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Abstract

Point cloud oversegmentation is a challenging task since

it needs to produce perceptually meaningful partitions (i.e.,

superpoints) of a point cloud. Most existing overseg-

mentation methods cannot efficiently generate superpoints

from large-scale LiDAR point clouds due to complex and

inefficient procedures. In this paper, we propose a simple

yet efficient end-to-end LiDAR oversegmentation network,

which segments superpoints from the LiDAR point cloud

by grouping points based on low-level point embeddings.

Specifically, we first learn the similarity of points from

the constructed local neighborhoods to obtain low-level

point embeddings through the local discriminative loss.

Then, to generate homogeneous superpoints from the sparse

LiDAR point cloud, we propose a LiDAR point grouping

algorithm that simultaneously considers the similarity of

point embeddings and the Euclidean distance of points

in 3D space. Finally, we design a superpoint refinement

module for accurately assigning the hard boundary points

to the corresponding superpoints. Extensive results on two

large-scale outdoor datasets, SemanticKITTI and nuScenes,

show that our method achieves a new state-of-the-art in

LiDAR oversegmentation. Notably, the inference time of

our method is 100× faster than that of other methods. Fur-

thermore, we apply the learned superpoints to the LiDAR

semantic segmentation task and the results show that using

superpoints can significantly improve the LiDAR semantic

segmentation of the baseline network. Code is available at

https://github.com/fpthink/SuperLiDAR.

1. Introduction

In modern self-driving cars, 3D LiDAR sensor acquires

precise distance measurements of surrounding objects and
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their surface characteristics for large-scale outdoor scene

understanding. In recent years, LiDAR semantic seg-

mentation [21] has been widely studied, and a variety of

approaches have emerged with impressive results. How-

ever, LiDAR oversegmentation is rarely explored in 3D

computer vision. Unlike LiDAR semantic segmentation,

LiDAR oversegmentation outputs the perceptually mean-

ingful tessellation of point cloud. The resulting superpoint

is a set of points, which are semantically and geometrically

homogeneous in the local regions of the objects. The super-

point representation can adaptively and flexibly represent

local geometric structures of objects. Therefore, studying

LiDAR oversegmentation is very meaningful for LiDAR

point cloud based applications. However, the sparsity,

noise, and irregularity of LiDAR point clouds bring great

challenges to LiDAR oversegmentation.

Early point cloud oversegmentation methods are usu-

ally optimization based methods. Lin et al. [17] cast-

ed superpoint segmentation problem as a subset selection

problem, and developed a heuristic algorithm that utilizes

handcrafted local information of the point cloud to segment

superpoints by minimizing the energy function. Guinard et

al. [8] formulated point cloud oversegmentation as a struc-

tured optimization problem and used handcrafted local

descriptors to produce geometrically simple superpoints

through a greedy graph-cut algorithm [14]. However, due

to sparse LiDAR point clouds, the computed handcrafted

features are less discriminative, so the resulting superpoints

cannot produce clear boundaries between similar objects.

Landrieu et al. [13] introduced a deep network to extract

point embeddings, which are used to replace handcrafted

features in [14] for segmenting superpoints. Since it is a

two-stage method, the processing procedure of superpoint

segmentation is complex and time-consuming. Recently,

Hui et al. [11] proposed an end-to-end superpoint network

that iteratively learns the point-superpoint association map

for clustering superpoints. Nonetheless, it requires post-

processing to filter the noise points. In short, due to

complex and inefficient procedures, the above methods

cannot efficiently generate superpoints from large-scale

LiDAR point clouds.
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the final published version of the proceedings is available on IEEE Xplore.
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In this paper, we propose a simple yet efficient LiDAR

