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Abstract

The exact 3D dynamics of the human body provides cru-
cial evidence to analyze the consequences of the physical
interaction between the body and the environment, which
can eventually assist everyday activities in a wide range of
applications. However, optimizing for 3D configurations
from image observation requires a significant amount of
computation, whereas real-world 3D measurements often
suffer from noisy observation or complex occlusion. We re-
solve the challenge by learning a latent distribution rep-
resenting strong temporal priors. We use a conditional
variational autoencoder (CVAE) architecture with a trans-
former to train the motion priors with a large-scale motion
dataset. Then our feature follower effectively aligns the fea-
ture spaces of noisy, partial observation with the necessary
input for pre-trained motion priors, and quickly recovers a
complete mesh sequence of motion. We demonstrate that
the transformer-based autoencoder can collect necessary
spatio-temporal correlations robust to various adversaries,
such as missing temporal frames, or noisy observation un-
der severe occlusion. Our framework is general and can be
applied to recover the full 3D dynamics of other subjects
with parametric representations.

1. Introduction

Understanding human motion is important for many
real-world applications to assist humans. It has been a con-
sistent interest of research, and has witnessed remarkable
progress. Many previous works attempted to detect human
poses by locating predefined joints from 2D images and fit-
ting template meshes. 3D information has to be inferred as
post-processing with either multi-view observations or by
incorporating prior knowledge about the size of the body
or objects. A large volume of works also find 3D poses
from 3D data of marker-based motion captures, or gyro-
scopes, which require additional hardware attached to the
body parts. On the other hand, point clouds are easy to

Figure 1. Overview of our approach. Our model firstly learns to
recover mesh sequence from the complete point cloud sequence.
Using this kinematics prior, we train our model in various other
scenarios and recover the mesh sequence. Our model can also be
trained on other input modality to generate its mesh sequence.

obtain using a commodity depth camera or a LiDAR sensor
observing the scene. By directly measuring the 3D locations
of the parts, we can easily reason about body positions rel-
ative to surroundings and have advantages in inferring the
consequences of human-object interaction or human-human
interaction.

We propose a pipeline to obtain full 3D dynamic mesh
from noisy, partial point cloud sequences. Real-world ob-
servations of motion are highly complex and suffer from oc-
clusion by other objects or noises. Nonetheless, humans can
easily infer the motion context of other humans. Not only
does the physical connectivity of the skeleton structure de-
fine the range of possible motions for human body parts,
but the motion semantics result in a rich correlation be-
tween temporal frames. To this end, we observe a sequence
of point cloud measurements, instead of individual frames,
and utilize strong kinematics information obtained from a
large-scale motion data. Note that the overall pipeline is not
bounded to human mesh, but can also be extended to other
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subjects with kinematic structures.
We gain robustness against complex real-world chal-

lenges with a generative prior obtained from a large-scale
motion sequences and a transformer to focus on reliable ev-
idence. Given noisy partial measurements, there are many
possible motions to explain the observations. Instead of re-
gressing for a single deterministic pose of a given time step,
we embrace the uncertainty by maintaining the distribution
of latent space of motions with conditional variational auto-
encoder (CVAE). After the kinematic priors are obtained
as a latent distribution, we can sample a latent vector and
generate a plausible mesh output. We also employ the trans-
formers to apply attention to meaningful observations while
robust to unknown missing data. We demonstrate the supe-
rior performance of our full 3D motion recovery compared
to other approaches focusing on single-time steps or deter-
ministic methods.

Our contributions are summarized as follows:

• We demonstrate reusable 3D kinematic priors from
large-scale motion datasets can provide strong struc-
tural semantics to recover dynamic 3D mesh in various
scenarios.

• We show multi-modal motion prediction using varia-
tional frameworks and transformers, and demonstrate
that both are critical to maintaining stable performance
in challenging inputs.

• Our framework achieves superior performance over
other existing methods, and can be generally applied
for a diverse set of motions.

We expect the proposed method to provide an essential tool
to capture and understand human motion in real-world sce-
narios and extend to practical applications to assist humans.

2. Related Work
In this paper, we present a two-stage learning scheme

for dynamic mesh recovery from the sequential observation.
Our proposed framework includes pre-training of the kine-
matics priors with a transformer from the massive amounts
of motion capture data, and finally reuses learned priors to
fully recover mesh sequence from noisy, partial observa-
tion. We review relevant works on human pose estimation
techniques and the motion learning pipeline for the large-
scale dataset.

Human pose estimation is a classical field in the com-
puter vision community, and has experienced tremendous
progress with recent studies on the data-driven approach.
Several works [37, 15, 46, 22, 9] have extracted 2D skele-
tons from the image inputs in various ways. Previous
works on the 2D pose estimation either take a top-down or
bottom-up approach. The top-down approach starts from

detecting the overall bounding box [8, 43], whereas the
bottom-up approach first detects joints with keypoints [41]
or heatmaps [2]. Some works remedy the limitation of
2D observation by incorporating multi-view settings [19]
or depth images [50]. While such attempts improve the pre-
diction quality especially in handling occlusions, they are
insufficient to overcome the lack of 3D information.

Point cloud is a great option for the human pose estima-
tor since it contains the spatial 3D information, and can be
directly acquired from commodity depth sensors. Recently,
some works proposed neural architectures [33, 34, 11] that
are specialized in processing point cloud, and they have em-
pirically proved their efficacy on perceiving shapes. Further
researches have expanded the applications for the proposed
perception modules via conducting classification [3], com-
pletion [45], and generation [44] of a 3D shape with the
point cloud data. Shape of a soft body target, such as hu-
man, can be also be represented with a point cloud. Several
works estimate skeletal poses directly on the captured point
cloud of a human body [47, 25, 42, 1]. Other works ex-
tend from the skeleton and infer the full 3D body mesh [20,
24, 52, 4, 40] utilizing a parametric model [21, 30]. How-
ever, they only estimate the body pose of individual frames,
ignoring the temporal aspect of the motion. Instead, our
model incorporates structural priors as well as temporal cor-
relations in sequential input and recover the full 3D mesh
with a smooth motion.

By learning and incorporating pose priors of human, the
estimated poses stay in the range of natural human mo-
tion, greatly enhancing the quality of results given chal-
lenging observations. Previous works obtain pose priors
from real observations and constrain the pose estimation
results with inverse kinematics [29, 5]. Similarly, motion
capture dataset [23, 13, 16] can provide task-agnostic ref-
erence for human motion. Motion priors can also be ob-
tained from demonstrations [35]. Additionally, some works
focus on obtaining high-level semantics with text descrip-
tion [12, 31]. The resulting motion, however, can merely be
regraded as a weak guidance as the training data is not per-
fect in terms of the consistency and the accuracy of labels.
In contrast, our implicit kinematics prior is trained to cap-
ture extensive spatio-temporal information, and can be used
to estimate poses in a variety of downstream scenarios.

3. Method
Given a sequence of point cloud measurements P =

{Pt}Tt=1, we recover the dynamic sequences of full mesh
from a set of estimated parameters. The mesh is recovered
as we estimate the pose Θ = {θt}Tt=1, θt ∈ RM , the root
position x ∈ RT×3, and shape parameters β of a paramet-
ric model such that it best explains the input. For the hu-
man datasets, each parameter set is fitted into SMPL [21] to
generate a full human mesh, whereas for the hand datasets,
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Figure 2. Overall pipeline of our method. The kinematics learner, the point cloud feature encoder followed by the parameter estimator,
learns how to recover mesh from the complete point cloud sequence input. The feature follower then follows the encoding of the feature
encoder in the kinematics learner. The learning of the feature encoding makes our model to effectively handle noisy, partial point cloud
sequence inputs.

parameters are fitted into MANO [36] to reconstruct the hu-
man hand mesh. We mainly focus on obtaining the plausible
pose parameters, which is then combined with the root po-
sition to generate joint positions. The joint positions are ob-
tained from the joint regressor, Jk(θ, x) : {RM ,R3} → R3,
which combines the given information with the pre-defined
kinematic structure of the parametric model.

The overall pipeline is described in Figure 2. We first
obtain the motion prior by training the kinematics learner
with a set of complete sequences, then quickly learn to ex-
tract the aligned feature with a feature follower for incom-
plete inputs. The kinematics learner establishes a rich latent
space that can distinguish a large-scale motion dataset as
described in Section 3.1. Then for a scarce, noisy input, we
train a feature follower which replaces the feature encoder
and extracts features aligned with the feature embedding of
the kinematics learner (Section 3.2). The detailed architec-
ture of the networks is provided in the supplementary mate-
rial.

3.1. Kinematics Learner

The kinematics learner is trained with large-scale tem-
poral datasets with ground truth parameters to obtain the
strong motion prior. It is composed of a feature encoder
and a parameter estimator. The feature encoder com-
presses the high-dimensional input of the point cloud se-
quence, and obtains an intermediate feature embedding F =
{Ft}Tt=1, Ft ∈ RDF . Subsequent parameter estimator can
decode the features into pose, translation, and shape param-
eters, which can retrieve the motion sequence of 3D mesh.
In particular, we adapt a CVAE architecture which observes
the input feature F to estimate the pose parameters Θ. Once
trained, the kinematics learner obtains a powerful embed-
ding space that can capture various temporal configurations
of a parametric mesh model. Then the feature follower can

take an advantage of the intermediate latent space for lim-
ited data. Once the feature follower can map the input se-
quence into the feature space, we can transform observed
sequences into the dynamic 3D mesh sequence with the pre-
trained parameter estimator.

Feature Encoder The feature encoder is composed of
a PointNet that extracts the initial features for individual
frames, followed by a transformer network [39] that aggre-
gates information in a temporal window. The input to the
kinematics learner is a sequence of point clouds, composed
of T frames of N 3D points, P = {Pt}Tt=1, Pt ