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Abstract

The self-attention mechanism (SAM) is widely used in
various fields of artificial intelligence and has successfully
boosted the performance of different models. However, cur-
rent explanations of this mechanism are mainly based on in-
tuitions and experiences, while there still lacks direct mod-
eling for how the SAM helps performance. To mitigate this
issue, in this paper, based on the dynamical system perspec-
tive of the residual neural network, we first show that the in-
trinsic stiffness phenomenon (SP) in the high-precision so-
lution of ordinary differential equations (ODEs) also widely
exists in high-performance neural networks (NN). Thus the
ability of NN to measure SP at the feature level is necessary
to obtain high performance and is an important factor in the
difficulty of training NN. Similar to the adaptive step-size
method which is effective in solving stiff ODEs, we show
that the SAM is also a stiffness-aware step size adaptor that
can enhance the model’s representational ability to measure
intrinsic SP by refining the estimation of stiffness informa-
tion and generating adaptive attention values, which pro-
vides a new understanding about why and how the SAM can
benefit the model performance. This novel perspective can
also explain the lottery ticket hypothesis in SAM, design new
quantitative metrics of representational ability, and inspire
a new theoretic-inspired approach, StepNet. Extensive ex-
periments on several popular benchmarks demonstrate that
StepNet can extract fine-grained stiffness information and
measure SP accurately, leading to significant improvements
in various visual tasks.

1. Introduction

The self-attention mechanism (SAM) [41, 15, 16, 9, 43,
4] is widely used in various artificial intelligence fields
and has successfully improved the models’ performance in
a number of vision tasks, including image classification
[22, 60, 47], object detection [37, 56, 25], instance seg-
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Figure 1. The feature trajectory w/ and w/o attention. The GT
trajectory, generated by the best-performing model, possesses the
inherent property of SP. The SAM, acting as a stiffness-aware
step size adaptor, effectively extracts stiffness information and
has a strong representational ability to measure the inherent SP
to closely approach a GT trajectory, leading to high performance.

mentation [8, 52], image super-resolution [64, 46, 49], etc.
However, most previous works lay emphasis on designing
a new self-attention method, and intuitively or heuristically
exploring how the self-attention mechanism helps the per-
formance. For example, many popular channel attention
methods [22, 47, 56, 35] consider the attention values as
the soft weight of the channels, leading to the importance
reassignment of feature maps. These soft weights can also
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be seen as a gate mechanism [60, 28] to control the for-
ward transmission of information flow, which are usually
applied to neural network pruning and neural architecture
search [40, 65]. Another viewpoint [38] argues that the self-
attention mechanism can help to regulate the noise by en-
hancing instance-specific information to obtain a better reg-
ularization effect. Moreover, the receptive field [62, 63, 67]
and long-range dependency [69, 17, 57] are also used to un-
derstand the role of self-attention. Although these explana-
tions describe the behavior of self-attention mechanisms to
some extent, the relationship between the SAM and model
performance is still ambiguous.

To establish a more specific modeling between the SAM
and model performance, in this paper, we rethink the role
of the SAM with the dynamical systems perspective of neu-
ral networks (NN) with residual blocks. Specifically, we
first define the stiffness phenomenon (SP) and ground truth
(GT) trajectory of NNs at the feature level based on stiffness
metrics and the ground truth solution of ODEs.

Next, we find that the intrinsic SP observed in the
high-precision solutions of ODEs is also prevalent in high-
performance NNs. This observation implies that the repre-
sentational ability of NN to measure SP at the feature level
is necessary to obtain high performance, as shown in Fig
1, which is hindering the learning of neural networks, and
advanced training strategies are needed to achieve this re-
quirement.

Similar to the adaptive step-size method which is ef-
fective in solving stiff ODEs, we theoretically and empiri-
cally demonstrate that the SAM is a stiffness-aware step size
adaptor that can refine the estimation of stiffness informa-
tion and generate the adaptive attention values to measure
intrinsic SP for approaching a GT trajectory which has the
upper bound performance, leading to high accuracy. This
novel perspective can also explain the lottery ticket hypoth-
esis in SAM (LTH4SA) [27], design new quantitative met-
rics of representational ability, and inspire a new theoretic-
inspired approach, StepNet. Extensive experiments on sev-
eral popular benchmarks show the effectiveness of StepNet
in various vision tasks, including image classification and
object detection. Our contributions are summarized as fol-
lows:

1. We propose a novel understanding of the SAM and re-
veal a close connection between the SAMs and the nu-
merical solution of stiff ODEs, which is an effective
explanation for understanding why and how the SAM
enhances the performance of NNs.