oversegmentation network called SuperLiDAR, which di-

rectly outputs superpoint from LiDAR point clouds without

any additional processing procedures. The key idea of seg-

menting superpoints is to group points based on low-level

point embeddings. Specifically, to learn low-level point

embeddings, we first formulate it as a deep metric learning

problem structured by a local neighborhood defined on

the point cloud. We introduce the local discriminative

loss to embed 3D points within the local neighborhoods

of the same object, thereby ensuring the point embed-

dings are similar to each other. After obtaining low-

level point embeddings, we then propose a LiDAR point

grouping algorithm, which groups the points to generate

superpoints via the breadth-first search (BFS). By using

the similarity of point embeddings and Euclidean distance

of 3D point coordinates, we apply the BFS algorithm

to produce compact superpoints. Finally, we propose a

superpoint refinement module, which learns the affinity

between the hard boundary point and its k-nearest candidate

superpoints. By assigning the hard boundary point with

the corresponding superpoint with the highest similarity,

we can obtain high-quality superpoints. Notably, our Li-

DAR oversegmentation network can flexibly integrate with

downstream tasks, such as semantic segmentation. In order

to evaluate the effectiveness of the learned superpoints,

we introduce a simple multi-scale superpoint aggregation

module for LiDAR semantic segmentation. We conduct

experiments on two large-scale benchmarks, SemanticKIT-

TI and nuScenes, to demonstrate the effectiveness of our

method. LIDAR oversegmentation experiments show that

the proposed method not only achieves state-of-the-art

performance, but also is 100× faster than other methods.

Furthermore, LiDAR semantic segmentation experiments

demonstrate that using superpoint can significantly improve

the performance of the baseline network.

The contributions of this paper are as follows:

• We propose an efficient LiDAR oversegmentation net-

work for learning superpoint segmentation from large-

scale LiDAR point clouds.

• Our method achieves state-of-the-art performance in

LiDAR oversegmentation while being 100× faster

than current oversegmentation methods.

• We demonstrate that the proposed LiDAR overseg-

mentation network can be integrated into LiDAR se-

mantic segmentation network in an end-to-end man-

ner and further improve the performance of LiDAR

semantic segmentation.

2. Related Work

Point Cloud Oversegmentation Existing point cloud

oversegmentation methods can be roughly grouped into two

categories: optimization based methods and deep learning

based methods. Optimization based methods usually utilize

handcrafted descriptors to extract point features for super-

point segmentation. Papon et al. [21] were the pioneers in

the field of oversegmentation in 3D data. The proposed

voxel cloud connectivity segmentation method uses color

and depth information as well as three dimensional geomet-

ric relationships to segment RGB-D data into superpoints.

Lin et al. [17] formulated the superpoint segmentation

problem as a subset selection problem. Based on hand-

crafted local information of the point cloud, the superpoint

is segmented by directly minimizing the energy function.

Guinard et al. [8] regarded point cloud oversegmentation as

a structured optimization problem. They used the greedy

graph-cut algorithm [14] to produce geometrically simple

superpoints, where the handcrafted local descriptors (such

as linearity, planarity, scattering, and verticality) are used to

describe the local geometry of each point. However, when

there are objects with complex local geometric structures in

the point clouds of the surrounding environments, the hand-

crafted features usually cannot provide the discriminative

features to produce high-quality superpoints, especially in

sparse LiDAR point clouds.

Deep learning based methods leverage the deep network

to extract discriminative point features for improving over-

segmentation performance. Guinard et al. [13] cased point

cloud oversegmentation as a deep metric learning problem.

A graph-structured contrastive loss is proposed to learn

discriminative point features. By using the learned features

to replace the handcrafted features used in the greedy

graph-cut algorithm [14], it can generate higher quality

superpoints from the point cloud than [8]. However, it can-

not be end-to-end trained due to the two-stage superpoint

segmentation strategy. Recently, Hui et al. [11] proposed

an end-to-end superpoint network to cluster superpoints by

iteratively learning the point-superpoint association map.

Nonetheless, the clustered superpoints may have much

noise near the boundary of the superpoints, especially in

the sparse LiDAR point clouds. Therefore, post-processing

is required to filter noise, increasing the complexity of its

application as well as the time cost.

Current point cloud oversegmentation methods are lim-

ited by the complex processing procedures, which make

them unable to be flexibly applied to downstream tasks.

Therefore, it is necessary to design an efficient point cloud

oversegmentation with scalability and flexibility.

