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Abstract

Text-to-video retrieval systems have recently made sig-
nificant progress by utilizing pre-trained models trained on
large-scale image-text pairs. However, most of the latest
methods primarily focus on the video modality while disre-
garding the audio signal for this task. Nevertheless, a recent
advancement by ECLIPSE has improved long-range text-to-
video retrieval by developing an audiovisual video repre-
sentation. Nonetheless, the objective of the text-to-video
retrieval task is to capture the complementary audio and
video information that is pertinent to the text query rather
than simply achieving better audio and video alignment. To
address this issue, we introduce TEFAL, a TExt-conditioned
Feature ALignment method that produces both audio and
video representations conditioned on the text query. Instead
of using only an audiovisual attention block, which could
suppress the audio information relevant to the text query,
our approach employs two independent cross-modal atten-
tion blocks that enable the text to attend to the audio and
video representations separately. Our proposed method’s
efficacy is demonstrated on four benchmark datasets that
include audio: MSR-VTT, LSMDC, VATEX, and Charades,
and achieves better than state-of-the-art performance con-
sistently across the four datasets. This is attributed to the
additional text-query-conditioned audio representation and
the complementary information it adds to the text-query-
conditioned video representation.

1. Introduction
The emergence of online streaming services has led to

an enormous and rapidly growing collection of multimedia
assets comprising video and audio. Retrieving semantically
similar content in these assets is crucial for finding infor-
mation of interest, making it an important aspect of major
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Figure 1. Comparison of our method with the current methods,
text-to-video retrieval with (A) video only, (B) audio-video fu-
sion and (C) proposed text-conditioned audio-video alignment
(TEFAL).

streaming platforms. Text-to-video retrieval is a common
approach to achieve this goal, whereby video content that
best matches a textual description is searched for by learn-
ing a joint latent space for text and video representations.
This space allows the text modality input to be matched
with the video modality, enabling the closest videos to be
found through a distance metric.

The rise of large-scale transformer models of vision and
language has led to the development of many multimodal
transformer-based architectures that are commonly evalu-
ated on the text-to-video retrieval task. These architectures
can either be pre-trained on large-scale multimodal datasets
from scratch or use existing pre-trained models, such as
CLIP [29], as starting points or frozen backbones. One
of the earliest CLIP-based model architectures, CLIP4Clip
[26], shows a significant improvement in performance com-
pared to previous state-of-the-art methods [3, 19, 21] on
common text-to-video retrieval benchmarks. By utilizing
only a few video frames per video and a simple tech-
nique to aggregate the frame embeddings for each video,
CLIP4Clip demonstrated the utility of a 2D vision trans-
former to outperform model architectures using 3D videos
as input. Since then, many other works have been built upon
this baseline approach with novel ways of cross-attention
[16], pretext tasks [12], prompting [20], and other archi-
tectural modifications. Recently, significant improvements
have been obtained by incorporating post-processing tech-
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Figure 2. The audio signal can play a significant role in text-to-
video retrieval. For instance, consider a textual description that
mentions the fourth successful basket, which cannot be retrieved
from the visual information alone. However, the spoken words in
the video also contain the number four and can be matched to the
query. Additionally, sounds of the basketball can further confirm
the sport being played.

niques, such as Querybank Normalization [6].
Most of the existing text-to-video retrieval models only

consider the correspondence between text and video, as vi-
sualized in Figure 1(A), despite the fact that most videos
also contain an audio track. As shown in Figure 2, audio can
be related to actions, events, objects, and words in the cap-
tion, indicating that the audio signal could be beneficial for
the task of text-to-video retrieval. Although the use of other
modalities for text-to-video retrieval, including audio, has
been studied in [33], their results showed no improvement
compared to the video-only setting. Recently, ECLIPSE
[22] successfully accounted for audio in the video repre-
sentation by aligning audio and video using cross-modality
attention, demonstrating its benefits for long-range text-to-
video retrieval.

However, solely embedding the audio features for bet-
ter video representations may not optimize the objective
of text-to-video retrieval, which is to capture complemen-
tary audio and video information relevant to the text query.
Videos can contain sounds that are not strongly correlated
with the visual content, such as a gunshot without a visible
gun in the video, as well as other types of off-screen sounds.
If audio and video are processed jointly, important audio
cues that are relevant to the text query but not visible in the
video might be suppressed. To address this issue, we pro-
pose TEFAL, a framework that generates text-conditioned
representation of both video and audio to achieve effective
audio-enhanced text-to-video retrieval, as depicted in Fig-

ure 1.
We use the CLIP [29] model as the video and text feature

extractor and the AST [15] model as the audio feature ex-
tractor in our approach. The text feature serves as a crucial
link between the video and audio representations, acting as
the query in the calculation for cross-attention. Meanwhile,
the video and audio features are used for key and value com-
putations. To simplify matters, the two aligned feature types
are combined to produce the final audio-enhanced video
representation. We conducted extensive experiments on
various datasets that include audio, such as MSR-VTT [41],
LSMDC [32], VATEX [39], and Charades [34]. Our pro-
posed audio-enhanced text-conditioned feature alignment
method consistently outperforms existing methods. Specif-
ically, our method improves the Recall@1 by over 4% com-
pared to ECLIPSE on the MSR-VTT dataset.

