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image editing is a class of human image editing work-
Abstract flows where the end result depends on an input human

Numerous pose-guided human editing methods have
been explored by the vision community due to their exten-
sive practical applications. However, most of these methods
still use an image-to-image formulation in which a single
image is given as input to produce an edited image as out-
put. This objective becomes ill-defined in cases when the
target pose differs significantly from the input pose. Existing
methods then resort to in-painting or style transfer to han-
dle occlusions and preserve content. In this paper, we ex-
plore the utilization of multiple views to minimize the issue
of missing information and generate an accurate represen-
tation of the underlying human model. To fuse knowledge
from multiple viewpoints, we design a multi-view fusion net-
work that takes the pose key points and texture from multi-
ple source images and generates an explainable per-pixel
appearance retrieval map. Thereafter, the encodings from
a separate network (trained on a single-view human repos-
ing task) are merged in the latent space. This enables us
to generate accurate, precise, and visually coherent images
for different editing tasks. We show the application of our
network on two newly proposed tasks - Multi-view human
reposing and Mix&Match Human Image generation. Addi-
tionally, we study the limitations of single-view editing and
scenarios in which multi-view provides a better alternative.
Datasplits and results can be found at Project Webpage.

1. Introduction

Automating person-image editing can be of great value
to business applications for advertisements, commercial
merchandising, as well as individual creativity. Pose-based
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pose. These include human reposing, garment virtual try-
on [10, 40, 4] etc. Recent methods for person-image editing
[28, 18, 33, 6, 3, 23, 34] have made great strides in produc-
ing accurate edit results from a single image of a person.
However, they suffer from textural, shape, and color arti-
facts because a single image may not have sufficient infor-
mation to produce an accurate rendition of the person in the
desired target pose. In this work, we present a novel pose-
guided human image generation method that can incorpo-
rate multiple images as well as leverage existing single-
view reposing models to improve the editing results signifi-
cantly.

In most contemporary methods for pose-guided human
image reposing [28, 18, 33, 6, 3, 23], a deep neural network
transforms a source image of a person into a target pose
specified as a sequence of keypoints. The network takes a
single source image of a person, the pose of the person in
that image (source pose), and the target pose as input, and
produces an image corresponding to the person in the tar-
get pose. The source image supplies the color and texture
information for guiding the generation of the target pose
image. However, the target pose can be significantly differ-
ent from the source pose, such as when a part of the human
body or clothing obscured in the original image might ap-
pear in the target pose. In such cases, the network must
infer those regions of the output from the context. We posit
that using multiple source images of the same person is an
effective solution to this problem. This is also practical for
real-world applications as companies usually have multiple
photos of a human model in distinct poses. However, this
approach requires mapping parts of the target image to parts
of the source images based on how their textures match up
geometrically, which is a non-trivial task. In this paper, we
present a framework that can extend existing single-view
networks for multi-view reposing task by effectively com-
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bining data from multiple source images. We make the fol-
lowing contributions to the field of pose-guided person im-
age editing:

* UMFuse, a novel plug-and-play framework to fuse
multi-scale pose and appearance features from differ-
ent source images for human image editing applica-
tions, using:

— an appearance retrieval map for interpretable fea-
ture fusion predicted using the input source im-
ages and the corresponding pose information.

— a visibility-informed pre-training task for initial-
ization of the fusion module.

e The task of multi-view human reposing (MVHR, sec.
5), and a benchmark datasplit based on the DeepFash-
ion [21] dataset for evaluating the quality of output.

— We demonstrate its compatibility with two differ-
ent single-view reposing networks [29, 14].

— We also showecase its versatility by combining
different fashion components from completely
different persons (Mix-and-Match, sec. 6).

* Detailed quantitative and qualitative analysis, compar-
isons, and ablation studies indicating the effectiveness
of the proposed method.

The next section discusses how the proposed method relates
to existing methods for human-image editing.

