-based network for relational reasoning.
”(1,3,5)” means 3 scales with group sizes of 1, 3, and 5.
reasoning explicitly forms groups with crowd collectiveness
and considers the group behavior’s influence, which leads to
superior performance.

Group size and scales. We analyze the impact of group
size and scales in Tab. 5. The performance increases with
more scales at first and then becomes stable. In addition,
the people in large groups (e.g., 11) in most cases have
unobvious crowd collectiveness, and the group information
may introduce noises in the reasoning.

Crowd constraints. Due to the depth ambiguity, re-
gressing reasonable absolute positions from monocular im-
age is an ill-posed problem. The PA-PPDS in Tab. 5 shows
that the ambiguity can be greatly alleviated by incorporating
the crowd constraints in the loss function.

Computational complexity. We compare the running
time and network parameters in Tab. 4 and Tab. 5. The re-
sults show that the relational reasoning is compact, and our
method has competitive running efficiency.

6. Limitation and future work
Although our method can reconstruct human groups in

large-scale crowd images, there still exist some limitations.
First, when the number of people in an image exceeds the
maximum, the relational reasoning can only afford a limited
number of individuals at a time. Although we can still si-
multaneously estimate all people in the image by assigning
them to different samples of a batch, an interactive pair may
be assigned to different samples and can not provide addi-
tional cues for each other. In the future, the network can
be improved to aggregate similar body poses in the same
node to get better compatibility. Second, we may require to
decrease the crowd constraint loss weight for some special
cases where people are in different planes (e.g., audience
in a theater). A too-large crowd loss weight may drag the
people to the same plane. To address this problem, to incor-
porate the scene semantics for future crowd reconstruction
might be a feasible solution.

7. Conclusion
In this work, we propose a novel hypergraph relational

reasoning network to exploit crowd features for reconstruct-
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ing groups of people from a large-scale monocular image.
To construct the graph topology, crowd collectiveness is
used to infer the connection relationships. The proposed
network explicitly considers both pair-wise and group-wise
relations with a compact individual representation, and pro-
motes accurate body pose and absolute position predic-
tion. In addition, we also build pseudo ground-truth for
two crowd datasets. The proposed datasets may promote
future research on pose estimation and human behavior un-
derstanding in crowded scenes.
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