LiDAR Semantic Segmentation LiDAR semantic seg-

mentation [30, 40, 9, 6, 27, 34, 42, 24, 26, 10] has e-

merged with various methods based on different repre-

sentations of point clouds. In order to utilize conven-

tional 2D segmentation schemes, projection-based methods

that project the LiDAR point cloud into an image plane,

obtaining rendered images [16], snapshots [2], tangent
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Figure 1. The overview of our LiDAR oversegmentation network. Given a LiDAR point cloud, we first learn low-level point embedding

after extracting point features by the sparse 3D network. Then, we propose the LiDAR point grouping algorithm to generate superpoints

from the point cloud. Finally, we use the superpoint refinement module to assign unallocated free points to the corresponding superpoints.

images [28], range images [32, 33], and bird’s-eye view im-

ages [18]. Although projection-based methods are efficient

for LiDAR segmentation, the spatial geometric information

is inevitably lost due to space compression. In order

to directly utilize 3D geometric information, point-based

methods [22] generally use multi-layer perceptron network

to handle 3D LiDAR points by using different designed

local descriptors, including max pooling function [23, 31],

adaptive weighting [29, 41], and non-local weighting [38,

4]. Despite higher performance compared with projection-

based methods, point-based methods are usually time-

consuming due to complex local aggregation operations

and a large number of points in large-scale LiDAR point

clouds. Recently, most advanced techniques are voxel based

methods, which use sparse convolution [19] to process

large-scale LiDAR point clouds. Compared with traditional

3D convolution, it only performs convolution operations on

non-empty voxels, which can greatly reduce computational

cost and memory consumption. Based on SparseConv,

different methods use network architecture search [25],

multi-scale feature aggregation [5], cylindrical partition and

asymmetrical 3D convolution network [43], range-point-

voxel fusion network [35] and multi-modal network [37]

to boost segmentation performance. Although voxel based

methods have achieved impressive results, the quality of the

voxel is sensitive to its resolution. The larger the voxel size

is, the lower the quality is. This motivates us to explore the

superpoint representation of LiDAR point clouds.

3. Methodology

3.1. LiDAR Oversegmentation Network

Low-Level Point Embedding For LiDAR oversegmen-

tation, we use the low-level embedding of point clouds to

segment superpoints. As shown in Fig. 1, we formulate it

as a deep metric learning problem structured by the local

neighborhoods defined on the point clouds.

Specifically, given a LiDAR point cloud P = {pi}
N
i=1,

we follow [37] and use the sparse 3D network to obtain the

feature map X ∈ R
N×C , where N is the number of neigh-

borhoods. And we use a multi-layer perceptron (MLP) to

map X into low-dimension embedding F ∈ R
N×D. By

computing the Euclidean distance between a point and its

surrounding points, we construct the local neighborhoods

for each point, denoted by N = {Ni}
N
i=1. Each local

neighborhood Ni is a set of 3D points, containing the points

lying in the i-th local neighborhood.

After constructing the local neighborhoods of the LiDAR

point cloud, we develop a local discriminative loss Lsp to

map the point features into the low-dimension embedding

space with similar local geometric structures. For the i-th

local neighborhood Ni, we can identify different semantic

parts according to the point labels, i.e., ground truth seman-

tic labels (circles of different colors in Fig. 1(a)). In the

constructed local neighborhood with limited scope, points

with the same semantic label can be regarded as having

similar geometric structures. The local discriminative loss

Lsp consists of two terms:

Lsp = Lident + Ldist (1)

where the identical term Lident draws the point embed-

ding towards the mean embedding of the corresponding

semantic part, and the distance term Ldist pushes the point

embedding away from other semantic parts. The detailed

formulation are as follows:

Lident =
1

M

M∑

i=1

1

|Ni|

∑

j∈Ni

Ti∑

k=1

I(j, k) · [‖zk−fj‖2−α]2+,

(2)

Ldist =
1

M

M∑

i=1

1

|Ni| (Ti − 1)

∑

j∈Ni

Ti∑

k=1

(1− I(j, k))·

[2β − ‖zk − fj‖2]
2
+

(3)

where I(j, k) is the indicator function. I(j, k) equals to

1 if point j belongs to the k-th semantic part, and 0,

18005



otherwise. Ti is the number of semantic parts in the i-th

local neighborhood Ni. In addition, fj ∈ R
D represents the

point embedding of the i-th points, and zk ∈ R
D represents

the mean point embedding of the corresponding semantic

part that contains the i-th point. In the experiment, the

thresholds α and β are set to 0.01 and 0.2, respectively.

