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Figure 1: FaceCLIPNeRF reconstructs a video of a dynamic scene of a face, and conducts face manipulation using texts

only. Manipulated faces and their depths in top and bottom rows in (b), respectively, are rendered from novel views.

Abstract
As recent advances in Neural Radiance Fields (NeRF)

have enabled high-fidelity 3D face reconstruction and novel
view synthesis, its manipulation also became an essential
task in 3D vision. However, existing manipulation meth-
ods require extensive human labor, such as a user-provided
semantic mask and manual attribute search unsuitable for
non-expert users. Instead, our approach is designed to re-
quire a single text to manipulate a face reconstructed with
NeRF. To do so, we first train a scene manipulator, a latent
code-conditional deformable NeRF, over a dynamic scene
to control a face deformation using the latent code. How-
ever, representing a scene deformation with a single latent
code is unfavorable for compositing local deformations ob-
served in different instances. As so, our proposed Position-
conditional Anchor Compositor (PAC) learns to represent

a manipulated scene with spatially varying latent codes.
Their renderings with the scene manipulator are then op-
timized to yield high cosine similarity to a target text in
CLIP embedding space for text-driven manipulation. To the
best of our knowledge, our approach is the first to address
the text-driven manipulation of a face reconstructed with
NeRF. Extensive results, comparisons, and ablation studies
demonstrate the effectiveness of our approach.

1. Introduction

Easy manipulation of 3D face representation is an

essential aspect of advancements in 3D digital human

contents[33]. Though Neural Radiance Field[21] (NeRF)

made a big step forward in a 3D scene reconstruction, many

of its manipulative methods targets color[4, 35] or rigid ge-
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ometry [46, 16, 42, 15] manipulations, which are inappro-

priate for detailed facial expression editing tasks. While a

recent work proposed a regionally controllable face editing

method [13], it requires an exhaustive process of collect-

ing user-annotated masks of face parts from curated train-

ing frames, followed by manual attribute control to achieve

a desired manipulation. Face-specific implicit representa-

tion methods [6, 48] utilize parameters of morphable face

models [37] as priors to encode observed facial expressions

with high fidelity. However, their manipulations are not

only done manually but also require extensive training sets

of approximately 6000 frames that cover various facial ex-

pressions, which are laborious in both data collection and

manipulation phases. On the contrary, our approach only

uses a single text to conduct facial manipulations in NeRF,

and trains over a dynamic portrait video with approximately

300 training frames that include a few types of facial defor-

mation examples as in Fig. 1a.

In order to control a face deformation, our method first

learns and separates observed deformations from a canon-

ical space leveraging HyperNeRF[24]. Specifically, per-

frame deformation latent codes and a shared latent code-

conditional implicit scene network are trained over the

training frames. Our key insight is to represent the defor-

mations of a scene with multiple, spatially-varying latent

codes for manipulation tasks. The insight originates from

the shortcomings of naı̈vely adopting the formulations of

HyperNeRF to manipulation tasks, which is to search for a

single latent code that represents a desired face deformation.

For instance, a facial expression that requires a combination

of local deformations observed in different instances is not

expressible with a single latent code. In this work, we de-

fine such a problem as “linked local attribute problem” and

address this issue by representing a manipulated scene with

spatially varying latent codes. As a result, our manipulation

could express a combination of locally observed deforma-

tions as seen from the image rendering highlighted with red

boundary in Fig. 2a.

To this end, we first summarize all observed deforma-

tions as a set of anchor codes and let MLP learn to compose

the anchor codes to yield multiple, position-conditional la-

tent codes. The reflectivity of the latent codes on visual

attributes of a target text is then achieved by optimizing the

rendered images of the latent codes to be close to a target

text in CLIP[28] embedding space. In summary, our work

makes the following contributions:

• Proposal of a text-driven manipulation pipeline of a

face reconstructed with NeRF.

• Design of a manipulation network that learns to repre-

sent a scene with spatially varying latent codes.

• First to conduct text-driven manipulation of a face re-

constructed with NeRF to the best of our knowledge.