2. Based on our novel views of SAMs, we explain the
lottery ticket hypothesis in SAM, design new quantita-
tive metrics of representational ability, and propose a
powerful theoretic-inspired approach, StepNet.

2. The Stiffness and Self-attention Mechanism
In this section, we first introduce the concepts of stiff-

ness in ODEs, SAM, and the dynamical system perspective
for the NN with residual blocks. Then we further explore
the SP in NNs and connect it with the SAM, which finally
motivates us to propose a theoretic inspire approach.

2.1. Preliminaries and Related Works

2.1.1 The Dynamical System Perspective of NN

There are many well-known network architectures that have
the residual blocks, like ResNet [18], UNet [23], Trans-
former [41], ResNeXt [61], etc. The residual blocks in one
stage can be written as

xt+1 = xt + f(xt; θt), (1)

where xt ∈ Rd is the input of NN f(·; θt) with the
learnable parameters θt in tth block. Many recent works
[3, 42, 5, 59, 51, 68, 44] have established an insightful
connection between residual blocks and dynamical sys-
tems, which reveal that the residual blocks can be inter-
preted as one step of a forward numerical method, i.e.,
ut+1 = ut + S(ut; f ,∆t) ·∆t, for the numerical solution
of an ODE as Eq.(2):

du(t)/dt = f [u(t)], u(0) = c0, (2)

where c0 represents an initial condition, which corresponds
to the input of the residual network. u(t) ≡ ut is a time-
dependent d-dimensional state, which is used to describe
the input feature xt in tth block. The output of neural net-
work f(·; θt) in tth block can be regarded as an integration
S(ut; f ,∆t) with step size ∆t using a numerical method S,
e.g., the Forward Euler method [53].

2.1.2 The Stiffness in ODEs

In mathematics, a stiff equation is a differential equation
[33], like Eq.(2), for which the numerical methods for solv-
ing that equation are numerically unstable, leading to poor
prediction. For most ODEs, the stiffness is universal and
intrinsic [34]. When the solution is unstable, we can use
a fine step size ∆t instead of a coarse step size to ob-
tain finer differentiation, resulting in high-precision integra-
tion. Therefore, utilizing an adaptive step size based on a
specific numerical method is the most straightforward way
to solve stiffness ODEs, like the improvement from Forth
order Runge–Kutta method [2] to Runge–Kutta–Fehlberg
method [58, 14]. However, there is no universally accepted
mathematical definition of stiffness [34], but the main idea
is that the equation includes some terms that can lead to
rapid variation in the solution.

Therefore, to quantify the stiffness to a certain extent,
some simplified indexes are proposed, like the versatile
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stiffness index (SI) [1] ζSI and the stiffness-aware index
(SAI) [39, 24] ζSAI. Specifically, for the dynamics of the
state u(t) in Eq.(2), the SI at the state u(t) ≡ ut is de-
fined by ζSI(u

t) = max(|Re(λi)|), where λi is the eigen-
value of the Jacobian matrix at ut for the right-hand side of
Eq.(2) [1]. The maximum eigenvalue (real part) of the Ja-
cobian matrix represents the speed of the change for the so-
lution. In some data-driven settings, the analytic expression
of the right-hand side of Eq.(2), i.e., f , is unknown. In this
case, the SAI is considered since the SAI does not require f
to be known, and the SAI can be viewed as the proxy of the
SI [39]. For the discrete observation data {uti}Ni−1 from a
given system, the SAI at uti can be defined as

ζSAI(u
ti) =

1

∥uti∥2
∥∥uti+1 − uti

ti+1 − ti

∥∥
2
. (3)

From Eq.(3), the norm of the finite difference uti+1−uti

ti+1−ti
can

approximate the instantaneous change of the unknown func-
tion f at uti . The term 1/∥uti∥2 is used to eliminate the
bias of the magnitude of {uti}Ni−1 in different coordinate
systems. If we only want to measure the relative stiffness
information, such as the rank of the stiffness, we can use a
simplified SAI, i.e., ζ̃SAI(u

ti) = uti+1−uti

ti+1−ti
, as a new kind

of stiffness information measurement for analysis [39].