LiDAR Point Grouping To increase the inference

speed of superpoint segmentation, we propose a simple yet

efficient LiDAR point grouping algorithm. As shown in

Fig. 1, the key idea is to group points based on the learned

low-level point embeddings by applying the breadth-first

search (BFS) algorithm.

Specifically, in order to generate homogeneous and com-

pact superpoints in the 3D space, we simultaneously consid-

er the embedding space and 3D coordinate space. Given the

LiDAR point cloud, we first randomly select a seed point

as the BFS starting point, which has not been assigned to

a superpoint. Then, the BFS algorithm is executed based

on the starting point to group the surrounding points to

form a superpoint. The procedure is shown in Fig. 1(b).

During BFS, if a point can be assigned to a corresponding

superpoint, it should meet two constraints. For one con-

straint, the Euclidean distance between point embeddings

should be less than the threshold β, which is regarded as

the margin used to push the point embeddings away in

Eq. (3). For another constraint, the Euclidean distance

between points should be less than the threshold γ, which

is used to maintain the compactness of the superpoints

in the 3D coordinate space. Note that during BFS, if

the superpoint size (i.e., the number of points within the

superpoint) is greater than the maximum size Nmax, the

current superpoint growth process will be terminated. After

BFS, if the generated superpoint size is less than the

minimum size Nmin, the superpoint will be discarded. The

LiDAR point grouping algorithm repeats the BFS procedure

to generate new superpoints from the LiDAR point cloud

until it cannot meet the generation conditions. The detailed

procedure is shown in Algorithm 1.

In superpoint generation, clustering-based algorithms

can also be adopted, but they will introduce noise points to

the superpoints. In order to eliminate noise points, post-

processing is required, which will bring additional time

costs. In contrast, the BFS algorithm can generate good

superpoints without noise points under the time complexity

of O(N), where N is the number of LiDAR points. Note

that instead of performing BFS in sparse 3D space, we

convert the sparse LiDAR point clouds into a dense range

image. Due to the fact that the edge of adjacent points in

the range image is the edge of adjacent pixel gird, which

can greatly save the time of edge traversal, executing BFS

on the range image can effectively reduce the BFS time of

the 3D space. Therefore, BFS complexity is approximately

O(N).

Algorithm 1 LiDAR Point Grouping

Input: point coordinates P = {p1, . . . ,pN}; point

embeddings F = {f1, . . . ,fN}; threshold γ of the 3D

coordinate space; threshold β of the embedding space;

threshold Nmin of minimum size of superpoint; threshold

Nmax of maximum size of superpoint

Output: superpoints S = {S1, . . . , SO}

1: initialize an empty superpoint set S

2: initialize an array v (visited) of length N with all zeros

3: for i = 1 to N do

4: if vi == 0 then

5: initialize an empty queue Q

6: initialize an empty set S

7: vi = 1; Q.pushBack(i); S.add(i)

8: while Q is not empty do

9: h = Q.popFront()

10: j = FindClosestPoint(h, I)

11: // Distance Constraint

12: eij = ‖pi − pj‖
2
2

13: if vj == 0 and eij < γ then

14: // Embedding Constraint

15: dij = ‖fi − fj‖
2
2

16: if dij > β and S.size() < Nmax then

17: vj = 1; Q.pushBack(j); S.add(j)

18: if S.size() > Nmin then

19: add S to S

20: return S

Superpoint Refinement In LiDAR point grouping, we

discard the generated superpoints that do not conform to

the minimum size of superpoints, so some LiDAR points

are still not assigned to any superpoints. A simple way to

handle these unassigned LiDAR points is to assign the point

to the nearest superpoint center in the coordinate space.

However, the unassigned points are mostly boundary points.

Thus, it is hard to accurately assign the boundary points

to the corresponding superpoints according to the distance.

To maintain the efficiency of superpoint segmentation,

we propose a simple yet effective superpoint refinement

module to accurately assign the point to the corresponding

superpoint by learning the affinity between the point and its

K-nearest superpoints, as shown in Fig. 1.