Our key contributions are summarised as follows:

• We propose a text-conditioned feature alignment ap-
proach for audio-enhanced text-to-video retrieval. We
are the first to do so and we explain why this approach
is more suitable for this task than audiovisual align-
ment. To achieve this, we utilise two independent
cross-modal attention blocks for the text to attend to
the audio and video representations.

• We conducted extensive experiments on several bench-
mark datasets that include audio, namely MSR-VTT,
LSMDC, VATEX, and Charades. Our results demon-
strate state-of-the-art performance in text-to-video re-
trieval when compared with the best previously pub-
lished results.

2. Related Work
Our proposed method is closely related to text-to-video

retrieval, multimodal video learning and audio-based mul-
timodal learning. In the following we go over some of the
main works in these three directions and more comprehen-
sive works are referred to in the survey papers [4, 5].

2.1. Text-to-Video Retrieval

The text-to-video retrieval task has gained significant at-
tention in recent years [3, 10, 11, 14, 18, 19, 24, 25, 27, 33,
40, 44, 46], where the goal is to retrieve relevant videos by a
text query from a database of video clips. Prevailing works
usually leverage model architectures pre-trained on large-
scale text-to-video or text-image datasets [3, 19, 44, 46].
Upon the release of the CLIP model [29], which consists
of strong image and text backbones pre-trained on 400M
image-text pairs, sparse sampling approaches started to gain
popularity and achieved high performance with the release
of CLIP4Clip [26]. Since then, many text-to-video retrieval
methods have taken CLIP and GPT [7, 12, 20, 27, 30, 31]
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backbones as main components and improved by introduc-
ing e.g. new cross-modal fusion [16] and token selection
[25]. Our method also takes advantages of the pre-trained
text-video models for robust feature extractions.

2.2. Multimodal Video Learning

Multimodal video models focus on a wide range of
tasks, such as visual commonsense reasoning, visual ques-
tion answering, activity recognition and text-to-video re-
trieval [42]. Li et al. [21] proposed to learn a hierarchi-
cal structure where the local context of a video frame is en-
coded first by a cross-modal transformer, followed by a tem-
poral transformer to learn global video context embeddings.
Contrary to works that use dense sampling of video frames
and 3D features, ClipBERT [19] introduced a pipeline that
uses sparse sampling of video frames and simple 2D visual
architectures during training.

2.3. Audio in Multimodal Learning

Including the audio modality has been a topic of re-
search in multimodal works. Merlot Reserve [43] in-
cluded the audio modality in large scale pre-training and de-
signed a new contrastive mask training task where both text
and audio are masked out. The Video-Audio-Text Trans-
former (VATT) [1] is a convolution-free transformer archi-
tecture that can process multiple modalities including au-
dio. Multimodal Versatile Networks [2] presents a self-
supervised multimodal learning strategy. For text-to-video
retrieval, [23, 28, 40] integrated audio in the pipeline by us-
ing NetVLAD as an approach to aggregate audio features.
MEE [28] uses a scalar product between the text and audio
feature and CE [23] uses a MLP to model the pairwise rela-
tion between text and audio. T2VLAD [40] uses a global-
local alignment approach where clustering is used for the
local alignment without explicitly conditioning on the text.

More recently, Shvetsova et al. [33] designed a multi-
modal fusion transformer that processes input from a com-
bination of modalities. However, for text-to-video retrieval
it claims that the fusion of video and audio modalities in
their setup is not beneficial compared to only using visual
information in a zero-shot setting. To the best of our knowl-
edge, ECLIPSE [22] is the first method to show the ben-
efit of including audio in text-to-video retrieval in combi-
nation with strong pre-trained backbones. It introduces a
symmetrical type of cross-attention for video and audio to
align both modalities and shows its effectiveness in long-
range video retrieval. In this work, we do not focus on the
alignment between audio and video, but on the alignment
between text-audio and text-video simultaneously. By ex-
tensive ablation studies, we show that it is not straightfor-
ward to combine the audio modality with other modalities
for text-to-video retrieval, but we present a simple and ef-
fective text-conditioned feature alignment method to boost

the performance by using audio.