(a)

(b) (c)

Figure 2: (a) Illustration of linked local attribute problem

in hyper space. Expressing scene deformation with per-

scene latent code cannot compose local facial deformation

observed in different instances. (b) Types of facial defor-

mations observed during scene manipulator training. (c)

Renderings of interpolated latent codes with a scene ma-

nipulator.

2. Related Works

NeRF and Deformable NeRF Given multiple images

taken from different views of a target scene, NeRF[21] syn-

thesizes realistic novel view images with high fidelity by

using an implicit volumetric scene function and volumet-

ric rendering scheme[12], which inspired many follow-ups

[1, 36, 20, 38, 45]. As NeRF assumes a static scene, recent

works [23, 24, 27, 17] propose methods to encode dynamic

scenes of interest. The common scheme of the works is to

train a latent code per training frame and a single latent-

conditional NeRF model shared by all trained latent codes

to handle scene deformations. Our work builds on this de-

sign choice to learn and separate the observed deformations

from a canonical space, yet overcome its limitation during

the manipulation stage by representing a manipulated scene

with spatially varying latent codes.
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Text-driven 3D Generation and Manipulation Many

works have used text for images or 3D manipulation[39,

9, 26, 11, 30, 10]. CLIP-NeRF[39] proposed a disentan-

gled conditional NeRF architecture in a generative formu-

lation supervised by text embedding in CLIP[28] space, and

conducted text-and-exemplar driven editing over shape and

appearance of an object. Dreamfields [9] performed gen-

erative text-to-3D synthesis by supervising its generations

in CLIP embedding space to a generation text. We extend

from these lines of research to initiate CLIP-driven manip-

ulation of face reconstructed with NeRF.

NeRF Manipulations Among many works that studied

NeRF manipulations[19, 46, 37, 13, 35, 34, 7, 50, 16],

EditNeRF[19] train conditional NeRF on a shape category

to learn implicit semantics of the shape parts without ex-

plicit supervision. Then, its manipulation process propa-

gates user-provided scribbles to appropriate object regions

for editing. NeRF-Editing[46] extracts mesh from trained

NeRF and lets the user perform the mesh deformation. A

novel view of the edited scene can be synthesized with-

out re-training the network by bending corresponding rays.

CoNeRF[13] trains controllable neural radiance fields using

user-provided mask annotations of facial regions so that the

user can control desired attributes within the region. How-

ever, such methods require laborious annotations and man-

ual editing processes, whereas our method requires only a

single text for detailed manipulation of faces.

Neural Face Models Several works[43, 29, 48] built 3D

facial models using neural implicit shape representation. Of

the works, i3DMM[43] disentangles face identity, hairstyle,

and expression, making decoupled components to be man-

ually editable. Face representation works based on NeRF

have also been exploited[40, 37, 48]. Wang et al.[40] pro-

posed compositional 3D representation for photo-realistic

rendering of a human face, yet requires guidance images

to extract implicitly controllable codes for facial expression

manipulation. NerFACE[37] and IMavatar[48] model the

appearance and dynamics of a human face using learned 3D

Morphable Model[2] parameters as priors to achieve con-

trollability over pose and expressions. However, the meth-

ods require a large number of training frames that cover

many facial expression examples and manual adjustment of

the priors for manipulation tasks.

3. Preliminaries
3.1. NeRF

NeRF [21] is an implicit representation of geometry and

color of a space using MLP. Specifically, given a point co-

ordinate x = (x, y, z) and a viewing direction d, an MLP

function F is trained to yield density and color of the point

as (c, σ) = F(x, d). M number of points are sampled along

a ray r = o + td using distances, {ti}Mi=0, that are collected

from stratified sampling method. F predicts color and den-

sity of each point, all of which are then rendered to predict

pixel color of the ray from which it was originated as

Ĉ(r) =
M∑

i=1

Ti(1− exp(−σiδi))ci, (1)

where δi = ti+1 − ti, and Ti = exp(−∑i−1
j=1 σjδj) is an

accumulated transmittance. F is then trained to minimize

the rendering loss supervised with correspondingly known

pixel colors.

