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Abstract

Existing machine learning (ML) models are often frag-
ile in open environments because the data distribution fre-
quently shifts. To address this problem, domain general-
ization (DG) aims to explore underlying invariant patterns
for stable prediction across domains. In this work, we first
characterize that this failure of conventional ML models
in DG attributes to an inadequate identification of causal
structures. We further propose a novel invariant Directed
Acyclic Graph (dubbed iDAG) searching framework that
attains an invariant graphical relation as the proxy to the
causality structure from the intrinsic data-generating pro-
cess. To enable tractable computation, iDAG solves a con-
strained optimization objective built on a set of representa-
tive class-conditional prototypes. Additionally, we integrate
a hierarchical contrastive learning module, which poses a
strong effect of clustering, for enhanced prototypes as well
as stabler prediction. Extensive experiments on the syn-
thetic and real-world benchmarks demonstrate that iDAG
outperforms the state-of-the-art approaches, verifying the
superiority of causal structure identification for DG. The
code of iDAG is available at https://github.com/
lccurious/iDAG.

1. Introduction

An imperative goal of deep learning is to learn repre-
sentations that faithfully represent task-oriented semantics
and also generalize to different domains. It is known, how-
ever, that the performance of current models trained by the
Empirical Risk Minimization (ERM) paradigm relies heav-
ily on the i.i.d. assumptions and suffers a dramatic perfor-
mance drop when inferring on Out-Of-Distribution (OOD)
datasets [50]. However, when we deploy our models in the
real world, we have little control over the distribution we
observe; for instance, variables may change in frequency
or new feature combinations may emerge that were not in-
cluded in the training set [21]. In response to this challenge,
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Figure 1. Multiple causally related factors may be present in vi-
sual data, and these factors are structurally organized together and
present a higher level of semantics. However, due to domain di-
versity, the learned color factors in one domain can be useless in
others; the spurious factors that dominate classification in one do-
main can be misleading in others. iDAG seeks to estimate the DAG
which represents the directed causal relations between factors.

Domain Generalization (DG) is proposed to improve per-
formance in OOD inference by learning invariant features
over the source domains that are generalizable to distribu-
tions different from those observed during training [5, 35].

The most substantial challenge of DG is the spurious cor-
relations may mislead the models to cheating classify the
easier-to-fit features rather than true attributes [3]. As we
exemplified in Figure 1, the reasons for such cheating are
two-fold. First, some discriminative features appeared in
training domains, but may disappear in test domains, which
is known as diveristy shift. Second, there exists correla-
tion shift that induces spurious features for predictions, e.g.,
the background of an image can dominate the classification
during training. To cope with these problems, a plethora
of methods have been proposed to learn domain invariant
features, including content-style disentanglement [61], con-
structing auxiliary task as penalty [7], force risks invariant
cross-domains [3, 30]. However, most of them focus on re-
lations from features to labels, and a unified consideration
of modeling the global relationship between features and
semantics remains underexplored.
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With further scrutinizing the key causes above, we find
that both challenges stem from the wrong identification of
causal relations. Indeed, the most substantial concept for
achieving DG [43, 41] is eliciting the causal structure across
domains that invariantly controls the data-generating pro-
cess. To this end, we propose to reformulate DG to a novel
invariant causal graph searching problem. Once obtaining
the directed acyclic graph (DAG) relations between latent
factors, both the spurious correlation and diversity shift can
be naturally recognized and removed by estimation of a
global picture of causal graph among factors and label (see
Figure 1). Despite the promise, it is non-trivial to identify
the DAGs since the feature distribution constantly changes
over the course of training. To date, few efforts have been
made to resolve this.

In this study, we investigate a novel domain general-
ization framework by learning invariant Directed Acyclic
Graph-structured feature relations (dubbed iDAG), which
discovers the intrinsic feature organizations for stable label
prediction. The core of iDAG is a constrained optimization
problem that minimizes the trace of the adjacent matrix ex-
ponential, which guarantees the acyclicity and eliminates
the spurious relations simultaneously. To prevent travel-
ing the whole dataset in every training step, we design a
prototype-based dataset proxy technique for efficient and
stable optimization. Furthermore, iDAG incorporates a hi-
erarchical contrastive learning module that aligns the latent
causal factors to improve the representativeness of the pro-
totypes and achieve stabler prediction. Comprehensive ex-
periments show that iDAG accomplishes the state-of-the-
art performance on various benchmark datasets, and is able
to mitigate both diversity and correlation shifts in a unified
framework.

2. Related Works
Domain Generalization. The goal of domain/out-of-
distribution generalization is to explore the invariant pat-
tern from multi-domain data to mitigate potential domain
shifts when testing. To tackle this problem, a popular
line of DG algorithms [1, 2, 26, 57] resorts to extract
domain-invariant features from backbone, including adver-
sarial learning-based algorithms [1, 2, 14, 26, 57], mixup-
based methods [34, 57], data augmentation [42], feature
alignment [38, 48], gradient alignment [39, 44], invariant
risk minimization [3, 30], prototypical learning [13]. An-
other line of DG algorithms follows the idea of the style
and content disentanglement [49, 17, 61]. Inspired by self-
supervised learning, some methods construct auxiliary tasks
for improving model generalization, such as solving jigsaw
puzzles [7], self-challenging [20]. Recently, Ye et al. [59]
indicate that there can be two forms of domain shifts, i.e.,
diversity shift and the correlation shift in the DG problems,
but most existing works tackle only one of them. In our

work, we show the two shifts can be mitigated in a unified
framework by reformulating the DG to an invariant causal
structure searching problem.

Causality. Without prior knowledge of data-generating
processes, conventional ML models tend to rely upon spu-
rious associations in the training data for prediction. To ad-
dress this issue, structural causal models (SCMs) [37, 3]
have attracted great attention due to their specification of in-
variance under different environments. Given a set of causal
factors, constrained-based methods [45, 46, 62] learn DAG
that represents SCM by applying conditional independent
tests to all predefined variables in the dataset; score-based
methods [11, 15, 60] learn DAG by optimizing a certain
score function. Recently, several studies [16, 33, 47] at-
tempts to model conditional independence between features
and labels as analogous to causal relations in domain adap-
tation [16, 33, 47, 63]. To date, few efforts have been made
to resolve the standard causal graphs in DG. iCaRL [31]
applies a post-hoc pruning strategy on fixed features, but it
requires an invertible VAE architecture and the performance
is far away from practical utilization. In contrast, our work
discovers causal structures from an online graph-searching
perspective that offers superior end-to-end performance.

Contrastive Learning (CL). CL [51, 19] is a represen-
tation learning framework by exploiting and enhancing the
instance similarity and dissimilarity. It has shown promis-
ing results in many research fields like unsupervised learn-
ing [51, 19], weakly-supervised learning [54, 27], disentan-
glement learning [69]. A few works [67, 65] also employ
CL to alleviate the domain shift problem as its superiority
in feature alignment. Different from these studies, our CL
module exploits the clustering effect of CL [54] to enhance
the representativeness of prototypes as well as promote the
invariant DAG identification.

3. Notation and Preliminary
We consider a domain generalization problem withE la-

beled domains {De
L}Ee=1 which together construct entire la-

beled training dataset Dtr = {(xi, yi)}ni=1. Let X be the
sample space, and Y be the label space. Our goal is to train
a model f : X 7→ Y on Dtr which gives a fairly good per-
formance on the inaccessible datasetDte during the training
phase. Define Z ∈ Rd as the feature space. We decompose
the f as f = ω ◦ ϕ that indicate classifier ω : Z 7→ Y
and convolutional backbone ϕ : X 7→ Z respectively; see
Appendix A.1 for a more detailed notation table.

3.1. Investigating the Out-of-Distribution

In this section, we first demonstrate the challenges of DG
by emphasizing diversity shift and correlation shift [59]. To
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begin with, it is necessary to define the latent factors that
control the data-generating process.

Data-generating process. Here, we generalize the previ-
ous setting [3, 31] to show the failure of ordinary ERM on
the OOD problem by revisiting the data-generating process.
Without loss of generality, assume there is a group of in-
jective data-generating functions gy(·), ges(·), ger(·) for each
environment, the underlying factors of observational data
follow the rule:

ye = gy(z
e
y) + ϵy, ze

s = ges(y
e) + ϵes, ze

r = ϵer, (1)

where zy denotes invariant features, ze
s denotes the easier-

to-fit spurious features, ze
r denotes the domain-private fea-

tures, ϵy, ϵes, ϵ
e
r are mutually independent exogenous noises.

Models heavily rely on ze
s and ze

r may lower their empirical
risk in a particular domain, but become extremely fragile to
open environments. It is a well-known domain shift prob-
lem that can be formally attributed to two types of shifts
[59], i.e., diversity shifts and correlation shifts.

Causal Structure Matters in DG. Hence, an ideal model
robust to open environments should discard the tendency of
learning cheating rules using ze

r and ze
s . However, this can

be an almost impossible task when using an ordinary su-
pervised paradigm that only considers inferring ye based on
ze = {zy, ze

s , z
e
r}. An intuitive case would be that ordinary

ERM can only detect strong associations between grass and
cow ze

s ↔ ye, but never learn the concept that because the
images are of cows so there are a lot of grass backgrounds
ye → ze

s . In other words, the notion of ordinary ERM can
only struggle on reducing the total risks by balancing the
weights on naive directions {zy, ze

s , z
e
r} → ye.

The above example illustrates a typical problem in DG,
which is that fragile models are learned on the basis of in-
correct causal relationships. As a consequence of causal
language, a relation between factors is assigned in a partic-
ular direction. In a nutshell, our ultimate goal is to iden-
tify a graphical structure that reflects the spurious relations
ye → ze

s and prunes unstable relations ze
r → ye. Therefore,

the domain invariant features ϕ(x) ≈ ze
y can be identified

for stable learning.

4. Method
In this section, we describe our domain generalization by

learning invariant DAG-structured feature/label relations.
In a nutshell, iDAG comprises two key components. First,
we present a DAG-based feature modeling framework, the
optimal DAG naturally induces the invariant features for
stable prediction (Section 4.1) and contrastive prototype
update respectively (Section 4.4). These two components
work in a reciprocal manner.

4.1. Stable DAG for Domains

To perform causal discovery, our iDAG framework re-
sorts to manipulating the causal relations between the union
set of latent factors and labels. For the sake of notational
simplicity, we will use vi to uniformly represent feature el-
ement zi and label y. Thereafter, we can define a structural
causal model (SCM) on the whole collection of causal fac-
tors V = {vi}di=1 = {zi}di=1 ∪ {y}.

Definition 1. (Domain Invariant DAG). A domain-specific
SCMMe on a set of nodes Ve with joint distribution p(ve),
according to Markov condition, it can be factorized by:

pMe(ve) =
∏
i

pMe(vei |Paei ), (2)

where Paei indicates the set of parents (its direct causes)
for vei in domain e. Each Me specify a graphical repre-
sentation (DAG) Ge = (Ve, Ee), where Ee = {(vei , vej )}
concludes the causal edges such as vei → vej . So the i-th
factor vi can be directly inferred by vi = gi(v) leverage a
generation function gi. An invariant DAG G is defined as
the common structure of all {Ge}Ee=1 across all domains.

Theorem 1. If G matches the common structures of all Ge,
then it discards the directed edges that start from domain-
private factors ve

r and identifies the association vi ↔ vj
into one correct causal direction.

The proof can be found in Appendix C. Theorem 1 in-
dicates that spurious relations can be identified by causal
structure learning, and domain-private factors dependences
can be eliminated via graph consolidation. Distinct from
previous works [68, 3] simply finding the invariant factors,
this framework brings two main advantages. First, the di-
rect/indirect causes of ye correspond to its ancestors on the
DAG, indicating that invariant factors can be found by trac-
ing back from ye. Second, the strict acyclic constraint nat-
urally avoids the spurious correlations ze

s → ye while only
maintaining ye → ze

s when the global optimum of the in-
variant DAG is achieved. In other words, the invariant DAG
identification procedure offers new possibilities for resolv-
ing the key challenges of DG.

4.2. Searching DAG from Features and Labels

To learn invariant DAG, an intuitive strategy is to learn
DAGs for every domain and take their shared subgraph. In
light of the fact that the same data can induce multiple valid
DAGs, a.k.a. Markov equivalence class [32, 10], which are
a set of graphs that satisfy the same conditional indepen-
dence relations, it may prove difficult to extract the sub-
graph under these circumstances. In our iDAG method, we
solve this problem by penalizing a single domain-invariant
graph that explains causal relationships across all domains.
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Figure 2. Illustration of iDAG. The features are used to update the domain-specific prototypes. The prototypes concatenated with labels
are then used to optimize a Directed Acyclic Graph. The shaded green regime on DAG indicates the factors have total effects on label y,
and the invariant features corresponding to these factors are used for final prediction.

In each training step, we would like to search for an
invariant DAG represented by a learnable adjacent matrix
A ∈ Rd+1×d+1 from the currently learned features and la-
bels. To achieve this, we draw inspiration from the graph
learning literature [66, 60] by causal factor reconstruction.
According to the data-generating process in Defintion 1, an
arbitrary factor vi can be inferred based on the entire fac-
tors set {vi}d+1

i=1 . Let v be the concatenation v = [z, y].
For each factor, we first adopt a row Ai for masking out the
non-parent elements and then map the parents to i-th factor
by gi. The reconstruction process is instantiated as follows,

gi(·) :=
{

Aiv for numerical vi,
W (A⊤

i ⊙ v) for categorical vi,
(3)

where⊙ denotes the element-wise product and Ai indicates
the assignment of parents to child. Here W ∈ RC×d is a
weight matrix that maps the parents to the categorical log-
its, which is particularly designed for classification tasks. In
practice, we can simply apply a unified numerical mapping
function for regression tasks. But, since we can also dis-
cretize regression problems, our following discussion con-
centrates on the mixed-learning mode where the features are
numerical and the labels are categorical.

Now, we can write down the overall score function ac-
cording to Eq. (3). For general bottleneck feature element
zi, we use L2(·, ·) norm metric as the score function for
them all, but for the categorical label variable y, the cross-
entropy loss ℓce(·, ·) is used. Put them together, the com-
plete graph reconstruction loss is:

Lrec =

d∑
i=1

L2 (gi(z, y), zi) + ℓce (gy(z), y) . (4)

Yet, the graph is still not ensured to be acyclic. When there
exist easier-to-fit spurious relations, the least squares style
objective Eq. (4) tends to introduce the cycles in the esti-
mated graph (see Appendix for more motivative analysis).
To eliminate spurious relationships, we introduce the expo-
nential trace constraint [66] for A to guarantee the acyclic
property of DAGs,

A is a DAG⇔ h(A) = Tr(eA⊙A)− (d+ 1) = 0. (5)

In effect, this regularizer restricts a node from being not
able to reach itself even after infinite steps in this directed
graph. The acyclic constraints and the fact additive noise
[37] only appeared in the true causal direction jointly ensur-
ing the correct causal direction inference. With the correct
causal directions between factors and labels acknowledged,
we can identify spurious relationships and extract invariant
features, thereby mitigating the correlation shift. The final
graph learning objective is given by,

LG = Lrec + λl1|vec(A)|1 s.t. h(A) = 0, (6)

where vec(·) is a vectorize operator for matrix, λl1 is a
weight parameter for enforcing the sparsity of the DAG.
Note the Lrec corresponding to reconstruction loss which
is flexible to use other distance functions.

With further scrutiny of the above objective function, this
formulation complies with our ultimate goals: 1) for spuri-
ous features, the edge ye → ze

s will be learned prior to
its reversed version to resist mutually independent noise ϵes
(hence lower loss), and the acyclic constraint further dis-
cards the reverse edge completely; 2) for invariant features
zy , the relations zy → ye will be first learned for the same
reason; 3) lastly, those domain-private features have less re-
lations to other factors across domains, and thus no edge
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will not be assigned. Notably, we can draw the above argu-
ments in a more rigorous way by the following theorem.

Theorem 2. Under the assumption of the data-generating
process with E environments and the Theorem 1 holds, if
E ∗ |De

L| > Q1 +Q2 ln(d/δ), then with probability at least
1− δ the following inequality holds:

L̂(Ainv) < L̂(A),∀A ̸= Ainv ∧ h(A) = 0, (7)

whereQ1 andQ2 are constants specified in the appendix C.

The proof can be found in Appendix C. Theorem 2 in-
dicates that under mild assumptions, iDAG can asymptoti-
cally find a more wildly reliable invariant causal graph Ainv

as the number of environments increases. In conclusion, our
learned DAG is ensured to be invariant for DG and also the-
oretically feasible.

Tractable and efficient optimization. To optimize our
objective, while theoretically feasible, it is required to travel
the entire training dataset to extract the latent factors of each
example for optimization. Empirically, we find that such a
solution is not only computationally expensive but is unsta-
ble since one mini-batch may not cover all the domains and
categories. To this end, we devise a novel prototype-based
algorithm for efficient optimization. For each domain e,
we maintain C class-conditional prototypes Beν = {νe

c}Cc=1

embeddings that condense the dataset to several representa-
tive vectors.

In our implementation, we optimize the graph after each
iteration of model training, while freezing all model param-
eters. Then, the augmented Lagrangian algorithm is used
to resolve the constrained optimization problem in Eq. (6).
After that, we follow [60] apply the alternative augmented
Lagrangian optimization and employ the new features to up-
date the prototype in a moving average style,

νe
c = Normalize(γνe

c + (1− γ)ze
c), (8)

where γ ∈ (0, 1) is a scalar controls the momentum of up-
dating prototypes, z = ϕ(x) is bottleneck feature, ze

c is the
features that corresponding to the label c and domain e. This
moving-average updating procedure enables the prototypes
to be relatively stable over the course of training, which also
results in the stable calculation of the DAG.

4.3. Stable Prediction based on DAG

To extract the invariant features for stable prediction,
a brute-force approach is adopting the same strategy of
Eq. (3) which predicts y based on the direct causal parents
Pay . Nevertheless, the ordinary ze general suffers from
noise, and predictions may be too sensitive when based
solely on parental factors. To obtain a more stable predic-
tion, it is required to collect not only the parent factors but

also the ancestral factors of y in the DAG. Thus, we define
invariant features by including all direct and indirect causal
factors. Follow the idea of the fact that the positivity of
the (i, j) element of the k-th power of A indicates the exis-
tence of a length-k path vi → · · · → vj , we derive the P tol

to analogy the directed pairwise total effects,

P tol =

[ ∞∑
k=0

1

k!
(A⊙A)k

]
= eA⊙A, (9)

where P tol
i,j analogy the total causal effect vi → vj . Then,

the invariant features ze
y := ze ⊙ [P tol]⊤d+1,1:d ∈ Rd con-

tains all the direct and indirect causal features of y. Finally,
we optimize the stable classifier based on invariant features,

Lcls = E(x,y)∈Dtr

[
ℓce(ω(ϕ(x)⊙ [P tol]⊤d+1,1:d), y)

]
. (10)

4.4. Enhanced Prototypes by Contrastive Learning

In our iDAG framework, it is crucial to guarantee the rep-
resentativeness of the prototypes. To achieve this, we addi-
tionally incorporate a hierarchical prototypical contrastive
learning (PCL) module [28] for enhanced prototypes.

Contrastive loss. To begin with, we first present the
classical formulation of prototypical contrastive learning.
Given an anchor sample, the PCL attempts to optimize the
following objective,

LCL = − 1

|P(z)|
∑

k+∈P(z)

log
exp(z⊤k+/τ)∑

k′∈B(z) exp(z
⊤k′/τ)

,

(11)
where τ ≥ 0 is the tunable temperature. We attempt to pull
an anchor sample to its positive prototype set and repel it
from all other samples and prototypes. Thus, the key step
of PCL is to define the positive set P(z) and the complete
set B(z). In our work, we employ the PCL algorithm for
achieving two goals: (i)-improving the representativeness
of in-domain prototypes; (ii)-promoting the identification
of invariant DAG across domains.

In-domain PCL. First, we collect the features of each
sample and the per-domain prototypes to construct the fol-
lowing in-domain embedding pool:

Be = Beν ∪ Bz, Beν = {νe
c}Cc=1, Bz = {zi}Bi=1, (12)

where Bν contains prototypes of all environments and
classes, and Bz contains the domain-specific features from
current mini-batch with size B. Then corresponding posi-
tive set P(ze) is defined by:

P(ze) = {k′|k′ ∈ Beν , e′ = e ∧ c′ = c}. (13)
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Then, we follow Eq. (11) and calculate the in-domain con-
trastive loss LCL-ν . It is worth noting that contrastive learn-
ing is known to pose a clustering effect in the embedding
space [54]. Thus, the samples can be tightly aligned to their
prototypes, making them more representative.

Cross-domain PCL. Recall that our ultimate goal of DG
is to learn an invariant DAG from the prototypes. In effect,
it suggests that the invariant factors of all the samples are
requested to be aligned in a shared space. This motivates us
to develop a novel PCL loss to directly enhance this prop-
erty. Specifically, we extract the invariant features of each
sample by total effect masking as in Eq. (10). Then, we
construct the following cross-domain embedding pool:

B̄ = Bµ ∪ By, Bµ = {µc}Cc=1,By = {zy,i}Bi=1, (14)

where Bµ contains prototypes of all classes, By contains
invariant features from current mini-batch with size B. Ac-
cordingly, the positive set P(zy) is defined by:

P(zy) = {k′|k′ ∈ Bµ, c′ = c}. (15)

Similarly, we calculate the cross-domain contrastive loss
LCL-µ. The effect of intraclass concentration, therefore,
contributes to the learning of the invariant subgraph.

Overall Objective. Finally, we aggregate all the losses
to our overall objective,

min
A,θ
Lcls + LG + LCL−ν + LCL−µ, (16)

where θ is the collection of parameters of f and {gi}. In
each iteration, we iteratively update the DAG A and θ by
freezing the other one until convergence. The pseudo-code
of our complete algorithm is shown in Appendix F.

5. Experiments

In this section, we demonstrate the effectiveness of
iDAG on both synthetic datasets for clear illustration and
four vision datasets for empirical evaluation. More details
and empirical results can be found in Appedix D.

5.1. Setup

Dataset. We consider the following vision classification
datasets: CMNIST [3] (50000 images, 2 classes, and 3
domains, 25% label noise), PACS [23] (9,991 images, 7
classes, and 4 domains), OfficeHome [53] (15,588 images,
65 classes, and 4 domains), and DomainNet [38] (586,575
images, 345 classes, and 6 domains) to validate the iDAG
against previous methods.

Table 1. Test MSE on the synthetic dataset. The sample size stands
from the amount of training data.

Sample size 5K 2K 1K 0.5K

Oracle 0.97 0.98 1.02 1.02

ERM [52] 28.40 27.22 30.32 28.66
IRMv1 [3] 2.15 4.31 8.76 13.75
REx [22] 5.55 8.65 15.4 15.12
InvRat [9] 2.25 4.15 9.03 13.66
BIRM [30] 1.82 2.90 3.17 3.86

iDAG 1.01 0.98 1.05 1.10
Weights (R2) 0.99 0.99 0.99 0.99

Metrics. Following the commonly used leave-one-
domain-out protocol [18], we specify one domain as the un-
seen target domain for evaluation and train with the remain-
ing domains. For a fair comparison, we follow the eval-
uation protocol in DomainBed [18], splitting each source
domain with 80% for training and 20% for validation. The
final model is used for testing on the unseen target domain
and reporting the accuracy with mean and standard devia-
tion based on 3 independent runs.

Baselines. For conventional datasets such as PACS, Of-
ficeHome, and DomainNet, we compare our method with
ERM [52], IRM [3], ARM [64], RSC [20], CDANN [29],
DRO [40], MMD [26], MTL [4], MLDG [24], Mixup
[57, 58, 55], SagNet [36], CORAL [48], mDSDI [6], SWAD
[8], and DNA [12]. For extremely spurious datasets such as
CMNIST, we compare our method with IRM [3], and its
variants DILU [56], InvRat [9], and BIRM [30].

Implementation. For CMNIST dataset, we construct the
backbone network with MLPs following previous works
[3, 30] (detailed in Appendix E.2). For conventional DG
datasets, PACS, OfficeHome, and DomainNet, we use Im-
ageNet pre-trained ResNet-50 as backbone network and
build experiments following SWAD [8] and warm the
model up by running standard ERM. All the batch normal-
ization (BN) layers are frozen during training. We replace
the last FC layer of the backbone with three-layer encoder
networks with account for 256 hidden units for PACS, 512
hidden units for OfficeHome, and 1024 for DomainNet. To
be consistent with the existing line of work [59, 18], we con-
duct the hyperparameter (HP), and model selection on the
validation set for the benchmarks on PACS, OfficeHome,
and DomainNet; for the models trained on CMNIST are se-
lected by test-domain validation.