2.2. Measuring Stiffness Phenomenon (SP) in NN

In this section, based on the definition of stiffness in
ODEs and the dynamical systems view of residual blocks
presented in Section 2.1, we define the stiffness phe-
nomenon (SP) in the feature trajectory [x1, x2, ...] generated
by Eq.(1) from two perspectives. Firstly, (1) from a local
perspective, we propose the Neural Stiffness Index (NSI)
using the idea of Eq.(3) and Definition 1 to measure the SP
based on the change of adjacent features. NSI can be used
to visualize the SP qualitatively and intuitively. However,
according to the related works about stiff ODEs [24, 39],
NSI needs to be greater than a certain threshold, i.e., the lo-
cal change needs to be large enough, to be considered that
the SP happens. However, the threshold varies in different
scenarios, and it is hard to pick a unified threshold [39].

Therefore, secondly, (2) from a global perspective, we
propose a versatile metric called Total Neural Stiffness
(TNS) using NSI to quantitatively measure the stiffness
phenomenon of any neural networks on a given dataset. The
TNS defined in Eq.(5) considers all threshold settings, in-
cluding the relative threshold µ(1 + M1) and the absolute
threshold M2, M ∈ R+ × R+. A larger TNS value indi-
cates a more apparent stiffness phenomenon on the feature
trajectory. The convergence of TNS is guaranteed by Theo-
rem 1. Furthermore, from Eq.(4), the calculation of NSI re-
quires the 2-norm of the feature. However, previous works
[36, 29, 13, 30] show that the norm in the first block in each
stage are usually extremely large and sensitive, which may

affect the calculation of Eq.(5). Therefore, we will exclude
these features while measuring TNS.

Definition 1. (Neural Stiffness Index) For the feature tra-
jectories x1, x2, x3..., xL generated by a neural network
with L residual blocks, i.e., xt+1 = xt + f(xt; θt) ·∆t, t =
0, 1, .., L− 1. The Neural Stiffness Index (NSI) at xt is

ζNSI(xt) =
1

∥xt∥2
∥∥xt+1 − xt

∆t

∥∥
2
, (4)

e.g., for NN in Eq.(1), ζNSI(xt) =
∥∥xt+1 − xt

∥∥
2
/∥xt∥2.

Definition 2. (Total Neural Stiffness) In Definition 1, the
feature trajectory has the stiffness ζNSI(xt;M) with degree
M = (M1,M2) when ∃t such that ζNSI(xt) ≥ max(µ(1 +
M1),M2), where µ is the mean of all features’ NSI from
stage S of xt. For input x0 sampled from test distribution
P (x0), the Total Neural Stiffness is

∫∫
M

δ(M)dM, where
δ(M) = Ex0∼P (x0)I∃t,s.t.ζNSI(xt)≥max(µ(1+M1),M2), (5)

and I is the characteristic function, i.e., when ζNSI(xt) not
less than max(µ(1 + M1),M2), I = 1, otherwise, I = 0,
M ∈ R+ × R+.

Theorem 1. For δ(M) defined as Eq.(5) , the TNS∫∫
M

δ(M)dM is convergent. See proof in the appendix.

2.3. The Ground Truth (GT) Trajectory

To explore the properties of the SP in the NN, it is de-
sirable to have a “ground truth” such that we can analyze
the relationship between the properties of the SP and the
model’s performance to propose specific improvements for
the model. Given a dataset D(x, y) and a network A(θ0, s)
with residual blocks, where θ0 is initialization parameters
and s denotes training setting (e.g., learning rate, weight de-
cay, etc.). We consider some feature trajectories whose cor-
responding modelA(θ0, s) have supremum performance as
GT trajectories in Definition 3.

Definition 3. (GT trajectory) For the dataset D(x, y), a
task-oriented performance metrics κ, and a residual neu-
ral network A(θ0, s) with initialization parameters θ0 and
training setting s. After training, there are an infinite num-
ber of feature trajectories [xi1, xi2, ...], i = 1, 2, ...,∞,
from a given input x0 to the corresponding output y0. The
GT trajectories are the feature trajectories whose perfor-
mance of A(θ0, s) on D(x, y) can reach

sup
θ0,s

κ(A(θ0, s),D(x, y)). (6)

First, the GT trajectories introduced in Definition 3 ex-
ist. Let’s consider the non-empty set K whose elements
are the metrics κ under all initialization parameters θ0
and training setting s. Note that the task-oriented perfor-
mance metrics κ are usually bounded in various deep learn-
ing tasks, especially in supervised learning, e.g., the upper
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Figure 2. The quantitative visualization for SP by TNS for different models with residual blocks on CIFAR100 and STL10 datasets.
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Figure 3. The intuitive visualization for SP by NSI in the SENet164 and ResNet164 on CIFAR100 and STL10 datasets.

bound for the metrics of the classification task is 100%, so
κ(A(θ0, s),D(x, y)) < +∞. According to the well-known
theorem [12] that every non-empty subset ⊂ R which has
an upper bound has the supremum, thus the set K has the
supremum, which means the GT trajectories exist.

However, this kind of trajectory given an input x0 may
not be unique, which will be shown in Appendix. More-
over, as mentioned in Section 2.2, the feature trajectory
is data-driven, and the corresponding analytic expression
of the right-hand side of Eq.(2) in a NN is unknown.
Thus it is infeasible to obtain the analytical form of the
GT trajectories, and instead, trajectories from the model
with high enough performance, like some advanced self-

attention networks, can be seen as the proxies to empir-
ically approach the properties of GT trajectories. There-
fore, we take ResNet164 as the backbone and select four
high-performance self-attention networks, i.e., SENet [22],
FCANet [50], ECANet [56], and SRMNet [35], to approx-
imately analyze the properties of GT trajectories. In Fig.2,
we show the TNS for each network with different M1, M2.
For the CIFAR100 and STL10 datasets, from the results
of all high-performance networks in Fig.2, we observe that
the GT trajectories have a significantly large TNS. In other
words, for most inputs, the GT trajectories have the SP. Al-
though the TNS of the original residual neural network is
relatively small, it can still measure the SP to some extent.
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Moreover, as we can empirically observe that SP widely ex-
ists in these high-performance networks, we conjecture that
the existence of SP is an intrinsic property of GT trajec-
tories (More discussions are shown in Section 3.1). Thus
if a NN structure can better estimate the stiffness informa-
tion to measure and capture the SP, e.g.,, with high TNS,
then such a structure can generate feature trajectories that
are closer to the GT trajectories and thus achieve high per-
formance. Otherwise, if a NN structure can not inherently
measure the stiffness information, it may produce large de-
viations between its feature trajectory and the GT trajecto-
ries. Such a deviation will gradually accumulate with the
forward process of NN, leading to poor prediction. Lastly,
in Fig.3, we provide the intuitive visualization of the SP
by NSI in Definition 1. Obviously, on both CIFAR100 and
STL10 datasets, we can observe that the GT trajectory mea-
sured by the SENet has significant and rapid oscillations in
each stage, leading to the SP. The trajectories measured by
“Org” are relatively smooth but also have some oscillations
that are consistent with the observation in Fig.2.

2.4. Self-attention Mechanism (SAM) and Stiffness-
aware Step Size Adaptor

In this section, we introduce the self-attention mecha-
nism (SAM) and reveal the role it plays in improving model
performance based on the dynamical perspective of the neu-
ral networks introduced in the above sections. For the anal-
ysis in the main paper, we use the channel attention neural
networks [22, 56, 28] as an example, and the transformer-
based self-attention models [41, 54] will be discussed in
Appendix. For the channel self-attention networks, they can
be written as follows by comparing with Eq.(1):

x̂t+1 = xt + f(xt; θt)︸ ︷︷ ︸
Feature map

⊗F(f(xt; θt);ϕt)︸ ︷︷ ︸
Attention value

, (7)

where ⊗ is the Hadamard product and F(·;ϕt) is the self-
attention module with learnable parameters ϕt in tth blocks
based on different attention methods. For example, in
SENet, F(·;ϕt) = Wt1(ReLU(Wt2(·))), where Wt1 ∈
Rd×r and Wt2 ∈ Rr×d are learnable matrices, r < d.