3.2. HyperNeRF

Unlike NeRF that is designed for a static scene, HyperN-

eRF [24] is able to encode highly dynamic scenes with large

topological variations. Its key idea is to project points to

canonical hyperspace for interpretation. Specifically, given

a latent code w, a spatial deformation field T maps a point

to a canonical space, and a slicing surface field H deter-

mines the interpretation of the point for a template NeRF

F . Specifically,

x′ = T (x, w), (2)

w = H(x, w), (3)

(c, σ) = F (x′,w, d), (4)

where w ← wn ∈ {w1 · · ·wN} = W is a trainable per-

frame latent code that corresponds to each N number of

training frames. Then, the rendering loss is finally defined

as

Lc =
∑

n∈{1···N},
rn∈Rn

||Cn(rn)− Ĉn(rn)||22, (5)

where Cn(rn) is ground truth color at n-th training frame of

a ray rn and Rn is a set of rays from n-th camera. Note that

(x′,w) and H(x, w) are often referred to canonical hyper-
space and slicing surface, since x′ can be interpreted differ-

ently for different w as illustrated in Fig. 2a.

4. Proposed Method
We aim to manipulate a face reconstructed with NeRF

given a target text that represents a desired facial expres-

sions for manipulation (e.g., “crying face”, “wink eyes and
smiling mouth”). To this end, our proposed method first

trains a scene manipulator, a latent code-conditional neural

field that controls facial deformations using its latent code

(§4.1). Then, we elaborate over the pipeline to utilize a tar-

get text for manipulation (§4.2), followed by proposing an

MLP network that learns to appropriately use the learned

deformations and the scene manipulator to render scenes

with faces that reflect the attributes of target texts (§4.3).
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(b) Vanilla Inversion(a) Scene Manipulator

Train for manipulationTrained & fixed during manipulation  

(c) Position-conditional Anchor Compositor (PAC)
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Figure 3: (a) Network structure of scene manipulator G. (b) Vanilla inversion method for manipulation. (c) Position-

conditional Anchor Compositor (PAC) for manipulation.

4.1. Scene Manipulator

First, we construct a scene manipulator using

HyperNeRF[24] so that deformations of a scene can

be controlled by fixing the parameters of the scene manip-

ulator and manipulating its latent code. Specifically, we

train a dynamic scene of interest with a network formulated

as Eq.(4) following [24], after which we freeze the trained

parameters of T , H , F , and W and use w as a manipulation

handle. In addition, we empirically found that the deforma-

tion network T tends to learn rigid deformations, such as

head pose, while slicing surface field H learns non-rigid

and detailed deformations, such as shapes of mouth and

eyes. As so, we select and fix a trained latent code for T
and only manipulate a latent code fed to H . In summary,

as illustrated in Fig. 3(a), our latent code-conditional scene

manipulator G is defined as

G(x, d, w) := F̄ (T̄ (x, w̄R), H̄(x, w), d), (6)

where ·̄ represents that the parameters are trained and fixed

for manipulation, and w̄R is a fixed latent code of the de-

sired head pose chosen from a set of learned latent codes

W̄ . In the supplementary material, we report further exper-

imental results and discussions over head pose controllabil-

ity of w̄R.

Lipschitz MLP Since G is only trained to be conditioned

over a limited set of trainable latent codes W , a subspace

of w outside the learned latent codes that yields plausible

deformations needs to be formulated to maximize the ex-

pressibility of G for manipulation. Meanwhile, HyperNeRF

was shown to moderately render images from latent codes

linearly interpolated from two learned latent codes. Thus,

a valid latent subspace W can be formulated to include not

only the learned latent codes but codes linearly interpolated

between any two learned latent codes as well. Specifically,

W ⊃ {γ ∗ w̄i + (1− γ) ∗ w̄j | w̄i, w̄j ∈ W̄ ,

0 ≤ γ ≤ 1}. (7)

However, we learned that the fidelity of images from

interpolated latent codes needs to be higher to be lever-

aged for manipulation. As so, we regularize the MLPs

of the scene manipulator to be more Lipschitz continu-

ous during its training phase. Note that Lipschitz bound

of a neural network with L number of layers and piece-

wise linear functions such as ReLU can be approximated

as c =
∏L

i=1 ‖Wi‖p [18, 44], where Wi is an MLP weight

at i-th layer. Since a function f that is c-Lipschitz has the

property

‖f(w1)− f(w2)‖p ≤ c‖w1 − w2‖p, (8)

successful regularization of c would make smaller differ-

ences between outputs of adjacent latent codes, which in-

duce interpolated deformations to be more visually natural.