Specifically, given an unassigned LiDAR point i, we first

find the K-nearest superpoints (Ki) in the 3D coordinate

space according to the Euclidean distance between the point

and superpoints. The affinity between the point i and the

superpoint j ∈ Ki is defined as:

A
j
i = Concat(fi; zj ;fi − zj ;pi − xj ; ‖pi − xj‖

2) (4)

where Concat(·) represents the concatenation operation.

Vectors fi −zj and pi −xj capture the difference between

the point and superpoint in the embedding and coordinate

spaces, respectively. Note that zj ∈ R
D and xj ∈
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Figure 2. The overview of our end-to-end LiDAR semantic

segmentation framework.

R
3 are the embedding and coordinate of the superpoint.

They are obtained by averaging the point coordinates and

embeddings. In this way, we can obtain the affinity matrix

Ai ∈ R
K×(4D+1) between the point and its K-nearest

superpoints. After that, we map the affinity matrix to obtain

the affinity score, which is defined as:

Yi = WA⊤
i (5)

where W ∈ R
1×(4D+1) is the weight to be learned. Finally,

we employ the softmax function to the affinity score Yi ∈
R

K for obtaining the affinity probability. By assigning the

point i to the superpoint with the highest probability, we can

generate high-quality superpoints from the LiDAR point

clouds. Note that the ground truth of i-th point is the nearest

superpoint with the same semantic label. During training, it

is supervised by the cross-entropy loss, denoted by Lsr (see

Fig. 1(c)).

3.2. Superpoint based LiDAR Segmentation

In order to show the scalability and flexibility of the

proposed LiDAR oversegmentation network, we apply the

learned superpoints to the LiDAR semantic segmentation

task. Specifically, we propose a simple multi-scale super-

point aggregation module and integrate it with our LiDAR

oversegmentation network to form an end-to-end LiDAR

semantic segmentation framework, as shown in Fig. 2.

Multi-Scale Superpoint Aggregation In LiDAR o-

versegmentation network, sparse convolution [19] is used

to extract the local feature of points. However, voxel

based representation cannot elaborately capture the local

geometric structures of the point cloud, resulting in a

rough feature map X ∈ R
N×C . Based on the rough

point features, we design a simple multi-scale superpoint

aggregation module to enhance point features by fusing

multi-scale local features. Specifically, we first obtain

multi-scale superpoints by adjusting the minimum and

maximum sizes of superpoint during superpoint generation.

For i-th point, we can obtain the corresponding superpoints

of L scales, denoted by Si
1, S

i
2, . . . , S

i
L. Then, we employ

the max pooling function on the point features within the

corresponding superpoint to aggregate superpoint features

(three circular cones in Fig. 2). After that, the superpoint

features are processed independently by a MLP comprised

of a series of layers, including linear, ReLU [20], and batch

normalization [12]. The resulting superpoint features are

denoted by Ei
1,E

i
2, . . . ,E

i
L. Finally, we fuse superpoint

features of L scales to aggregate multi-scale geometric

information of the point cloud. The resulting new feature

of the i-th point is written as:

X̂i = Concat(Xi;E
i
1;E

i
2; . . . ;E

i
L) (6)

Compared with coarse point feature Xi ∈ R
C learned from

voxel based representation, the new point feature X̂i ∈
R

C∗(L+1) can elaborately describe the local geometric

structures of the point through multi-scale superpoints.

Based on the fused point features, we employ a classifica-

tion head to predict point labels.

Essentially, the superpoint provides an adaptive neigh-

borhood, which is generated along the geometric structure

of the point cloud surface. Therefore, compared with voxel

based, ball query based, and k-NN based neighborhoods,

adaptive neighborhoods can extract more discriminative

local features, thereby improving the performance.

Loss Functions Since the proposed LiDAR semantic

segmentation framework is an end-to-end network, it can

be directly optimized through a joint loss function. To train

it, the joint loss function is defined as:

Ljoint = Lsp + Lsr + Lsem (7)

where Lsp is the local discriminative loss for training

superpoints defined in Eq. (1). Lsr and Lsem are the

cross-entropy losses for superpoint refinement and semantic

segmentation, respectively.