Compared with the forward numerical method men-
tioned in Section 2.1.2, the attention value F(f(xt; θt);ϕt)
in Eq.(7) can be referred to as the step size in solving ODEs,
and the original residual neural networks can be rewritten as

xt+1 = xt + f(xt; θt)⊗∆t, (8)

where the step size ∆t = 1. By comparing Eq.(7) and
Eq.(8), we can readily find that the attention value generated
by the SAM exactly serves as an adaptive step size, i.e.,
∆t = F(f(xt; θt);ϕt). Moreover, since the last layers of
various self-attention modules are usually Sigmoid function
or Softmax function, thus the attention values in Eq.(7) are
less than 1, i.e., ∆t = F(f(xt; θt);ϕt) < 1. This implies

that with SAM, we can provide a smaller and more flexible
step size than that from the original residual neural network.
Now we show that the step size generated by the SAM is
also stiffness-aware. As mentioned in Section 2.1.2, we can
use (xt+1 − xt)/∆t to measure the stiffness information in
feature trajectory at xt. Then for the the original residual
neural networks in Eq.(1), we have

f(xt; θt) =
xt+1 − xt

∆t
|∆t=1 ≡ ζ̌NSI(xt), (9)

and hence the f(xt; θt) can be regarded as a kind of coarse
stiffness information with step size ∆t = 1, which is con-
sistent with the discussions of Fig.2 and Fig.3 in Section
2.3. For the SAM, we have

F(f(xt; θt);ϕt) = F(
1

∆t
(xt+1 − xt)|∆t=1︸ ︷︷ ︸

Coarse stiffness information

;ϕt)

= F(ζ̌NSI(xt);ϕt).

(10)

From Eq.(10), we can summarize how the self-attention
module helps the performance of the original residual neu-
ral networks: (1) Capture the stiffness information. the self-
attention module F(·;ϕt) take the accessible and coarse
stiffness information f(xt; θt) from Eq.(9) as input. Then
as shown in Fig.2 and Fig.3, the self-attention module can
refine this coarse information to obtain a finer estimation of
stiffness information; (2) Generate the adaptive step size.
Based on this finer estimation, the module F(·;ϕt) outputs
suitable attention values F(f(xt; θt);ϕt) to adaptively mea-
sure the SP in the neural network, which means the SAM
can enhance the representational ability of NN. For exam-
ple, if the feature trajectory at xt needs to measure a large
NSI, from Eq.(4), the attention value F(f(xt; θt);ϕt) can
be small to get the large ζNSI(xt) =

1
∥xt∥2

∥∥ x̂t+1−xt

F(f(xt;θt);ϕt)

∥∥
2
.

2.5. Theoretic-inspired Approach: StepNet

From Section 2.4 and Eq.(10), we know that the abil-
ity to properly estimate the stiffness information is essential
for the performance of the self-attention module. Thus if we
want to obtain better model performance, we can consider
estimating other accessible and better stiffness information
in the self-attention module. Now we introduce a better self-
attention formulation to capture better stiffness information,
which is motivated by the asymptotic analysis between SI
and SAI as follows. In Section 2.1.2, SAI is used as a proxy
for the versatile index of stiffness (SI) to measure stiffness
information in ODEs for tackling the computational diffi-
culties of SI in data-driven problems. In Theorem 2, we
first show how SAI can approximate the SI.

Theorem 2. For an ODE du(t)/dt = f [u(t)] defined at
Eq.(2), if the Jacobian matrix Jut at ut is a n×n symmetric
real matrix and {λi}ni=1 are its n distinct eigenvalues, and
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Adaptor

a b
Phase 1 (Capture the stiffness information)
 Phase 2 (Generate the adaptive step size)
 The structure of Adaptor

C
onv

Pooling

IEBN

Figure 4. The architecture of StepNet. a, the forward process of StepNet includes two phases. b, the structure of Adaptor. “Conv” is group
convolution, “Pooling” is global average pooling and “IEBN” [38] is the combination of batch normalization and a linear transformation
“IE” from [25]. σ is Sigmoid activation function. More training details are provided in Appendix.

Model
CIFAR10 CIFAR100 STL10

#P(M) top-1 acc. (%) acc. ↑ #P(M) top-1 acc. (%) acc. ↑ #P(M) top-1 acc. (%) acc. ↑

ResNet [18] 1.70 93.35 ± 0.18 - 1.73 74.30 ± 0.30 - 1.70 82.66 ± 1.05 -
+SE [22] 1.91 94.26 ± 0.14 0.91 1.93 75.25 ± 0.31 0.95 1.91 83.96 ± 0.92 1.30
+CBAM [60] 1.92 93.91 ± 0.14 0.56 1.94 74.68 ± 0.22 0.38 1.92 84.11 ± 0.49 1.45
+ECA [56] 1.70 94.15 ± 0.23 0.80 1.73 74.41 ± 0.27 0.11 1.70 83.89 ± 1.21 1.23
+SEM [66] 1.95 94.52 ± 0.11 1.17 1.97 76.49 ± 0.26 2.19 1.95 85.73 ± 0.16 3.07
+SRM [35] 1.74 94.59 ± 0.12 1.24 1.76 75.49 ± 0.31 1.19 1.74 84.73 ± 0.12 2.07
+FCA [50] 1.91 94.66 ± 0.12 1.31 1.93 76.52 ± 0.19 2.21 1.91 85.34 ± 0.25 2.68
+IEBN [38] 1.73 94.70 ± 0.13 1.35 1.75 76.32 ± 0.14 2.02 1.73 85.13 ± 0.04 2.47
+StepNet (Ours) 1.75 95.14 ± 0.2495.14 ± 0.2495.14 ± 0.24 1.791.791.79 1.77 77.04 ± 0.2277.04 ± 0.2277.04 ± 0.22 2.742.742.74 1.75 86.08 ± 0.1186.08 ± 0.1186.08 ± 0.11 3.423.423.42

Table 1. The classification accuracy on CIFAR10, CIFAR100, and STL10. “#P(M)” means the number of parameters (million). Bold and
underline indicate the best results and the second best results, respectively.

Re(λi) < 0, i = 1, 2, ..., n, then

ζSAI(u
t) ≈ ζSI(u

t) ·
√
c+Q[ζSI(ut)], (11)

where c is a constant and Q(·) is a function with respect to
ζSI(u

t) and when ζSI(u
t) is large enough, Q[ζSI(u

t)] con-
verges to a 0. See proof in the appendix.

From Eq.(11) we can see that
√
c+Q[ζSI(ut)] tends

to
√
c when SI is large and then ζSAI(u

t) ∝ ζSI(u
t), i.e.,

ζSAI(u
t) and ζSI(u

t) are positively correlated, which make
the Eq.(9) constructed from SAI provide relatively accu-
rate stiffness information. However, if the SI is not large
enough, the SAI and SI will be nonlinearly related, in other
words, the stiffness information provided by Eq.(9) may not
be precise enough and need further refinement.

Motivated by the above analysis, we propose a novel
self-attention network called StepNet. As discussed in Sec-
tion 2.1.2, the stiffness in the ODE may measure a changing
trend like the rapid variation in solution, which implies that
the stiffness information should be measured by two adja-
cent states. Therefore, for Eq.(10), we use a data-driven
function F̃(xt+1, xt; ϕ̃t) = F̃(xt + f(xt; θt), xt; ϕ̃t) to re-
place F(xt+1−xt;ϕt), such that the adaptive step size gen-
erated in our StepNet is based on the intrinsic relation be-
tween two adjacent states xt+1 and xt to better model the
stiffness information. Thus, the Eq.(7) can be rewritten as
x̂t+1 = xt + f(xt; θt)⊗ F(f(xt; θt);ϕt)

← xt + f(xt; θt)⊗ F̃(xt + f(xt; θt), xt; ϕ̃t).
(12)

From Eq.(12), the calculation of our StepNet has two
phases: (1) In Fig.4 (a), we first estimate a coarse (t+ 1)th

feature map xt+1 = xt+f(xt; θt) by Eq.(1); (2) After that,
the Adaptor F̃(·, ·; ϕ̃t) take both the xt and xt+1 as input
to generate the adaptive attention values, which can better
measure the stiffness information to generate finer step size
for better capturing the SP to enhance the representational
ability of the model and boost the performance. The net-
work architecture of the Adaptor is shown in Fig.4 (b) and
more training details are provided in Appendix.

3. Experiment
In this section, we use several popular vision bench-

marks to verify the effectiveness of the proposed StepNet,
including image classification and object detection. All ex-
periments are verified 5 times with random seeds, and the
average performances with standard deviations are reported.
The experimental settings can be found in Appendix.

Image classification. We compare the proposed Step-
Net with several existing self-attention modules on four
datasets for image classification. These four datasets are
CIFAR10 [32], CIFAR100 [32], STL-10 [11] and Ima-
geNet [55], and the results of these datasets are listed in
Table 1 and 2, which show that the StepNet improves the
accuracy significantly over the original networks and con-
sistently compared with other existing self-attention mod-
ules under different datasets and backbones.