3. Method
In this section, we describe our proposed method TEFAL

to achieve TExt-conditioned Feature ALignment for audio-
enhanced text-to-video retrieval. We evaluated multiple
model architectures and the best results across several
datasets were achieved by using two independent cross-
modal attention blocks for the text to attend to the audio
and video representations. The final representation of both
the audio and video content are derived independently by
conditioning on the text attention weights estimated in the
corresponding cross-modal attention blocks. The complete
model architecture, training setup and evaluation setup is
presented in Figure 3. We explain our key insights in 3.1,
followed by our overall architecture in 3.2.

3.1. Key Insight: Text-conditioned Feature Align-
ment

In most existing works, to achieve the multi-modality fu-
sion, audio-video feature alignment is performed with direct
feature fusion [38] and more recently with cross-modal at-
tention mechanisms [22].

For the task of text-to-video retrieval, the goal is to align
the text and video features in a joint latent space. How-
ever, the text is in general less expressive than the video
and corresponds to a subset of the information provided by
the video. Therefore, for text-to-video retrieval, the video
representation would be better estimated conditioned on the
text query to emphasize the aspects of the video which are
more relevant to the text.

With these insights, our method, TEFAL, aligns the
video frame tokens with text guidance in a text-video cross-
attention block. Similar to [16], the video frame embed-
dings (∈ RF×Dp ) are the key and value inputs and the
text embedding (∈ R1×Dp ) is the query input to the cross-
attention computation, where Dp is the embedding dimen-
sion of the respective features. Here, the cross-attention
computation aims to condition the video frame tokens rep-
resentation on the text query to obtain a weighted fusion
based on the similarity between text and video frames.
More importantly, the text tokens perform weighted token
fusion in the frame dimension (F ) to select the frames most
similar to each of the text tokens.

Further, the audio modality in a video contains infor-
mation key to identify the video itself. Thus, similar to
the previously discussed cross-attention processing of video
frames, our method aligns the audio tokens with the text
query in a text-audio cross-attention block. Here, the au-
dio embedding (∈ RNa×Dp ) is the key and value input and
the same text embedding as above is the query input to the
cross-attention computation. The cross-attention computa-
tion aims to weigh the tokens in the audio embedding to
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Figure 3. The model architecture of our method TEFAL is presented in the left of the figure. The highlighted tokens from the encoders
are the F CLS tokens for video frames, one CLS token for the text caption and Na patch embeddings from the audio encoder. Query,
Key and Value projections are created from these tokens and are used in the cross-attention blocks. These cross-attention blocks give us a
text-conditioned video embedding and audio embeddings, which are fused through summation and used during training and evaluation, as
presented on the right of the figure.

perform weighted fusion conditioned on the text representa-
tion. In the text-audio cross-attention, the representation of
the audio tokens, corresponding to the input patches from
the audio signal spectrogram, are updated conditioned on
the text query.

3.2. Overall Architecture

Inspired by the works of [16, 26], we bootstrap from joint
image and text models. More specifically, we build on the
CLIP [29] model as our text and video frame backbone and
Audio Spectrogram Transformer (AST) [15] as our audio
backbone to obtain feature embeddings. For a single text-
video pair, given a text description T , a video V with F
video frames and an audio signal A, we compute their fea-
ture embeddings as follows:
Video and Text Features For each video frame vf we com-
pute features for Nv patches uniformly sampled in the spa-
tial dimension. The text description for a video can vary in
length and contains Nt words. The CLIP model outputs a
video frame embedding ∈ R(Nv+1)×D and a text embed-
ding ∈ R(Nt+1)×D, where the additional token is the class
token ECLS

V and ECLS
T for video and text inputs, respec-

tively. As the final video embedding EV , we use F CLS
tokens ECLS

V , one token for each video frame, and for text
embedding ET , one single text token ECLS

T that represents
the query embedding.
Audio Features To compute audio features, the Mel-
spectrogram features of the audio signal A is passed as input

to the encoder. We utilize the recent AST encoder model
[15] which demonstrated a strong performance in the audio
classification task. From each spectrogram, Na patches are
produced from adjacent overlapping windows to give a final
set of ∈ R(Na+2)×D tokens. For input audio embedding EA

to the cross-attention component, we use Na patch embed-
dings and discard the two additional tokens, the CLS token
(ECLS

A ) and the distillation token (Edist
A ).

Text-conditioned Audio and Video Representations The
CLS token is well understood to have fused information
from all other tokens [15, 35]. We utilize the CLS to-
ken as the final feature embedding for the video frame and
the text input. The text-video cross-attention selects text-
video frame similarity and takes the entire set of F frames
∈ RF×D as input. Similar to the text-video cross-attention,
the text-audio cross-attention selectively fuses audio patch
embeddings based on the importance of the parts in the au-
dio signal. Thus, we use all the Na tokens.