As so, we follow [18] and regularize trainable matrix at l-th
layer of F by introducing extra trainable parameters cl as

yl = σ(Ŵ
l
x+ bl), Ŵ

l

j = Wl
j ·min(1,

softplus(cl)

‖Wl
j‖∞

), (9)

where Wl
j is the j-th row of a trainable matrix at l-th layer

Wl, and ‖ · ‖∞ is matrix ∞-norm. Trinable Lipschitz con-

stants from the layers are then minimized via gradient-based

optimization with loss function defined as

Llip =

L∏

l=1

softplus(cl). (10)

In summary, networks in Eq. (4) are trained to retrieve

F̄ , T̄ , H̄ , and W̄ using our scene manipulator objective

function
LSM = λcLc + λlipLlip, (11)

where λc and λlip are hyper-parameters.

4.2. Text-driven Manipulation

Given a trained scene manipulator G, one manipulation

method is to find a single optimal latent code w whose ren-

dered image using G yields the highest cosine similarity

with a target text in CLIP[28] embedding space, so that the
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manipulated images can reflect the visual attributes of a tar-

get text. Specifically, given images rendered with G and w
at a set of valid camera poses [R|t] as IG,w

[R|t] and a target text

for manipulation p, the goal of the method is to solve the

following problem:

w∗ = argmax
w

DCLIP(IG,w
[R|t], p), (12)

where DCLIP measures the cosine similarity of features be-

tween rendered images and a target text extracted from pre-

trained CLIP model.

As illustrated in Fig. 3b, a straightforward vanilla ap-

proach to find an optimal latent embedding w∗ is inversion,

a gradient-based optimization of w that maximizes Eq.(12)

by defining a loss function as LCLIP = 1−DCLIP(IG,w
[R|t], p).

However, we show that this method is sub-optimal by show-

ing that it inevitably suffers from what we define as a linked
local attributes problem, which we then solve with our pro-

posed method.

Linked local attribute problem Solutions from the

vanilla inversion method are confined to represent deforma-

tions equivalent to those from W . However, W cannot rep-

resent all possible combinations of locally observed defor-

mations, as interpolations between two learned latent codes,

which essentially comprise W , cause facial attributes in dif-

ferent locations to change simultaneously. For example,

consider a scene with deformations in Fig. 2b and render-

ings of interpolations between two learned latent codes in

Fig. 2c. Not surprisingly, neither the learned latent codes

nor the interpolated codes can express opened eyes with

opened mouth or closed eyes with a closed mouth. Simi-

lar experiments can be done with any pair of learned latent

codes and their interpolations to make the same conclusion.

We may approach this problem from the slicing surface

perspective of canonical hyperspace introduced in Sec. 3.2.

As in Fig. 2a, hyperspace allows only one latent code to rep-

resent an instance of a slicing surface representing a global

deformation of all spatial locations. Such representation

causes a change in one type of deformation in one loca-

tion to entail the same degree of change to another type of

deformation in different locations during interpolation.

Our method is motivated by the observation and is there-

fore designed to allow different position x to be expressed

with different latent codes to solve the linked local attribute

problem.

4.3. Position-conditional Anchor Compositor

For that matter, Position-conditional Anchor Composi-

tor (PAC) is proposed to grant our manipulation pipeline

the freedom to learn appropriate latent codes for different

spatial positions.

Specifically, we define anchor codes {w̄A
1 , · · · w̄A

K} =
W̄A ⊂ W̄ , a subset of learned latent codes where each rep-

Figure 4: Illustration of barycentric interpolation of latent

codes for validly expressive regions when K = 3.

resent different types of observed facial deformations, to set

up a validly explorable latent space as a prior. We retrieve

anchor codes by extracting facial expression parameters us-

ing DECA[5] from images rendered from all codes in W̄
over a fixed camera pose. Then, we cluster the extracted ex-

pression parameters using DBSCAN[3] and select the latent

code corresponding to the expression parameter closest to

the mean for each cluster. For instance, we may get K = 4
anchor codes in the case of the example scenes in Fig. 1a

and Fig. 2b.