Object detection. We further conduct experiments for
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Model ResNet34-acc. ResNet50-acc.

Org 73.99± 0.04 76.02± 0.09
SE [22] 74.37± 0.10 76.62± 0.02
ECA [56] 74.56± 0.08 77.07± 0.09
CBAM [60] 74.89± 0.11 76.38± 0.10
SRM [35] 74.79± 0.04 76.49± 0.03
FCA [50] 75.08± 0.1975.08± 0.1975.08± 0.19 77.22± 0.15
SGE [37] 74.50± 0.03 77.13± 0.06
StepNet (Ours) 75.01± 0.09 77.52± 0.0477.52± 0.0477.52± 0.04

Table 2. The classification performance on ImageNet. The best
and the second best results of each setting are marked in bold and
italic fonts, respectively.

Model AP AP50 AP75 APS APM APL

ResNet50 36.9 57.5 39.4 22.1 39.6 46.4
+SE [22] 38.3 60.1 41.5 23.0 42.1 49.2
+ECA [56] 38.5 60.4 41.5 23.2 42.2 48.9
+SGE [37] 38.9 60.0 42.042.042.0 23.2 41.9 49.0
+StepNet (Ours) 39.839.839.8 61.261.261.2 41.9 23.823.823.8 43.143.143.1 51.051.051.0

ResNet101 38.9 60.3 41.4 22.1 43.9 50.0
+SE [22] 39.8 61.2 43.4 23.6 44.2 51.1
+ECA [56] 40.4 62.762.762.7 44.544.544.5 24.1 45.1 51.8
+SGE [37] 40.2 61.4 43.2 24.1 44.5 51.2
+StepNet (Ours) 41.941.941.9 62.6 44.4 25.425.425.4 46.846.846.8 53.253.253.2

Table 3. The object detection performance on MS COCO. The best
and the second best results of each setting are marked in bold and
italic fonts, respectively.

object detection tasks on the MS COCO dataset with Faster
R-CNN, and the results are shown in Table 3, where our
StepNet outperforms the baseline models by 2.9% and 3.0%
in terms of AP on ResNet50 and ResNet101, respectively.
Moreover, the StepNet also achieves good enough perfor-
mance improvements in other object detection metrics. All
the results show that our new understanding of the SAM can
effectively help us propose a well design for SAM.

3.1. Ablation Study and Discussions

Now we further explore the property of the StepNet and
the stiffness phenomenon in neural networks.

The structure of StepNet. In Section 2.4 we summa-
rize that the self-attention mechanism can help the model
performance in two ways, i.e., the extraction of stiffness
information and the generation of adaptive step sizes. In
fact, these two ways correspond to (1) the input of the self-
attention module and (2) the design of the module. For (1),
in Table 4, we explore the performance when xt or xt+1

Model CIFAR10 CIFAR100 STL10

Org 93.35± 0.18 74.30± 0.30 82.66± 1.05
F (xt) 94.59± 0.14 76.34± 0.14 84.74± 0.64
F (xt+1) 94.32± 0.23 76.53± 0.04 85.12± 0.54
F (xt+1 − xt) 94.69± 0.33 76.42± 0.10 85.26± 0.72
F (xt+1, xt) (ours) 95.14± 0.24 77.04±0.22 86.08±0.11

Adaptor a 94.39± 0.12 76.19± 0.14 84.21± 0.12
Adaptor b 94.05± 0.11 75.45± 0.12 84.10± 0.24
Adaptor c 94.19± 0.24 75.12± 0.08 84.12± 0.44
Adaptor d 94.92± 0.24 76.83± 0.14 85.62± 0.44

Table 4. The ablation study on the structure of StepNet.

is removed, respectively. The results show that input with
xt and xt+1 simultaneously is necessary to estimate fine
stiffness information as discussed in Section 2.5. Moreover,
F (xt+1−xt) means that we only use the adaptor in StepNet
as the self-attention module following the normal paradigm
without considering the better estimation of stiffness infor-
mation in Eq.(12). Comparing the result of F (xt+1 − xt)
and our F (xt+1, xt), we can see that a finer estimation of
stiffness information like ours is necessary to achieve bet-
ter performance. For (2), as shown in Fig.5, we constructed
four alternative adaptor structures. The experimental results
in Table 4 illustrate that all four alternatives are inferior to
ours. However, the best structure to generate the adaptive
step sizes is still unknown, and in the future, we can still
improve the design of the adaptor, e.g., to better utilize xt

and xt+1 through a neural network effectively.
The property of stiffness phenomenon (SP) and the