2. Related work

Pose-guided human image generation The single view
reposing problem has been extensively studied in [33, 27,

, 20, 29] . These methods use a single source image
as input to produce a reposed person image. They fol-
low a two-stage strategy — warping the source image us-
ing a flow field to align with the target pose, and syn-
thesizing the reposed output using a generator. Varia-
tions of these methods include leveraging target segmenta-
tion mask[22], visibility maps[! 8], UV-maps[2], attention-
based style distribution[43] etc. for the generation process.
While these methods can generate realistic output, they are
adversely affected by factors such as heavy occlusions and
poor camera angles. We model different body parts in the
generated output using multiple source photos where these
parts are either clearly visible or have a better style transfer
compatibility with the source pose, thereby alleviating the
problems faced by single-view methods.

NeRFs and Motion Transfer Recent work in neural ra-
diance field (NeRF) based models [36, 37, 15, 25,41, 7, 19]
can reconstruct an entire 3D scene with humans using a
relatively larger set of images from one or more videos.
Some of them can be adapted to generate novel poses as

demonstrated by [ 15, 36]. Few-shot human motion transfer
task[ 13, 35] also aims to transfer the motion of one person
to another via continual frame synthesis. However, apart
from requiring a vast number of frames and expensive train-
ing, these methods fail to preserve fine-grained clothing tex-
ture and produce a coarse body shape output. Also, most of
them can reproduce novel poses for only the person they
are trained on. Moreover, in contrast to single-view repos-
ing networks, the NeRF-based models have a limited ability
to predict the missing content. Our work bridges these two
approaches and combines the advantages of using multiple
source images with the warping and inpainting capabilities
of single-view reposing architectures.

The next section details how UMFuse produces high-
quality, pose-guided human images from multiple sources.

3. Methodology

We first describe single-view, pose-guided human im-
age generation (PHIG) as a generic task, and motivate the
need for utilizing multiple views using human reposing as
an example. Next, we describe the transformation of the
single source PHIG network to a multi-view network utiliz-
ing multiple source views with UMFuse.

Single-view Human Image Reposing: We begin by de-
scribing VGFlow[ | 4], a recent human reposing network. It
broadly consist of three stages (Fig 1, A) :
1. Warping the source image I, to match the target pose
P, and encoding its texture.
2. Encoding the source and target pose key points P, and
P, t-
3. Generation of the final reposed output I, from both
pose and texture encoding.

The network takes I, Ps, and P; as input, and predicts
two flow fields - F), and F;. These flow fields are per-pixel
2D displacement fields to warp the source image. Here, F,
represents displacements for regions of the source image
that would remain visible when the pose changes to the tar-
get. F; are for the displacements that produce pixels that
are invisible in the source pose but may be predicted using
context from the source image. These flow fields are used
to sample two warped ([,,) renditions of the source image
—I? and I}, — corresponding to the visible and invisible re-
gions in the target pose respectively. Additionally, the net-
work also produces a visibility segmentation map V; of the
source image as it would appear in the target pose, indicat-
ing the regions that are visible (and invisible) in the source
image. Intuitively, the visibility map (V;) is an indicator of
whether the network can obtain the correspondence for a
pixel from the source image (/) directly, or it must make
an informed prediction. The encoder stage of the network
consists of two modules - the fexture-encoder (E;), and the
pose-encoder (). The texture encoder captures the color,

7183



(A) Single-View Network
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Figure 1. UMFuse framework: (A) is the single view PHIG network on top of which the UMFuse framework operates. The source image
and its keypoints along with the target keypoints are used to produce warped images and a visibility map (I2,I%,V;). These are used to
obtain the texture encoding at different scales [ (e;,;), and the source and target poses are used to obtain the pose encoding e,. Together
they are used to render the output with a GAN-based renderer. (B) Shows the UMFuse adaptation for the single view network. The
multiple source images and poses are passed individually to the warping and visibility prediction module to obtain multiple warped images
and visibility maps, and from those, multiple texture-encoding vectors. Likewise, the source poses paired with the target pose are used to
obtain multiple pose encoding vectors. These are merged in an affine combination using the predicted Appearance Retrieval Maps(s1—3).
These maps are obtained using the Multi-view Fusion module and are a key contribution of the UMFuse framework.
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Figure 2. Examples indicating a high degree of overlap between
the invisible regions in the visibility maps and the output errors.