Then for every spatial location, a position-conditional

MLP yields appropriate latent codes by learning to com-

pose these anchor codes. By doing so, a manipulated scene

can be implicitly represented with multiple, point-wise la-

tent codes. Specifically, the anchor composition network

P : R
(3+dw) → R

1 learns to yield w∗
x for every spatial

position x via barycentric interpolation[8] of anchors as

α̂[x,k] = P (x ⊕ w̄A
k ), w∗

x =
∑

k

σk(α̂[x,k])w̄
A
k , (13)

where dw is the dimension of a latent code, ⊕ is concatena-

tion, and σk is softmax activation along k network outputs.

Also, denote α[x,k] = σk(α̂[x,k]) as anchor composition ra-

tio (ACR) for ease of notation. As in the illustrative exam-

ple in Fig. 4, the key of the design is to prevent the com-

posited code from diverging to extrapolative region of the

latent. Thus, barycentric interpolation defines a safe bound

of composited latent code for visually natural renderings.

Finally, a set of points that are sampled from rays pro-

jected at valid camera poses and their corresponding set of

latent codes [w∗
x ] are queried by G, whose outputs are ren-

dered as images to be supervised in CLIP embedding space

for manipulation as

LCLIP = 1−DCLIP(IG,[w∗
x ]

[R|t] , p), (14)

Total variation loss on anchor composition ratio As,

the point-wise expressibility of PAC allows adjacent latent

codes to vary without mutual constraints, P is regularized

with total variation (TV) loss. Smoother ACR fields al-

lows similar latent embeddings to cover certain facial po-
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“wink eyes and 
smiling mouth”

“closed eyes and 
smiling mouth”

“closed, frowning eyes and 
smiling mouth”

“frowning eyes and 
pursed lips”

“closed eyes and 
pursed lips”

“closed, frowning eyes and 
closed mouth”

“wink eyes and 
widely opened mouth”

Reference

“opened eyes and 
smiling mouth”

“opened eyes and 
widely opened mouth”

“frowning eyes and 
closed mouth”

“wink, frowning eyes and 
closed mouth”

Figure 5: Qualitative results manipulated with descriptive

texts using our method. Local facial deformations can eas-

ily be controlled using texts only.

sitions to yield more naturally rendered images. Specifi-

cally, α[x,k] is rendered to valid camera planes using the

rendering equation in Eq. (1) for regularization. Given a

ray ruv(t) = o + tduv , ACR can be rendered for each an-

chor k at an image pixel located at (u, v) of a camera plane,

and regularized with TV loss as

α̃kuv =
M∑

i=1

Ti(1− exp(−σiδi))α[ruv(ti),k], (15)

LACR =
∑

k,u,v

‖α̃k(u+1)v − α̃kuv‖2 + ‖α̃ku(v+1) − α̃kuv‖2.

(16)

In summary, text-driven manipulation is conducted by

optimizing P and minimizing the following loss

Ledit = λCLIPLCLIP + λACRLACR (17)

where λCLIP and λACR are hyper-parameters.

5. Experiments
Dataset We collected portrait videos from six volun-

teers using Apple iPhone 13, where each volunteer was

asked to make four types of facial deformations shown in

Fig. 1a and Fig. 2b. A pre-trained human segmentation

network was used to exclude descriptors from the dynamic

part of the scenes during camera pose computation using

COLMAP[32]. Examples of facial deformations observed

Figure 6: Text-driven manipulation results of our method

and the baselines. Our result well reflects the implicit at-

tributes of target emotional texts while preserving visual

quality and face identity.

during training for each scene are reported in the supple-

mentary material.