The final feature embeddings are projected into a com-
mon latent space, where the projections are defined as:

QT = LN(ET
T )WQ

KV = LN(EV )WK

VV = LN(EV )WV

↔
Q′

T = LN(ET
T )W

′
Q

K ′
A = LN(EA)W

′
K

V ′
A = LN(EA)W

′
V

(1)

where the learned weight matrices WQ,WK ,WV ∈
RD×Dp and W ′

Q,W
′
K ,W ′

V ∈ RD×Dp project the final em-
beddings from RD to RDp . LN stands for LayerNorm.
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The text query attends to the audio and video features via
the scaled dot product attention (XAttn),

XAttn(QT ,KV , VV ) = softmax

(
QTK

T
V√

Dp

)
VV

XAttn(Q′
T ,K

′
A, V

′
A) = softmax

(
Q′

TK
′
A
T√

Dp

)
V ′
A

(2)

In the text-video cross-attention, the text query attends
to the per-frame video tokens in the key input and selec-
tively fuses based on similarity between text and video to-
kens. Similarly, in text-audio cross-attention, the text query
attends to the audio tokens from the full audio input and
fuses based on similarity between text and audio tokens.

To get the final text conditioned audio and video embed-
dings, we project the cross-attention based output to the fi-
nal output space via a weight matrix WO.

EV |T = LN(XAttn(QT ,KV , VV )WO)

EA|T = LN(XAttn(Q′
T ,K

′
A, V

′
A)W

′
O)

(3)

The joint embedding E(V,A)|T for a single video is ob-
tained by a simple addition of the text conditioned audio
EA|T and video embedding EV |T . In Section 4.3.3 we will
further elaborate on the effectiveness of this simple fusion
method and make an experimental comparison with other
potentially suitable fusion methods.
Text-to-Video Retrieval. The final fused embedding
E(V,A)|T is compared with the text query embedding ET ,
which is the text CLS token ECLS

T , via cosine similarity
with the help of the following loss.
Loss. Our model is trained by using the infoNCE loss, a
loss which is commonly used for contrastive learning since
[36] and later more specifically for training with image-text
pairs such as in CLIP [29]. Consider having K text and
video-audio embedding pairs {(Ei

T , E
i
(V,A)|T }

K
i=1. The in-

foNCE loss is applied on these pairs where a matching text
caption and video are seen as a positive sample and all other
caption-video combinations in the batch are seen as nega-
tives. We optimize this loss in a symmetric way by using
two losses, a text-to-video (t2v) and video-to-text (v2t) re-
trieval loss and taking the sum of these two as the total loss.

Lt2v = − 1

B

B∑
i=1

log
exps(E

i
T ,Ei

(V,A)|T )·τ∑B
j=1 exp

s(Ei
T ,Ej

(V,A)|T )·τ
(4)

Lv2t = − 1

B

B∑
i=1

log
exps(E

i
T ,Ei

(V,A)|T )·τ∑B
j=1 exp

s(Ej
T ,Ei

(V,A)|T )·τ
(5)

L = Lt2v + Lv2t (6)

where s(Ei
T , E

j
(V,A)|T ) is the cosine similarity between

the text embedding Ei
T and the fused audiovisual feature

Ej
(V,A)|T , B is the batch size and τ is a learnable scaling

parameter, also known as the temperature. By bootstrap-
ping from a pre-trained CLIP model and through our cross-
modal attention mechanism, training with this loss enables
our model to learn to match a text with its most semantically
similar sub-regions of the ground-truth video.

4. Experiments
We perform experiments on benchmark datasets for text-

to-video retrieval that include audio tracks, and evaluate
our performance following existing literature [16] and re-
port the Recall@1 (R1), Recall@5 (R5), Recall@10 (R10),
Median Rank (MdR), and Mean Rank (MnR) scores.

4.1. Datasets

MSR-VTT [41] is considered as the most common dataset
for text-to-video retrieval and the videos come with an audio
track, consisting of 10,000 web video clips between 10-32
seconds. The dataset has two commonly used splits: one
with 7k training videos and one with 9k, resulting in 140k
and 180k video-caption pairs, respectively. Both splits use
the same evaluation set of 1000 video-caption pairs. We
report results on both splits. Similar to [17, 22, 33], we use
the audio signals that are provided with the videos. 8,811 of
the 10,000 videos have the audio track.
LSMDC [32] contains 118,081 video clips from movies
each paired with a single caption description. The lengths
of videos range from 2 to 30 seconds. 101,079 videos are
used for training, 7,408 for validation and 1,000 for testing,
following the setting of X-Pool [16].
VATEX [39] contains 34,991 video clips with multiple cap-
tions per video. We follow the HGR [8] split protocol.
There are 25,991 videos in the training set, 1,500 videos
in the validation set and 1,500 videos in the test set. This
dataset is regarded as one long-range video dataset.
Charades [34] contains 9,848 videos with one textual de-
scription per video. The average video length is 28 seconds.
We follow [22] in their train and test setup.