Invisible Parts

shape, and style information for the source image I, at mul-
tiple scales(! layers) as it would appear in the target pose
by combining information from 12, I’ and V;. The pose
encoder produces a latent representation for the source and
target key points (Ps, P;) that can be used to condition the
generation of a person-image to make it conform to the tar-
get pose.

€t :Et(IsaPsaPt)a )
ep =E,(Ps, P})

Note that UMFuse is agnostic of the exact architecture
used by VGFlow. Other networks like those described in
[29, 2, 5] that have a similar broad architecture are also
compatible. We share results for both VGFlow and GFLA
[29], in sec. 5.

The decoder stage (D) transforms the encoded pose and
texture information into an RGB output image I,. One
branch of the decoder processes the encoded pose informa-
tion, while the activations of each layer of the second branch
modulate the output of the corresponding layer of the first
branch using style modulation[ 6] from texture encodings.

We take VGFlow[ 4] as our primary single-source PHIG
network due to its superior performance. Next, we discuss
the need for employing multiple inputs for the PHIG task.

Is a single-source input adequate? Fig 5 illustrates the
limitations of using a single source input image for the hu-
man reposing task. We argue that if the target pose is sig-
nificantly different from the source pose, a PHIG network
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cannot accurately predict the pixel colors for those pixels
that are in the invisible regions. This is expected in ex-
treme cases where one pose is the front, and the other is
the back. But even for moderate pose changes, we find that
error regions for generated images overlap with the invisible
areas in the corresponding ground-truth visibility maps (see
Fig 2). Appearance artifacts can also be caused by non-rigid
clothing deformation between poses. Even if the source and
target poses are similar in terms of the relative arrangements
of the key points, other factors such as the camera position
and viewing angle contribute to the errors. Using multiple
source images can help improve the output quality if we
can learn to map regions in the source views which have the
best appearance compatibility with the corresponding target
pose regions. Table 1 shows that UMFuse is able to learn
this mapping and produces better results by effectively fus-
ing information from up to three source views. We discuss
this fusion architecture next.

Combining multiple inputs using an appearance re-
trieval map (ARMap): UMFuse employs a feature
blending approach for combining multiple source input im-
ages. The process is illustrated in Fig 1 (B). Our Multi-View
Fusion(MVF) module predicts a 2D appearance retrieval
map s1., € [0, 1]#*W for each of the k source images.
The input to this module is a channel-wise concatenation of
the source images (I1*%), their corresponding key-point rep-
resentations (P*), and the target key-point representation
(P;). The output is a 2D mask with as many channels as the
number of input images.

Hence, the combined soft-selection volume has dimen-
sions H x W x k. For the present work, we fix the num-
ber of input source images to three(k=3). Intuitively, each
(row, col) position of the combined soft-selection volume
represents the probability of deriving the output pixel at that
position from one of the k source images.

The problem of predicting such a per-pixel ARMap is
posed as a joint, conditional soft attention over the input im-
ages (Eqn 2), where the conditioning is on the target pose.
We model this as an ARMap prediction task to ensure that
the produced weights represent the joint probability of the
output pixel being derived from a source image. To this
end, we use a network adapted from the Swin Transformer
[20] with a UPer [38] head. As described in [20], the Swin
transformer captures the inter-channel relationships in the
input (i.e. between the input images and key-point repre-
sentations) using self- and cross-attention between shifted
windows. Its computational complexity is linear in the size
of the output which makes it useful for high-resolution input
and output. The UPer head has also been shown in [20] to
be highly accurate for per-pixel segmentation due to its abil-
ity to merge information from multiple scales. The ARMap
masks sj.3 are obtained by applying SoftMax on the out-
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Figure 3. Pre-training of our Multi-View Fusion module for learn-
ing visibility correspondence with the target pose

put weights obtained from the UPer head at a resolution of
128x128. Formally:

S1:kp = Softmaa:(Wl;k\Isl:k,Psl‘k,Pt;H) 2)

Here, W, are the computed weights for each of the in-
put images and 6 are the parameters of our MVF module.
The ARMap masks (s1.;) are used to fuse the pose- and
texture features for the corresponding source images (11%).
The fusion is done with the features and not the images
themselves to ensure that non-local information present in
each image can be combined effectively into the resulting
fused features (eii 7;56(1 and egused). The computation can be

summarized by the following equations:

k

k "
used used A A
e,’:‘ ;e{’l = E ep © Sx; E et © Interp(sa,l)
A=1 A=1

used used
I, = D(e£ 7etf,l )

Here, Interp(si,l) represents bilinear interpolation of
ARMap to the resolution of the I* texture encoding layer
and ® denotes pointwise multiplication of feature encod-
ings. Fig 1 illustrates the entire process.

Design & Pre-Training of fusion module We essentially
wish to model the joint probability of a pixel being derived
from a source image using our ARMap. The architectures
which match the closest to our desired objective are the ones
that were proposed for performing semantic segmentation.
The source images can be thought of as different classes and
the task of the segmentation network is to predict the likeli-
hood that a certain location should be retrieved from a given
input image. However, there are two significant disparities
between our intended objective and the output of standard
semantic segmentation networks. First, conventional seg-
mentation networks have aligned input and output, allowing
them to rely heavily on proximity to establish the class. In
our scenario, however, the source humans are all standing
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in distinct poses. Thus, the network should be able to prop-
erly utilize global information from all viewpoints when
predicting the probabilities for any pixel. Secondly, unlike
semantic segmentation where the task is to predict one class
per pixel, our use case requires a prediction of multi-class
probability distribution to facilitate blending from different
views. Guided by these considerations, our choice of archi-
tecture is to use Swin Transformer[20] backbone with UPer
Head[38] and in Section 6 we show comparisons with other
alternatives.

To improve its attention to visible regions in each in-
put image (as per the target pose), the MVF module is first
trained to predict the visibility map (Fig 3) using an L1 loss
against ground truth generated using a separate 3D pose-
estimation(visMap 3D) and projection mechanism based on
DensePose [9]. We analyze the effect of this pre-training in
Section 6. Finally, the pre-trained network is trained end-to-
end for the human reposing task, using the following train-
ing objective:

1. Minimizing the following distances between the out-
put and ground-truth images (/,, and I;):

* The pixel-wise mean of absolute difference (L)
for the exact pattern and shape reproduction.

* VGG-features based perceptual difference
(ngg)

» Style difference measured using the mean-
squared difference between the Gram-matrices as
described in [8] (Lg¢y).

The perceptual and style losses help preserve seman-
tic features taken from the input images, such as the
identity of the person, and the garment style.

2. Minimizing an adversarial loss based on LSGAN [24]
(L4dv) for the output image. This is useful to render re-
alistic output, especially for regions where the decoder
must guess the pixel colors.

The total loss is defined as:

L(IZMIgt) :arec”IpaIgt|‘1+ape7'ngg(IpaIgt)
+ astyLsty(Ip; Igt) + aadeadv([py [gt)

where ec, Oper, Olsty, and gq, are hyperparameters used
to combine the losses.

We observe that the Multi-View Fusion module produces
accurate region-specific ArMaps (see Fig 4), attributing the
information required to produce accurate and realistic out-
put images. This provides a way to explain the operation of
the network as a blending of image regions for reproducing
the correct output image. In the following section, we offer
a series of experiments and ablations that demonstrate the
efficacy of our technique.

4. Experiments

Dataset. We carry out our experiments using the Deepfash-
ion dataset [21] which has a total of 52,712 high-quality
person images with plain backgrounds. Following recent
human reposing works [29, 5, 2, 43], we split the dataset
into 48674 training images and 4038 testing images. For all
our experiments, we resize the images to 256 x256 resolu-
tion. We create new training and test quadruples consisting
of 3 input source images and 1 output image. We wanted
our network to be able to perform reposing task for any
number of images < 3. For training, we utilize all permuta-
tions of input source images. We also repeat single source
image multiple times in the input to ensure that the network
works well if the number of input images are less than three.
Note that if a single source image is repeated three times,
UMPFuse essentially turns into an identity operator and the
network functionally becomes the same as its underlying
backbone(GFLA[29], VGFlow[14] etc). The total number
of training samples becomes(X "~'P; + "71P, + "71py),
where n is the number of images of a single model in dif-
ferent poses and the sum is over the whole dataset. One
of the advantages of performing multi-view training is the
polynomial increase in dataset tuples compared to single-
view reposing where the samples are limited to X n=ip.
The testing split consists of one entry for a distinct 3-view
combination( "7103) to consistently evaluate the perfor-
mance of our model for different number of source im-
ages(Sec 5). The order of the testing quadruples was ran-
domly chosen to ensure fairness. Finally, we are left with
720,949 training and 5,247 testing quadruples

Evaluation metrics. Following previous works in su-
pervised person image generation learning, we use the
Structural Similarity (SSIM) [31], Peak Signal to Noise
Ratio (PSNR) [12], Learned Perceptual Image Patch
Similarity(LPIPS)[42] and Frechet Inception Distance
(FID) [11] metrics to evaluate the results of our multi-
view human reposing output. PSNR measures the exact re-
construction accuracy compared to the ground-truth image,
while SSIM [32] measures fine-grained similarity based
on the local contrast, luminance, and structure. LPIPS
computes the patch-wise similarity between two images by
comparing the AlexNet activations and FID score measures
the realness of the images by computing the 2-Wasserstein
distance between the latent space statistics of generated and
the ground truth data.

Implementation details All experiments are carried out
on 8 x 3090 RTX Nvidia GPUs. For the multi-view fusion
module pre-training, we train the model for 3 epochs using a
batch size of 32, a learning rate of 10—, and the Adam opti-
mizer [17]. For the final training of the Multi-view reposing
task, we use a batch size of 24, a learning rate of 3 X 104,
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Figure 4. Qualitative Results for Multi-View reposing capturing improvements in (a) handling occlusions, (b) text preservation, (c) inpaint-
ing missing information, (d) preserving cloth designs, (e) style transfer from invisible regions, and, (f) pattern reproduction

train for 10 epochs and then finetune only the generator.

5. Results

Our experiments highlight the advantages of using multi-
ple views (MVHR) over the single view reposing task. The
test dataset for the multi-view tests is prepared as discussed
in Section 4, into quadruples of three source images and
one target image (pose). We report the qualitative improve-
ments (Fig 4), as well as the enhancement across a wide set
of metrics. Table 1 presents the quantitative improvements
in output quality obtained by using 2 and 3 unique source
views over a single source view (Details in Sec 6). All
the image quality metrics(SSIM, PSNR, LPIPS and FID)
show a consistent increase with increasing the number of
views and are easily attributed to our framework’s ability to
fill in the missing information or find the best texture cor-
respondence by sampling from distinct views of the same
person. We also show that using a single image is funda-
mentally worse compared to 3 views by testing a source
pose that is closest to the target(1-view closest) in terms
of the Object-Keypoint Similarity score [1] (using a rigid

pose-alignment step). To show the generalizability of our
method, we freeze our multi-view fusion module and train
GFLA[29] generator using our methodology. The results
show clear improvement over single-view reposing as the
network becomes capable of combining texture from differ-
ent viewpoints. For establishing a baseline, we also perform
fusion by visMap3D generated using Densepose[9]. This
approach confuses the network in areas where a single im-
age would be better(Fig 4 Row b) or an invisible region can
provide better correspondence (Fig 4 Row e). The network
also suffers from mistakes due to incorrect 3d pose estima-
tion by Densepose[9]. An end-to-end learned approach per-
forms significantly better in establishing the best pixel-level
correspondence from source images.