5.2. Synthetic examples

Our first series of experiments are conducted on a syn-
thetic dataset that demonstrates when the features are sta-
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ble, iDAG is capable of solving the problem of the spurious
relation ideally. The synthetic dataset considers a similar
case with IRM paper [3], where the spurious feature is in-
duced by the anti-causal effect. Specifically, the dataset is
generated as Eq. (1), where ϵes varies in different environ-
ments, by setting variance of ϵes = {0.5, 1.0, 9.9} we create
three environments, and we only use the first two environ-
ments for training. Under this setting, ze

s → ye will be a
strong spurious relation that general models are confused
with during training. And a model that relies on this spuri-
ous relation would perform poorly in the testing dataset in
which ze

s are less associated with ye. We fit a linear variant
of the iDAG model with generated features ze

y, z
e
s and ye.

Then we evaluate the Mean Squared Error (MSE) between
the predicted value ŷ and y: E[(y − ŷ)2].

Simulation results. Table 1 shows the results of each
method with different amounts of training data. The poor
performance of ERM indicates it relies on easier-to-learn
spurious relations. And the deterioration of performances of
other baselines somehow relies on the data amounts for dis-
tribution learning, even the identifiable features are given.
Compared to the baselines, iDAG shows really stable per-
formances under a wide range of training data amounts.
And the iDAG also shows its relatively close to the ora-
cle, which somehow means the concept of DAG modeling
greatly resolved this spurious correlations problem. Further,
we also validate the R2 coefficients between the estimated
classifier parameters and the true parameters, the results in-
dicate iDAG can successfully recover the correct relations.

5.3. Main results

Comparison on conventional domain generalization
benchmarks. We report the full out-of-domain perfor-
mances on Table 2, 3, and 4. Comprehensive experiments
show that iDAG consistently outperforms the baselines both
in most single domains and on average. Corresponding
to the domain shift quantification in two dimensions [59],
PACS and OfficeHome contain diversity shift, and Domain-
Net contains both diversity and correlation shift. The re-
sults indicate that iDAG is more effective in tackling both
of these two kinds of shifts.

Comparison on extreme correlation shift benchmark.
We report the results of CMNIST on Table 5 using ‘-90%’
as the testing environment following [3, 30], the full re-
sults on other environments can be found in Appendix D.
This dataset is constructed with extreme correlation shift,
the spurious feature distributions (color) are totally flipped
between train and test domains. Besides, additional 25%
label noise further fortified the influence of spurious rela-
tions. As we can see that iDAG constantly outperforms the
baseline methods. Moreover, iDAG consistently achieves

Table 2. Comparison with state-of-the-art methods on PACS
benchmark with ResNet-50 ImageNet pre-trained model.

Method A C P S Avg

CDANN [25] 84.6±1.8 75.5±0.9 96.8±0.3 73.5±0.6 82.6
IRM [3] 84.8±1.3 76.4±1.1 96.7±0.6 76.1±1.0 83.5
DANN [14] 86.4±0.8 77.4±0.8 97.3±0.4 73.5±2.3 83.6
DRO [40] 83.5±0.9 79.1±0.6 96.7±0.3 78.3±2.0 84.4
Mixup [57] 86.1±0.5 78.9±0.8 97.6±0.1 75.8±1.8 84.6
MMD [26] 86.1±1.4 79.4±0.9 96.6±0.2 76.5±0.5 84.6
MTL [4] 87.5±0.8 77.1±0.5 96.4±0.8 77.3±1.8 84.6
MLDG [24] 85.5±1.4 80.1±1.7 97.4±0.3 76.6±1.1 84.9
VREx [22] 86.0±1.6 79.1±0.6 96.9±0.5 77.7±1.7 84.9
ARM [64] 86.8±0.6 76.8±0.5 97.4±0.3 79.3±1.2 85.1
RSC [20] 85.4±0.8 79.7±1.8 97.6±0.3 78.2±1.2 85.2
ERM [52] 84.7±0.4 80.8±0.6 97.2±0.3 79.3±1.0 85.5
CORAL [48] 88.3±0.2 80.0±0.5 97.5±0.3 78.8±1.3 86.2
mDSDI [6] 87.7±0.4 80.4±0.7 98.1±0.3 78.4±1.2 86.2
SagNet [36] 87.4±1.0 80.7±0.6 97.1±0.1 80.0±0.4 86.3
SWAD [8] 89.3±0.2 83.4±0.6 97.3±0.3 82.5±0.5 88.1
DNA [12] 89.8±0.2 83.4±0.4 97.7±0.1 82.6±0.2 88.4
iDAG 90.8±0.4 83.7±0.5 98.0±0.3 82.7±0.9 88.8

Table 3. Comparison with state-of-the-art methods on OfficeHome
benchmark with ResNet-50 ImageNet pre-trained model.