LTH4SA. In fact, for any input x0 and its correspond-
ing output y0, the feature trajectory built by a well-trained
residual neural network has two properties: (1) For most
inputs x0, their feature trajectories have SP; (2) For each
trajectory, only a few features can cause SP. Specifically,
for property (1), in Section 2.3, we approximate the GT
trajectories with several advanced self-attention models.
From Fig.2 and Fig.3, we can empirically observe that
for most of the inputs, their feature trajectories have SP.
In the appendix, we provide more visualizations of fea-
ture trajectories using SENet as an example, and these vi-
sualizations also provide empirical evidence for property
(1). For property (2), we define the stiffness proportion
p̂ = 1

LEx0∼P (x0)#{t|ζNSI(xt) ≥ max(µ(1+M1),M2)} to
measure the expected number that how many features from
a feature trajectory have ζNSI(xt;M) with degree M. If
the p̂ of a feature trajectory is close to 100%, it means that
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Figure 6. The stiffness proportion for different models with residual blocks on CIFAR100 and STL10.

this trajectory has many features with large enough NSI.
For Fig.4, we show the corresponding stiffness proportion
in Fig.6. We can observe that for various M1 and M2, most
of the p̂ ≤ 10%, which indicates only a few features in GT
trajectory can cause SP.

Moreover, these two properties are also consistent with
those intrinsic properties in physics dynamical systems. For
instance, the close encounter is an important factor to cause
the SP in the three-body motion. [38] considers 1,000 in-
dependent simulations of three-body trajectories following
[10], where 91.4% of the trajectories contain the close en-
counter, but on average only 4.2% of the time intervals
within the trajectories contain close encounter.

In addition, we identify that these two properties are
closely related to the lottery ticket hypothesis [27] in the
self-attention mechanism (LTH4SA). LTH4SA reveals that
we only need to insert the self-attention module on a small
number of blocks to achieve remarkable improvement for
a NN. According to property (1), for most inputs, their GT
trajectories have SP, and as mentioned in Section 2.4, the
adaptive step size generated by the SAM can improve the
representational ability of NN. Thus the SAM is valid for
most of the inputs. Moreover, property (2) tells us that only
a small part of the features in a feature trajectory can cause
SP, and thus we only need to set the module on a small
number of blocks to measure the SP of the whole trajec-
tory. So if these two properties generally hold, we argue
that LTH4SA may also be an intrinsic property of the SAM.

Why do the GT trajectories have SP? Now we at-
tempt to understand why most GT trajectories have SP,
which can help us design novel methods to boost the perfor-
mance of representation learning. From Eq.(4) and Eq.(9),
we know that for a well-trained residual neural network,
f(xt; θt) provides stiffness information and ζNSI(xt) =
O(∥f(xt; θt)∥2). When NSI is large, ∥f(xt; θt)∥2 is also
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Figure 7. The correlation between the accuracy and TNS.

large, which means that the elements (absolute values) of
the output feature of the neural network f(·; θt) at t-th block
are relatively large. In some previous works [36, 21, 48],
such kinds of features are considered important features
and have major contributions to the model performance. In
other words, a residual network can achieve high perfor-
mance, i.e., it can approximate the GT trajectory, probably
because the network has the ability to learn such important
(stiff) features by the adaptive step sizes in a few blocks. So
we further calculate the rank correlation (kendall correlation
[31] and spearman correlation [45]) between the TNS and
the model performance. The results are presented in Fig.7,
which shows that the performance of the models and their
representational ability to measure the SP are positively cor-
related. Moreover, as the TNS can reflect the ability of the
model to measure the SP, thus the TNS can also be a novel
representational ability metric to evaluate the neural net-
work in practice and has the potential to be used in network
formulation, such as neural architecture search [26, 40], net-
work pruning [36, 20, 19] or other applicaton [6, 7].
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4. Conclusion
In this paper, we bridge the relationship between the self-

attention mechanism (SAM) and the numerical solution of
stiff ordinary differential equations, which reveals that the
SAM is a stiffness-aware step size adaptor that can refine
the estimation of stiffness information and generate suitable
attention values for adaptively measuring the stiffness phe-
nomenon in the neural network (NN) to enhance the repre-
sentational ability of the NN and achieve high performance.
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