Qualitatively, we see that providing multiple source
views of a person helps in improving the transfer of dif-
ferent body and clothing characteristics to the output. In
Fig 4, row a-c shows the mixing of the model face from one
image with the back/side garment view from another. This
is further confirmed by visualizing the ARMap. To read
the RGB mask - the red value represents selection weights
for the features of the first source image, the green value
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Figure 5. Here, we show incremental improvements gained by the network after the addition of multiple images. Genl1 is generated using
only Viewl (repeated thrice). Gen2 is generated using Viewl and View2 pair with ArMap2 showing the attribution map using red and
green colors respectively. Gen3 is obtained using all the 3 images and ArMap3 encodes the weights in RGB respectively.

Method SSIM1+ PSNR1 LPIPS| FID |
VGFlow + UMFuse for < 3 Views

1-view 0.716 17.16 0.204 13.52

1-view(closest) 0.729 17.88 0.181 13.15

2-view 0.730 17.96 0.179 12.16

3-View comparisons
GFLA+UMFuse 0.731 18.21 0.176 13.48
VGFlow+visMap 0.731 18.16 0.177 12.23
VGFlow+UMFuse  0.737 18.32 0.168 12.00

Table 1. Multiple views help in improving SSIM, PSNR and
LPIPS metrics significantly over a single view.

for the second image, and the blue value for the third. For
example, in row a, the face is derived from the combina-
tion of View1 (red channel) and View3 (blue channel) while
the back design of the garment is obtained using the sec-
ond view (green channel). Row b highlights accurate skin
generation and conservation of text geometry while gener-
ation. Row c shows the network’s capability of in-painting
the missing portions which are still not visible in all the
source views and Row d depicts the accurate reproduction
of the texture by fusing appearance appropriately from a de-
sirable scale image(view1). Row e captures the appropriate
style transfer to the invisible regions and Row f displays
proper pattern reproduction.

6. Ablation Studies and Analysis

Benefits of using multiple views We highlight the incre-
mental improvements done by UMFuse in Fig 5 and Tab
1. Genl shows the generated output for a single image
(Viewl) repeated 3 times as input. Gen2 uses the pair
(Viewl, View2), repeating Viewl for the 3 views. Gen3
is produced by using all 3 views. ARMapl is redundant
as the final encoding(after merging using softmax weights)
would remain the same regardless of the map. ARM ap?2 is
re-normalized to encode the weights assigned to View1 and
View?2 as Red and Green respectively. We see that in (a),
better geometric correspondence for text was obtained after
using View3. In (b), the model produced the wrong shoes
and dress length in Genl which were corrected consecu-
tively in Gen2 and Gen3. In (c), because the face was not
visible, Gen1 has the image of a woman and Gen2 was able
to correct it but the front region of the cloth still has blurred
lines. Gen3 produces the closest match to the ground truth.
In (d), we see that the zooming of the source image also has
a huge impact on the generated output and the best texture
spacing is obtained using a pose which is at a similar zoom
level from the Target pose. In (e), we see that even though
Genl & Gen?2 looks realistic, they still lack the wired pat-
tern at the back of model.
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Figure 6. Qualitative Results for Mix & Match Human Image
Generation showing realistic generation quality while preserv-
ing bodyshape(a), modelling complex pose(b), complicated de-
sign and texture of cloth(c), heavy occlusions(d), missing informa-
tion(e), multiple clothing garments with accessories(f). Additional
results can be found in the supplemental material.

Extension to Mix and match task Many single view
reposing models can automatically perform virtual try-
on as an additional task[5, 29, 27] as there is a natu-
ral compatibility between the two. Similarly, multi view
reposing has a natural correspondence with the Mix and
match task. In Mix & Match Human Image genera-
tion(MMHIG), given a tuple (id, top, bottom, pose) from
different views, we model all of these jointly to synthesize
the final output. We use an off-the-shelf human body pars-
ing network[39] to segment an image into different fash-
ion components(/;q, Ltop, Ipottom) before using the images
as input to our network. We then train our network to re-
construct a novel view(guided by P,) which combines all
the fashion elements. By learning to disentangle these ele-
ments in a supervised fashion, UMFuse is able to generate
accurate rendition of the combined images. More details
about the training can be found in supplementary. Note
that editing only the pose element will result in single-view
human reposing task, Changing top or bottom of the tuple
is referred to as virtual try-on and changing id results in
identity swapping. In both MVHR and MMHIG tasks, we
observe that the Multi-View fusion module produces accu-
rate ArMaps (see Fig 4,6), attributing the information re-
quired to produce accurate and realistic output images to

the appropriate source views. We compare our output quan-
titatively and qualitatively to that produced from DiOr[5]
which performs sequential edits on a person image, as it
closely matches the Mix-and-Match task. Performing edits
sequentially on different parts of the tuple results in infe-
rior output quality as these networks are not able to handle
the intersection regions between clothing items and body
parts successfully which often results in bleeding and bad
texture reproduction. Also, the compounding of errors in-
troduced by these sequential edits result in identity deteri-
oration and inadequate occlusion handling. UMFuse is a
robust, joint learning variant of the error-prone sequential
reposing and virtual try-on approach. For quantitative com-
parison, we prepare 10,000 tuples selected from the test set
randomly. We find that UMFuse significantly outperforms
DiOr[5] with an FID score of 14.71 vs DiOr’s 21.73.

Fusion Method SSIM1 PSNR{ LPIPS| FID|
visMap 3D 0.731 18.16 0.177 12.23
Swin+UPer(-PT)[20] 0.732 18.05 0.178 12.77
UNet (+PT)[30] 0.735 18.30 0.172 12.37

Swin+UPer(+PT)[20]  0.737 18.32 0.168 12.00

Table 2. The Swin+UPer(UMFuse) combination with pre-
training(PT) works best for the reposing task.

Multi-View Fusion Module Ablation In Tab 2, we com-
pare the performance for different methods of latent space
fusion. In the first method, we compare against the base-
line visMap3D obtained through Densepose[Y] to fuse the
latent space features. However, direct fusion result in sub
optimal performance(Sec 5). In the second method, we
use a Unet[30] instead of Swin+Uper combination to pre-
dict the selection mask but it wasn’t able to produce the
desired accuracy due to limited field of vision & lack of
global context in ConvNets. Finally, we ran an experiment
of directly training the Swin Transformer without any visi-
bility region Pretraining. As can be seen, there is a signifi-
cant jump in SSIM(0.732—0.737), PSNR(18.05—18.32),
LPIPS(0.178—0.168) and FID(12.77—12.00) metric due
to our pretraining(qualitative benefits in supplementary).

7. Conclusion

We present UMFuse- a novel framework for effectively
combining information from multiple source images in a
pose-guided human image generation pipeline. The ap-
proach consists of using a multi-view fusion module that ex-
plicitly produces a 2D ARMap for combining features from
multiple source images. We demonstrate its effectiveness
on two newly proposed tasks: Multi-View human reposing
and Mix & Match Human Image Generation with state-of-
the-art results. UMFuse showcases a promising new and
pragmatic approach to produce better results in pose-guided
human image generation tasks.
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