Manipulation Texts We selected two types of texts for

manipulation experiments. First is a descriptive text that

characterizes deformations of each facial parts. Second

is an emotional expression text, which is an implicit rep-

resentation of a set of multiple local deformations on all
face parts hard to be described with descriptive texts. We

selected 7 frequently used and distinguishable emotional

expression texts for our experiment: ”crying”, ”disap-
pointed”, ”surprised”, ”happy”, ”angry”, ”scared” and

”sleeping”. To reduce text embedding noise, we followed

[25] by averaging augmented embeddings of sentences with

identical meanings.

Implementation details P in PAC is comprised of MLP

with depth of 6 and width of 64 with ReLU activations. Op-

timizations for both training and manipulation were con-

ducted using Adam[14] on a single NVIDIA A100 GPU.

Gradient calculations per image require computations from

all sampled points over rays projected from all pixels, which

causes GPU memory issue. As so, we set the training frame

resolution to 240x135, and computed gradients to random

portions of rays per iteration following [49]. constructing

several sentences with identical meanings and use the aver-

age of their CLIP embeddings.

Baselines Since there is no prior work that is parallel to

our problem definition, we formulated 3 baselines with ex-

isting state-of-the-art methods for comparisons: (1) NeRF

+FT is a simple extension from NeRF [21] that fine-tunes
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Figure 7: Extensive face manipulation results driven by a set of frequently used emotional expression texts using our method.

Manipulating to emotional expression texts are challenging, as they implicitly require compositions of subtle facial deforma-

tions that are hard to be described. Our method reasonably reflects the attributes of the manipulation texts.

the whole network using CLIP loss, (2) Nerfies+I uses

Nerfies[23] as a deformation network followed by conduct-

ing vanilla inversion method introduced in Sec. §4.2 for

manipulation, and (3) HyperNeRF+I replaces Nerfies in (2)

with HyperNeRF [24].

Text-driven Manipulation We report qualitative manip-

ulation results of our methods driven with a set of descrip-

tive sentences in Fig. 5. Our method not only faithfully re-

flects the descriptions, but also can easily control local fa-

cial deformations with simple change of words in sentences.

We also report manipulated results driven by emotional ex-

pression texts in Fig. 7. As can be seen, our method con-

ducts successful manipulations even if the emotional texts

are implicit representations of many local facial deforma-

tions. For instance, result manipulated with ”crying” in first

row of Fig. 7 is not expressed with mere crying-looking eyes

and mouth, but also includes crying-looking eyebrows and

skin all over the face without any explicit supervision on lo-

cal deformations. We also compare our qualitative results

to those from the baselines in Fig. 6. Ours result in the

highest reflections of the target text attributes. NeRF+FT
shows significant degradation in visual quality, while Ner-

fies+I moderately suffers from low reconstruction quality

and reflection of target text attributes. HyperNeRF+ I shows

the highest visual quality out of all baselines, yet fails to re-

flect the visual attributes of target texts.

High reflectivity on various manipulation texts can be at-

R-Prec.[41] ↑ LPIPS[47] ↓ CFS ↑
NeRF + FT 0.763 0.350 0.350

Nerfies + I 0.213 0.222 0.684

HyperNeRF + I 0.342 0.198 0.721

Ours 0.780 (+0.017) 0.082 (-0.116) 0.749 (+0.028)

Table 1: Quantitative results. R-Prec. denotes R-precision,

and CFS denotes cosine face similarity. We notate perfor-

mance ranks as best and second best.

TR ↑ VR ↑ FP ↑
NeRF + FT 2.85 0.18 0.79

Nerfies + I 0.33 3.61 4.03

HyperNeRF + I 2.52 4.42 4.39

Ours 4.15 (+1.30) 4.58 (+0.16) 4.67 (+0.28)

Table 2: User study results. TR, VR, and FP denote text

reflectivity, visual realism, and face identity preservability,

respectively. Best and second best are highlighted.

tributed to PAC that resolves the linked local attribute prob-

lem. In Fig. 8, we visualize α̃kuv for each anchor code k,

which is the rendering of ACR α[x,k] in Eq. (15), over an

image plane. Whiter regions of the renderings are closer

to one, which indicates that the corresponding anchor code

is mostly composited to yield the latent code of the region.

Also, we display image renderings from each anchor code
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Figure 8: Renderings of learned ACR maps for each anchor

codes over different manipulation texts.

on the left to help understand the local attributes for each

anchor code. As can be seen, PAC composes appropriate

anchor codes for different positions. For example, when

manipulating for sleeping face, PAC reflects closed eyes

from one anchor code and neutral mouth from other anchor

codes. In the cases of crying, angry, scared, and disap-
pointed face, PAC learns to produce complicated composi-

tions of learned deformations, which are inexpressible with

a single latent code.

Quantitative Results First of all, we measured R-

precision[41] to measure the text attribute reflectivity of

the manipulations. We used facial expression recogni-

tion model[31] pre-trained with AffectNet[22] for top-R

retrievals of each text. Specifically, 1000 novel view im-

ages are rendered per face, where 200 images are rendered

from a face manipulated with each of the five texts that

are distinguishable and exist in AffectNet labels: ”happy”,

”surprised”, ”fearful”, ”angry”, and ”sad”. Also, to es-

timate the visual quality after manipulation, we measured

LPIPS[47] between faces with no facial expressions (neu-

tral faces) without any manipulations and faces manipu-

lated with 7 texts, each of which are rendered from 200

novel views. Note that LPIPS was our best estimate of vi-

sual quality since there can be no pixel-wise ground truth of

text-driven manipulations. Lastly, to measure how much of

the facial identity is preserved after manipulation, we mea-

sured the cosine similarity between face identity features1

extracted from neutral faces and text-manipulated faces, all

1https://github.com/ronghuaiyang/arcface-pytorch

Figure 9: Renderings from linearly interpolated latent

codes. Lipschitz-regularized scene manipulator interpolates

unseen shapes more naturally.

Figure 10: (a) Qualitative results of the ablation study. Ma-

nipulations are done using ”crying face” as target text. (b)

Rendered ACR maps with and without LACR.

of which are rendered from 200 novel views. Table 1 re-

ports the average results over all texts, which shows that

our method outperforms in all criteria.

User Study Users were asked to score from 0 to 5 on 3

criteria; (i) Text Reflectivity: how well the manipulated ren-

derings reflect the target texts, (ii) Visual Realism: how re-

alistic do the manipulated images look, and (iii) Face iden-

tity Preservability: how well do the manipulated images

preserve the identity of the original face, over our method

and the baselines. The following results are reported in Ta-

ble. 2. Our method outperforms all baselines, and espe-

cially in text reflectivity by a large margin. Note that the

out-performance in user responses align with that from the

quantitative results, which supports the consistency of eval-

uations.

Interpolation We experiment with the effect of Lipschitz

regularization on the scene manipulator by comparing the

visual quality of images rendered from linearly interpolated

latent codes, and report the results in Fig. 9. Lipschitz-

regularized scene manipulator yields more visually nat-

ural images, which implies that learned set of anchor-

composited latent codes [w∗
x ] are more likely to render re-

alistically interpolated local deformations under Lipschitz-

regularized scene manipulator.
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Ablation Study We conducted an ablation study on our

regularization methods: Llip and LACR. As shown in

Fig. 10a, manipulation without Llip suffers from low visual

quality. Manipulation without LACR yields unnatural ren-

derings of face parts with large deformation range such as

mouth and eyebrows. This can be interpreted with learned

ACR maps of PAC in Fig. 10b. ACR maps learned with

LACR introduces reasonable continuities of latent codes on

boundaries of the dynamic face parts, thus yielding natu-

rally interpolated face parts.

6. Conclusion
We have presented FaceCLIPNeRF, a text-driven ma-

nipulation pipeline of a 3D face using deformable NeRF.

We first proposed a Lipshitz-regularized scene manipula-

tor, a conditional MLP that uses its latent code as a control

handle of facial deformations. We addressed the linked lo-

cal attribute problem of conventional deformable NeRFs,

which cannot compose deformations observed in different

instances. As so, we proposed PAC that learns to produce

spatially-varying latent codes, whose renderings with the

scene manipulator were trained to yield high cosine simi-

larity with target text in CLIP embedding space. Our ex-

periments showed that our method could faithfully reflect

the visual attributes of both descriptive and emotional texts

while preserving visual quality and identity of 3D face.
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