Method Ar Cl Pr Rw Avg

IRM [3] 58.9±2.3 52.2±1.6 72.1±2.9 74.0±2.5 64.3
ARM [64] 58.9±0.8 51.0±0.5 74.1±0.1 75.2±0.3 64.8
RSC [20] 60.7±1.4 51.4±0.3 74.8±1.1 75.1±1.3 65.5
CDANN [25] 61.5±1.4 50.4±2.4 74.4±0.9 76.6±0.8 65.8
DANN [14] 59.9±1.3 53.0±0.3 73.6±0.7 76.9±0.5 65.9
DRO [40] 60.4±0.7 52.7±1.0 75.0±0.7 76.0±0.7 66.0
MMD [26] 60.4±0.2 53.3±0.3 74.3±0.1 77.4±0.6 66.3
MTL [4] 61.5±0.7 52.4±0.6 74.9±0.4 76.8±0.4 66.4
VREx [22] 60.7±0.9 53.0±0.9 75.3±0.1 76.6±0.5 66.4
ERM [52] 61.3±0.7 52.4±0.3 75.8±0.1 76.6±0.3 66.5
MLDG [24] 61.5±0.9 53.2±0.6 75.0±1.2 77.5±0.4 66.8
Mixup [57] 62.4±0.8 54.8±0.6 76.9±0.3 78.3±0.2 68.1
SagNet [36] 63.4±0.2 54.8±0.4 75.8±0.4 78.3±0.3 68.1
CORAL [48] 65.3±0.4 54.4±0.5 76.5±0.1 78.4±0.5 68.7
mDSDI [6] 68.1±0.3 52.1±0.4 76.0±0.2 80.4±0.2 69.2
SWAD [8] 66.1±0.4 57.7±0.4 78.4±0.1 80.2±0.2 70.6
DNA [12] 67.7±0.2 57.7±0.3 78.9±0.2 80.5±0.2 71.2
iDAG 68.2±0.4 57.9±0.3 79.7±0.2 81.4±0.4 71.8

superior results as the size of the training data decreases,
while the baselines demonstrate a more significant perfor-
mance drop.

5.4. Ablation study

Effect of acyclic penalty. To demonstrate the effective-
ness of the proposed acyclic constraint, we compare it with
the setting of removing the acyclic constraint. Specifically,
we optimize the Eq. (6) without restricting h(A) = 0 as
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Table 4. Comparison with state-of-the-art methods on DomainNet
benchmark with ResNet-50 ImageNet pre-trained model.
Method clip info paint quick real sketch Avg

MMD [26] 32.1±13.3 11.0±4.6 26.8±11.3 8.7±2.1 32.7±13.8 28.9±11.9 23.4
DRO [40] 47.2±0.5 17.5±0.4 33.8±0.5 9.3±0.3 51.6±0.4 40.1±0.6 33.3
VREx [22] 47.3±3.5 16.0±1.5 35.8±4.6 10.9±0.3 49.6±4.9 42.0±3.0 33.6
IRM [3] 48.5±2.8 15.0±1.5 38.3±4.3 10.9±0.5 48.2±5.2 42.3±3.1 33.9
ARM [64] 49.7±0.3 16.3±0.5 40.9±1.1 9.4±0.1 53.4±0.4 43.5±0.4 35.5
DANN [14] 53.1±0.2 18.3±0.1 44.2±0.7 11.8±0.1 55.5±0.4 46.8±0.6 38.3
CDANN [25] 54.6±0.4 17.3±0.1 43.7±0.9 12.1±0.7 56.2±0.4 45.9±0.5 38.3
RSC [20] 55.0±1.2 18.3±0.5 44.4±0.6 12.2±0.2 55.7±0.7 47.8±0.9 38.9
Mixup [57] 55.7±0.3 18.5±0.5 44.3±0.5 12.5±0.4 55.8±0.3 48.2±0.5 39.2
SagNet [36] 57.7±0.3 19.0±0.2 45.3±0.3 12.7±0.5 58.1±0.5 48.8±0.2 40.3
MTL [4] 57.9±0.5 18.5±0.4 46.0±0.1 12.5±0.1 59.5±0.3 49.2±0.1 40.6
ERM [52] 58.1±0.3 18.8±0.3 46.7±0.3 12.2±0.4 59.6±0.1 49.8±0.4 40.9
MLDG [24] 59.1±0.2 19.1±0.3 45.8±0.7 13.4±0.3 59.6±0.2 50.2±0.4 41.2
CORAL [48] 59.2±0.1 19.7±0.2 46.6±0.3 13.4±0.4 59.8±0.2 50.1±0.6 41.5
mDSDI [6] 62.1±0.3 19.1±0.4 49.4±0.4 12.8±0.7 62.9±0.3 50.4±0.4 42.8
SWAD [8] 66.0±0.1 22.4±0.3 53.5±0.1 16.1±0.2 65.8±0.4 55.5±0.3 46.5
DNA [12] 66.1±0.2 23.0±0.1 54.6±0.1 16.7±0.1 65.8±0.2 56.8±0.1 47.2
iDAG 67.9±0.5 24.2±0.4 55.0±0.7 16.4±0.3 66.1±0.5 56.9±0.4 47.7

Table 5. Test accuracy on CMNIST by MLP of hidden size 390
with varied training sample size.
Sample size 50K 40K 30K 20K 15K 10K 5K

Oracle 72.45 71.61 70.19 69.45 68.11 66.99 64.15

ERM [52] 10.80 11.03 11.08 13.58 16.22 18.20 21.04
DILU [56] 50.22 52.31 45.31 44.21 48.92 43.14 43.83
IRMv1 [3] 67.45 65.25 63.46 58.67 49.51 35.60 26.19
InvRat [9] 66.35 66.61 61.05 57.25 50.04 34.28 25.42
BIRM [30] 69.97 69.47 69.06 67.02 66.78 66.40 60.01

iDAG 71.82 71.73 70.8 70.40 69.84 68.52 64.23

Table 6. Ablation study on conventional OOD benchmarks.