4. Experiments

4.1. Datasets and Metrics

In this paper, for LiDAR oversegmentation and semantic

segmentation, we use two large-scale outdoor datasets, i.e.,

SemanticKITTI [1] and nuScenes [3]. The details of the

datasets and evaluation metrics are as follows.

SemanticKITTI is a large-scale outdoor benchmark for

self-driving cars with 20 semantic categories. It contains 22

sequences collected by the 64 beams LiDAR sensor, where

sequences 00 to 10 are for the training set (sequence 08 is

used as the validation set.), and sequences 11 to 22 are for

the online hidden test set. Sequences 00 to 10 are provided

with dense semantic annotations for each scan.

nuScenes contains 1000 scenes collected by the 32

beams LiDAR sensor. A total of 1000 scenes are split into

training (750), validation (150), and testing (150) sets. The

training and validation sets are annotated with 17 semantic

categories, while the test set whose labels are held for blind

online testing.
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Figure 3. Performance of different methods on the validation set of SemanticKITTI.

Evaluation Metrics To evaluate the quality of super-

points, we use oracle overall accuracy (OOA), boundary

recall (BR), and boundary precision (BP) as the evaluation

metrics defined in [13]. OOA measures the theoretical

upper bound of semantic segmentation using superpoints,

while BR and BP measure the quality of superpoint bound-

aries. In order to balance BR and BP, we report the F1 score,

which is formulated as F1=2BP·BR/(BR+BP). To evaluate

the performance of LiDAR semantic segmentation, we use

the mean intersection over union (mIoU).

4.2. Network Structure

We apply the same sparse 3D network used in [37] as

the backbone of our LiDAR oversegmentation network. In

the LiDAR point grouping algorithm, the threshold γ of

distance constraint in BFS is set to 1.5. In the superpoint

refinement module, the hyperparameter K is set to 5. In

the multi-scale superpoint aggregation module, we use three

scales of superpoints, which are controlled by different

thresholds of superpoint size.

4.3. LiDAR Oversegmentation

For LiDAR oversegmentation, we compare the proposed

SuperLiDAR with SPG [15], SSP [13], and SPNet [11].

Note that SPG uses handcrafted features, whereas SSP

and SPNet use deep features for superpoint segmentation.

We run the official codes to produce superpoints from the

LiDAR point clouds. The superpoint evaluation results are

computed on the validation set of the SemanticKITTI and

nuScenes datasets, respectively.

Results on SemanticKITTI Tab. 1 reports the quantita-

tive results of superpoint segmentation on the SemanticKIT-

TI dataset. For a fair comparison, the number of superpoints

generated by different methods is maintained similarly

(about 1000 superpoints). It can be observed that our

method achieves the best results on four metrics. Es-

pecially, our SuperLiDAR significantly outperforms other

methods by about 4% in terms of OOA, which represents

the theoretical upper bound of performance of semantic

segmentation. Therefore, it means that our method can

generate high-quality superpoints with higher accuracy.

In addition, our method has higher BR and BP, which

Method OOA BR BP F1

SemanticKITTI

SPG [15] 86.86 25.64 15.82 19.56

SSP [13] 92.27 18.74 10.67 13.59

SPNet [11] 92.24 56.52 14.78 23.43

SuperLiDAR (ours) 96.21 65.52 20.52 31.25

nuScenes

SPG [15] 89.22 28.20 17.26 21.41

SSP [13] 92.01 22.04 15.63 18.28

SPNet [11] 87.67 68.92 18.34 28.97

SuperLiDAR (ours) 96.31 74.72 25.12 37.59

Table 1. Comparison results of generated superpoints on the

validation sets of SemanticKITTI and nuScenes.

indicate that our method can generate superpoint with clear

boundaries in sparse LiDAR point clouds. Due to sparse

LiDAR point clouds, the handcrafted features of SPG [15]

are less discriminative, resulting in worse performance. Al-

though SSP [13] uses deep features, it generates superpoints

through an optimization based method [14], which limits

the performance on sparse LiDAR point clouds. In sparse

point clouds, the superpoints generated by the clustering

based method SPNet [11] are likely to contain noise, which

affects the performance. In Fig. 3, we show the performance

curves of different methods under different numbers of

superpoints. It can be observed that the curves of our

method are higher than others in terms of four metrics. The

more the number of superpoints, the smaller the size of

superpoints, and vice versa. Thus, it shows that our method

can generate high-quality superpoints of different sizes.

Results on nuScenes The quantitative results of su-

perpoint segmentation on the nuScenes dataset is shown

in Tab. 1. Note that the number of superpoints generated

by different methods is maintained similarly (about 400

superpoints). Compared with the 64-beam point cloud of

SemanticKITT, the 32-beam point cloud of nuScenes is

more sparse. From the table, it can be observed that our

method still achieves the best results on all four metrics.

The results on the nuScenes dataset further demonstrate

that our method can effectively generate high-quality super-

points in sparse LiDAR point clouds.
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SPG SSP SPNet SuperLiDAR (ours) Ground Truth
Figure 4. Visualization of generated superpoints on the validation sets of SemanticKITTI (first row) and nuScenes (second row).

Method Type
Inference Time (ms)

data proc. + superpoint gen.

SPG [15] CPU 13152 (0+13152)

SSP [13]

GPU

25238 (11812 + 13426)

SPNet [11] 12966 (11812 + 1154)

SuperLiDAR (ours) 72 (0 + 72)

Table 2. Inference time of different methods on the validation

set of SemanticKITTI. Note that inference time consists of data

processing and superpoint generation.

Visual Results In Fig. 4, we show the visualization

results of different oversegmentation methods. It can be

observed that the generated superpoints by our SuperL-

iDAR can effectively distinguish the road and sidewalk.

Note that the road and sidewalk are almost in the same

horizontal plane, so it is hard to discriminate them without

color information. Nonetheless, our method is able to learn

discriminative point features to separate them by using the

local discriminative loss.

Time Costs The inference time is an important crite-

rion for superpoint segmentation. For optimization based

method SPG [15], we use a single Core i5 CPU to compute

inference time. For learning based methods SSP [13],

SPNet [11], and our SuperLiDAR, we use a single NVIDIA

RTX 3090 to run the code based on the PyTorch deep

learning platform. Tab. 2 reports the average inference

time of different methods computed on each scan of the

SemanticKITTI validation dataset. It can be observed that

the inference time of our method is only 72ms, which is

100× faster than others. Although SSP and SPNet use

the network to extract point features, they also feed the

handcrafted point features into the network, resulting in a

long data processing time. Note that the data processing of

SSP and SPNet are the same, so their data processing time is

the same. Since SPG and SSP adopt the same optimization

based method to generate superpoints, they have a longer

time for superpoint generation. Due to the iterative strategy

in the superpoint generation of SPNet, it consumes more

time than our method.

Ablation Studies In low-level point embedding learn-

Setting OOA BR BP F1

build nei. in 3D space 92.78 45.69 15.06 22.65

w/o superpoint ref. 94.81 57.72 17.98 27.41

Default (SuperLiDAR) 96.21 65.52 20.52 31.25

Table 3. Ablation study results of different settings on the

validation set of SemanticKITTI.

ing, we construct the local neighborhoods in the range

image instead of in 3D space and experiment on the Se-

manticKITTI dataset. In Tab. 3, we show the results of

building neighborhoods in 3D space. It can be observed

that the performance of building neighborhoods in 3D space

(“build nei. in 3D space”) is worse than in the range image

(“Default (SuperLiDAR)”). Compared with 3D space, the

points are more uniform in the range image. The resulting

dense neighborhoods are profitable to learn good point

embeddings by applying the local discriminative loss.

In order to tackle unassigned points after performing

LiDAR point grouping, we propose a superpoint refine-

ment module. To verify its effectiveness, we replace the

superpoint refinement module by assigning the points to

the nearest superpoint center in the coordinate space. In

Tab. 3, the results (“w/o superpoint ref.”) are lower than

that of using the superpoint refinement module (“Default

(SuperLiDAR)”). Due to the simple distance criterion, hard

boundary points cannot be effectively assigned to the cor-

responding superpoints. By adaptively learning the affinity

between the point and superpoint, we can more accurately

assign the points to the corresponding superpoints.