4.1.1 Data Preprocessing

We leverage pre-trained backbones as baselines to further
improve our model’s performance. The AST backbone is
pre-trained on datasets where all audio files have the same
duration. Correspondingly, both the frame shift fshift in
the windowed Fourier transform and the target length Ltar

of the Mel Filter Bank (MFB) features are fixed. The
CLIP video encoder, however, is pre-trained on datasets
where videos have varying duration, and uniformly sampled
frames from videos. To reconcile the mismatch between
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Method Modality R1 ↑ R5 ↑ R10 ↑ MdR ↓ MnR ↓
X-Pool [16] V 43.9 72.5 82.3 2.0 14.6
X-Pool [16] A 5.6 14.7 21.3 109.0 157.4

TEFAL A + V 48.1 73.8 82.8 2.0 12.1
Table 1. Results on MSR-VTT 7k that confirm the potential of
audio as an additional signal for the text-to-video retrieval task.
By using audio without the corresponding video, we show that a
correspondence between text and audio can be learned. M denotes
Modalities. V and A represent Video and Audio, respectively.

the two preprocessings, we adaptively set the frame shift of
MFB in audio preprocessing so that MFB features are uni-
formly sampled from the audio signal and that MFB feature
length is fixed across samples. The frame shift used in the
filter bank calculation depends on the audio length. Specif-
ically, the frame shift fshift in milliseconds is calculated as
fshift = nfrm · 1000/(sr · Ltar), where nfrm is the num-
ber of sampled audio frames, sr is the sampling rate in Hz
and Ltar is the target audio filter bank length.

4.2. Implementation Details

For the AST model, we use a data efficient image trans-
former DeiT [35] model, pre-trained on ImageNet and Au-
dioSet [13]. We finetune this on the audio files from the
MSR-VTT dataset. Whenever a video does not have an au-
dio file, we set the filter bank to a zero vector.

In our implementation, we set the embedding and projec-
tion dimensions as 512 (D = Dp = 512). We set the num-
ber of video frames F to 12 for MSR-VTT and LSMDC
and to 32 for VATEX and Charades, similar to X-Pool [16]
and ECLIPSE. The final video input to the cross-attention
module has 12 or 32 tokens of 512 dimensions depending
on the dataset. For the audio signal, we use audio sam-
pling rate sr = 16k and set the target length Ltar = 1024,
which is the same as that used in ImageNet and AudioSet
pretraining. The final patch embeddings that are input to the
cross-attention block have 1212 tokens of 512 dimensions.

During finetuning we use a simplified strategy compared
to the original AST [15] and disable mixup and spectrogram
masking. Our models with a ViT-B/32 backbone are trained
with batch size 12 on a single A100 GPU and require 1 day
of training time. Our models with a ViT-B/16 backbone are
trained on 8 V100 GPUs with a batch size of 32.

4.3. Experimental Results and Analysis

4.3.1 Main Results

In Table 1, we present the results that support the motivation
of our approach. First we evaluate on text-to-video and text-
to-audio retrieval separately on MSR-VTT 7k. Although
the results on text-to-audio retrieval are lower, R1 of 5.6%
compared to text-to-video retrieval result, R1 of 43.9%, we
see that combining the modalities for audio enhanced text-

Method R1 ↑ R5 ↑ R10 ↑ MdR ↓ MnR ↓
Everything at once† [33] - 62.7 75.0 - -
ALPRO* [20] 33.9 60.7 73.2 3.0 -
CLIP4ClipmeanP [26] 42.1 71.9 81.4 2.0 16.2
ECLIPSEmeanP † [22] 43.2 71.5 81.9 2.0 15.9
CenterCLIP [45] 43.7 71.3 80.8 2 16.9
X-Pool[16] 43.9 72.5 82.3 2.0 14.6

TEFAL 48.1 73.8 82.8 2.0 12.1
Table 2. This table presents the results on MSR-VTT 7k. All mod-
els use ViT-B/32 backbones that are pre-trained on WebImageText.
* indicates that the model is pre-trained on 5.5M additional text-
image and text-video pairs [29]. † indicates that audio is used. -
denotes that the value was not reported in the original paper.

Method R1 ↑ R5 ↑ R10 ↑ MdR ↓ MnR ↓
ViT-B/32 (backbone)

CLIP4ClipmeanP [26] 43.1 70.4 80.8 2.0 15.3
CenterCLIP [45] 44.2 71.6 82.1 2 15.1
ECLIPSEmeanP † [22] 44.9 71.3 81.6 2.0 15.0
BridgeFormer*[12] 44.9 71.9 80.3 2.0 15.3
X-CLIP[27] 46.1 73.0 83.1 2.0 13.2
X-Pool[16] 46.9 72.8 82.2 2.0 14.3
TS2-Net[25] 47.0 74.5 83.8 2.0 13.0
CAMoE + DSL [9] 47.3 74.6 83.8 2.0 11.9

TEFAL 49.4 75.9 83.9 2.0 12.0

ViT-B/16 (backbone)

OmniVL* [37] 47.8 74.2 83.8 - -

TEFAL 49.9 76.2 84.4 2.0 11.4
TEFAL+DSL 50.1 77.0 85.4 1.0 10.5
TEFAL+DSL+QB-Norm 52.0 76.6 86.1 1.0 11.4

Table 3. Results on MSR-VTT 9k split. All works use a CLIP
ViT backbone which is pre-trained on WebImageText. Both ViT-
B/32 and ViT-B/16 backbones are adopted for evaluation. Post-
processing techniques, DSL [9] and QB-Norm [6] are also used to
boost the performance. * indicates the use of additional training
pairs, more specifically BridgeFormer uses 5.5M additional train-
ing pairs and OmniVL uses 14M pairs.

to-video retrieval gives us an improvement of 4% on MSR-
VTT 7k, compared to the text-to-video retrieval model only.

In Tables 2 and 3 we present the results on MSR-VTT
7k and 9k splits respectively and show that our model out-
performs current state-of-the-art results. More specifically,
for MSR-VTT 7k, our method is 4.9% better in R1 than
ECLIPSE [22], the current best method that uses audio for
text-to-video retrieval. For MSR-VTT 9k we outperform
ECLIPSE by 4.5% for the R1. However, we also outperform
other state-of-the-art methods with 2.1%. This performance
can be boosted even more with the use of a larger backbone
(+0.5%) and QB-Norm (+2%). The supplementary material
contains video-to-text retrieval and qualitative results.

In Table 4, 5, and 6, we show that TEFAL also outper-
forms current state-of-the-art methods with an improvement
of R1 of about 1% for LSMDC and VATEX compared to
the best previous method and up to 2.4% for Charades. We
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Method R1 ↑ R5 ↑ R10 ↑ MdR ↓ MnR ↓
CLIP4ClipmeanP [26] 20.7 38.9 47.2 13.0 65.3
CenterCLIP [45] 21.9 41.1 50.7 10.0 55.6
TS2-Net[25] 23.4 42.3. 50.9 9.0 56.9
X-Pool [16] 25.2 43.7 53.5 8.0 53.2
CAMoE + DSL [9] 25.9 46.1 53.7 - 54.4
TEFAL 26.8 46.1 56.5 7.0 44.4

Table 4. Results on the test split of LSMDC [32]

Method R1 ↑ R5 ↑ R10 ↑ MdR ↓ MnR ↓
CLIP4ClipseqTransf [26] 55.9 89.2 95.0 1.0 3.9
ECLIPSEmeanP † [22] 57.8 88.4 94.3 1.0 4.3
TS2-Net[25] 59.1 90.0 95.2 1.0 3.5
X-Pool [16] 60.0 90.0 95.0 1.0 3.8
TEFAL 61.0 90.4 95.3 1.0 3.8

Table 5. Results on the test split of VATEX [39]

Method R1 ↑ R5 ↑ R10 ↑ MdR ↓ MnR ↓
CLIP4ClipmeanP [26] 13.9 - - - -
ECLIPSEmeanP † [22] 15.7 - - - -
X-Pool [16] 16.1 35.2 44.9 14.0 67.2
TEFAL 18.5 37.3 48.6 11.0 60.6

Table 6. Results on the test split of Charades [34]

Method Finetuned AST Adaptive fshift R1 ↑ R5 ↑ R10 ↑
TEFAL ✓ ✓ 49.4 75.9 83.9
TEFAL ✓ 48.6 74.7 84.1
TEFAL ✓ 45.6 72.8 83.2

Table 7. A correct use of the audio encoder is crucial to achieve
a good performance. Ablation study results show that finetuning
the audio encoder and using an adaptive fshift based on the frame
length give the best scores on MSR-VTT 9k.

can conclude that our method can deal well with both short-
range and long-range video datasets.