Ablation PACS OfficeHome DomainNet CMNIST

iDAG 88.8 71.8 47.8 71.8
w/o LCL−ν 85.7 69.8 45.5 23.5
w/o LCL−µ 86.1 70.3 46.1 30.1

w/o acyclicity 88.1 71.1 46.9 11.2
w/o sparsity 88.1 71.1 47.2 68.8

the variant of iDAG. As shown in Table 6, the acyclic con-
straint brings a significant performance improvement on the
CMNIST benchmark. On conventional benchmarks as well,
the iDAG also outperforms the variant without an acyclic
penalty. It makes intuitive sense since these three datasets
mainly suffer from diversity shift while containing less spu-
rious relations, as reported in [59]. By contrast, the CM-
NIST is an extremely biased dataset that is dominated by
spurious relations. The different performance gaps between
the iDAG and variant on two dimensions of shifts indicate
that cyclic constraint is closely related to spurious corre-
lations. Therefore, our iDAG framework does indeed sup-
press the spurious correlations for better domain generaliza-
tion performance.

Effect of contrastive enhancement. We ablate the con-
tributions of two contrastive learning components of iDAG:
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Figure 3. Illustration of training iDAG on CMNIST. As the train-
ing proceeds, the overfitting on train domains +90%,+80%
quickly decreases with the penalty being scaled up. Ultimately,
both train and test domains achieve oracle-level accuracy, while
the acyclic property is guaranteed.

in-domain PCL and cross-domain PCL. In particular, we
compare iDAG with two variants: (i)-iDAG w/o in-domain
CL LCL−ν ; (ii)-iDAG w/o cross-domain CL LCL−µ. We
first evaluate the effect of removing LCL−ν , the results in
the Table 6 show that the iDAG with contrastive learning
applied on domain-specific prototypes brings great perfor-
mance improvement on all benchmarks, especially on the
CMNIST. These results indicate that the clustering effect
improves the representativeness of prototypes thereby lead-
ing to a more accurate DAG, otherwise it is hard to over-
come the spurious relations as shown in the CMNIST case.

Second, we conduct the ablation by removing the con-
trastive learning loss LCL−µ on domain invariant features,
the results in the Table 6 show that iDAG outperforms the
variant w/o LCL−µ. This effectiveness validates the benefits
of clustering effects in improving classification.

Effect of sparsity regularization. We then explore the
effect of sparsity regularization in learning DAG on iDAG
performance. From Table 6 we can observe that iDAG sub-
stantially outperforms the variant of removing sparsity reg-
ularization. An intuitive sense related to sparsity is bene-
ficial for learning more reliable DAGs. The effectiveness
of sparsity in iDAG is well correlated to many empirical
shreds of evidence that indicate it plays in learning more
stable DAGs [66], i.e., pruning weak edges (unstable corre-
lations) for optimal DAG learning.

5.5. Further Analysis on Overfitting

Figure 3 illustrates the dynamics of training and test ac-
curacies over the course of iDAG training, where the model
is warmed up via naive ERM training. Note that the train-
ing labels contain ≈ 25% noise. However, the ERM model
still largely exceeds the level of oracle (≈ 75%) despite the
testing performance struggles. This is caused by spurious
correlations between color and label in training domains be-
ing set to +90%,+80%, which is poorly generalizable to
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the testing domain. When start running iDAG, we first ob-
serve the acyclicity penalty term increases as it searches the
invariant causal structure. Along with the penalty chang-
ing, the training/testing performance also drops/increases to
the expected oracle accuracy. Once the invariant DAG is
discovered, the acyclicity is (almost) ensured such that the
penalty value converges to zero. As a result, the training and
testing performance also converge to the oracle accuracy as
expected. In view of these facts, it is evident that iDAG is
effective at detecting and eliminating spurious correlations,
which suppresses the overfitting problem.

6. Conclusion
In this paper, we tackle the domain generalization prob-

lem from a novel invariant causal graph identification per-
spective. To achieve this goal, we design a constrained
optimization problem and collect the data prototypes from
all domains and categories for efficient computation. We
also incorporate a hierarchical contrastive learning module
to promote DAG exploration as well as stable prediction.
Empirically, we achieve state-of-the-art out-of-domain gen-
eralization performance on various benchmarks, especially
the case that is heavily influenced by spurious correlations.
We hope our work will inspire the community towards a
broader view of tackling the domain generalization problem
from its intrinsic causal structures.
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