4.4. LiDAR Semantic Segmentation

For LiDAR semantic segmentation, we experiment on

the SemanticKITTI and nuScenes datasets to verify the

effectiveness of the learned superpoints. Our LiDAR se-

mantic segmentation framework is based on LiDAR over-

segmentation network, and uses a multi-scale superpoint

aggregation module for semantic prediction. We use the

backbone (i.e., sparse 3D network) of LiDAR overseg-

mentation network as our baseline. Since our baseline is

the sparse 3D network used in [37], we directly take the
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Figure 5. Visualization of semantic segmentation on the validation sets of SemanticKITTI (first row) and nuScenes (second row).

Method Data
SemanticKITTI nuScenes

mIoU Speed (ms) mIoU Speed (ms)

PolarNet [39] L 54.3 62 69.4 -

JS3C-Net [36] L 66.0 471 73.6 -

Cylinder3D [43] L 68.9 131 77.2 63

SPVNAS [25] L 67.0 259 77.4 63

AF2-S3Net [5] L 70.8 - 78.3 270

RPVNet [35] L 70.3 168 - -

PMF [44] L+C - - 77.0 125

2D3DNet [7] L+C - - 80.0 -

2DPASS [37] L+C 72.9 62 80.8 44

Baseline L 67.4 62 77.6 44

SuperLiDAR (ours) L 69.6 78 78.5 60

Table 4. Semantic segmentation results on the test sets of

SemanticKITTI and nuScenes. The results are compared before

11/11/2022. “L” and “C” indicate the LiDAR and camera,

respectively. Note that we only list the results of published works.

baseline results of [37] as the baseline results of our method

on the SemanticKITTI and nuScenes datasets.

Results on SemanticKITTI Tab. 4 shows the results

of semantic segmentation on the SemanticKITTI online test

set. It can be observed that the mIoU of our SuperLiDAR

is 2% higher than the baseline. In addition, Fig. 5 shows

the visualization results (first row) of the baseline and our

method. The results can demonstrate that the performance

of semantic segmentation can be further improved by using

the learned superpoints to enhance the local geometric

information of the point clouds. Due to adopting complex

point-voxel or range-point-voxel fusion framework, the

performance of RPVNet [35] and AF2-S3Net [5] is higher

than our voxel based method. In addition, 2DPASS [37] is

a multi-modal method that uses 2D image and knowledge

distillation to achieve higher performance and shorter in-

ference time. Due to the simple yet effective multi-scale

superpoint aggregation module, our method can effectively

improve the performance of the baseline without increasing

too much time cost.

Results on nuScenes Tab. 4 shows the results of

semantic segmentation on the nuScenes online test set. It

can be observed that the mIoU of our SuperLiDAR exceeds

the baseline by about 1%. In addition, Fig. 5 shows the

visualization results (second row) of the baseline and our

method. Since the point clouds of nuScenes are more sparse

than those in SemanticKITTI, the quantitative and visual-

ization results demonstrate that the learned superpoint can

effectively improve the segmentation performance. Com-

pared with methods only using LiDAR data, our method can

achieve higher performance with a shorter inference time.

Note that even if we only use LiDAR data, the performance

of our method is better than that of PMF [44] using LiDAR

point clouds and camera images. In addition, multi-modal

methods 2D3DNet [7] and 2DPASS [37] adopt complicated

multi-scale fusion networks to achieve higher performance.

5. Conclusion

We presented an efficient end-to-end LiDAR overseg-

mentation network for segmenting superpoints from the Li-

DAR point clouds. By utilizing the proposed LiDAR point

grouping algorithm, our method can generate high-quality

superpoints from sparse LiDAR point clouds. Notably,

our method achieves new state-of-the-art in LiDAR over-

segmentation, and the inference time is 100× faster than

current methods. Furthermore, on LiDAR semantic seg-

mentation, our method can significantly boost the baseline

results on two large-scale benchmarks (i.e., SemanticKITTI

and nuScenes) by using superpoints. We believe that the

proposed efficient LiDAR oversegmentation network can be

applied to more downstream tasks, such as 3D detection and

tracking.
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