4.3.2 Audio Feature Extraction

We do additional ablation study experiments on MSR-VTT
9k to evaluate the effects of different feature extraction
methods for audio. The results are presented in Table 7.
In our setup we finetune the audio encoder, since we have
seen in the second row of Table 1 that finetuning the audio
encoder in the text-to-audio retrieval setup actually helps for
this task. We do the following ablation study experiments:
Freezing the AST: in this setup we freeze the AST model
and only train the last linear layer that reduces the embed-
ding dimension from 768 to 512. This setup is similar to
ECLIPSE [22], since they use the embeddings from the pre-
trained audio encoders. We report an improvement of 3.8%
of R1 on finetuning vs freezing the AST model.
Fixing the frameshift: a dynamic frame shift has been used
in our method to make sure that the Mel Filter Bank main-
tains a fixed length and will not lose relevant information in
case of long videos. We measure the effect of such dynamic

frame shift value by fixing it to 10 seconds. The AST model
uses a fixed frameshift of 10 seconds for all datasets as well
as ECLIPSE [22]. Taking a variable frameshift depending
on the audio length improves the performance by 0.8%.

4.3.3 Variations on Multimodal Fusion

We compare our fusion method, addition, with four other
fusion types that are visualized in Figure 4. Results are pre-
sented in Table 8, where EV |T stands for text-conditioned
video embeddings (X-Pool) and EA|T stands for text-
conditioned audio embeddings.
(A) Late fusion : In this setup, instead of using text-
conditioned audio embeddings, we use the audio embed-
dings from the audio encoder directly and fuse them with
the text-conditioned video embeddings by using addition.

E(V,A)|T = EV |T + EA

This model shows a drop of 5.9% in R1 compared to
our best fusion technique, which shows the importance of
explicit alignment between the text and audio embeddings.
(B) Concatenation : Intuitive concatenation of the text-
conditioned audio and text-conditioned video embeddings
followed by a fully connected layer might help select the
relevant components of each modality for each query. By
concatenating the audio and video features, we get an over-
all embedding dimension of 1024, which is reduced to 512
with a fully connected layer to allow the computation of co-
sine similarity with each text embedding. But we noticed a
large drop in performance of 6.3% in R1 using this method.

E(V,A)|T = FC([EV |T , EA|T ])

We argue that the linear layer at this stage of the model
is possibly causing too many additional parameters to learn
an efficient embedding.
(C) Fusion by cross-attention : In this setup, we stack the
text-conditioned audio and video embeddings and apply a
third cross-attention block which takes the text embedding
again as the query and the stacked audio-video embedding
as key and value. This results in

E(V,A)|T = E(V,A)|T = XAttn(ET , [EV |T , EA|T ])

The R1 score is 3.5% lower than for the best model,
which indicates that a third cross-attention block in its cur-
rent design is not able to capture importance of the audio
and video modalities related to the text better than addition.
(D) Stacking audio and video : The cross-attention block
in TEFAL learns the weight related to the importance of
each frame to the text. In this experiment, instead of using
all audio patch embeddings, we use the average of the CLS
and DIST tokens from the DEiT model and use this in one
cross-attention block together with the video frame embed-
ding. We could see the audio embedding as an additional
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Method Fusion Type Expression R1 ↑ R5 ↑ R10 ↑
TEFAL Addition (best model) E(V,A)|T = EV |T + EA|T 49.4 75.9 83.9
TEFAL Late Fusion (X-Pool + audio) (A) E(V,A)|T = EV |T + EA 43.5 70.4 80.9
TEFAL Concatenation (B) E(V,A)|T = FC([EV |T , EA|T ]) 43.1 72.1 82.0
TEFAL Fusion by XAttn (C) E(V,A)|T = XAttn(ET , [EV |T , EA|T ]) 45.9 72.9 81.4
TEFAL Stacking audio and video (D) E(V,A)|T = XAttn(ET , [EV , EA]) 46.1 71.8 81.8

Table 8. An evaluation of alternative fusion types for the audio and video embeddings. The visual comparisons of these fusion methods are
illustrated in Figure 4.

Figure 4. Different fusion methods corresponding to the results in Table 8 with (A) Late fusion, (B) fusion by concatenation in embedding
dimension, (C) fusion by stacking the text-conditioned video and audio embeddings (D) fusion by stacking the video and audio embeddings.

frame embedding, by stacking the embeddings of the two
modalities in the dimension of the number of the frames.

E(V,A)|T = XAttn(ET , [EV , EA])

This leads to an R1 of 46.1%. Our intuition is that
the initial embedding spaces of the audio and video frame
embeddings are unaligned and therefore require two cross-
attention blocks to align them with the text embedding.

From the experiments regarding the fusion of the audio
and video embeddings, we can conclude that fusion is not
trivial. In fact, alternative fusion methods show lower re-
sults than X-Pool, the method that only uses the same video
branch as TEFAL and does not leverage audio. The pro-
posed simple addition fusion obtains an R1 of 49.4%, which
is the best among all the fusion methods and improves the
result by 2.5% compared to the video-only branch.

4.3.4 Applicability at Scale

Our method computes aggregated video and audio embed-
dings that are both conditioned on text. Therefore, we can-
not pre-compute the final audio and video embeddings of-
fline, since the text queries are not known at this point. Sim-
ilar to X-Pool, we can use TEFAL to re-rank the top K re-
trievals of an efficient method, i.e., mean-pooling the frame
embeddings. Given T text queries, V videos and A audios,
with A ≤ V , instead of a complexity of O(T V) we get
O(KT + V), which is the same as X-Pool [16]. To empir-
ically show that this does not result in a significant perfor-
mance drop, we reduce the search space via approximate
nearest neighbor method between the text embedding and

the mean-pooled video embeddings, and then perform re-
ranking in this reduced search space with TEFAL. Since all
test sets have 1,000 to 2,000 videos, we also evaluate on
the validation set of LSMDC, which has 7,408 videos, to
show the effect of scaling up. In table 9 we notice a very
small drop in performance by using TEFAL to re-rank the
top 10% retrievals given by mean-pooling, albeit the latter
model’s low performance.

mean-pool TEFAL TEFAL (re-rank)

Dataset R1 ↑ R5 ↑ R10 ↑ R1 ↑ R5 ↑ R10 ↑ R1 ↑ R5 ↑ R10 ↑
MSR-VTT-9k 41.7 69.7 78.3 49.4 75.9 83.9 49.4 75.8 83.8
LSMDC (test) 20.9 38.5 48.3 26.8 46.1 56.5 26.7 46.1 56.2
LSMDC (val) 7.8 18.9 25.3 10.2 23.6 31.1 10.2 23.6 31.3
VATEX 53.3 84.9 92.2 61.0 90.4 95.3 61.0 90.3 95.2
Charades 11.8 28.0 36.8 18.5 37.3 48.6 18.6 37.7 49.3

Table 9. Results on all datasets showing the effect of a reduced
search (by 90%) space during inference.

4.3.5 Qualitative Results

We present an example from the MSR-VTT dataset [41]
to highlight how audio provides complementary informa-
tion to the video to achieve improved text-queried retrieval.
More examples are provided in the supplementary mate-
rial. Additionally, these examples further justify our choice
of using text features as the center feature to align video
and audio features rather than aligning the audio and video
modalities. Shown in Figure 5 is sample 9806 where
TEFAL ranks the matched video as the top retrieval result
with the help of audio modality, whereas, X-Pool (TEFAL
w/o audio) [16] which only utilizes text and video fails to
do so.
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Figure 5. An example is shown of a description in the text that is not visible, namely the car accelerating, but is audible. Therefore the
TEFAL model is able to perform much better on this (Rank 1) than the TEFAL w/o audio model (Rank 5).

Figure 6. This figure shows the weights of frames from the text-video attention block (upper two rows) and the weights of audio tokens
aggregated over time from the text-audio block (lower two rows). Video and audio weights emphasize complementary parts of the video.

The query words of this sample are “person is driving his
black car fast on the street”. The TEFAL w/o audio model
ranks the matched video at the fifth place while TEFAL
ranks the matched video as the top retrieval. In this ex-
ample, the keyword “fast” is crucial. However, driving fast
is not visible in the frames alone but is cued by the sound of
the accelerating engine (encircled in red in the waveform).

4.3.6 Visualization of the Attention Weights

We provide a qualitative example (sample 7152) to illustrate
the activated video and audio regions by plotting the atten-
tion weights in the EV |T and EA|T blocks in Figure 6. We
observe that the latter half of the video stream has higher
activation than the first half, whereas, the first half of the
audio has higher activation than the latter half, providing
complementary information.

5. Conclusion
This paper introduces TEFAL, a novel text-conditioned

feature alignment framework for audio-enhanced text-to-
video retrieval. Our approach utilises two independent
cross-modal attention blocks for the text to attend to the
audio and video representations. We are the first to propose
this approach for audio-enhanced text-to-video retrieval and
explain why it is more suitable for this task than audiovi-
sual alignment. Extensive experiments demonstrate that the
text-conditioned feature alignment outperforms audiovisual
alignment for audio-enhanced text-to-video retrieval. We
attribute this success to our use of an independent cross-
modality attention model that develops a representation
conditioned on the text and independent of the video con-
tent. In the future, we plan to extend our method to other
multimodal text-video-audio understanding tasks, such as
video captioning and video question answering.
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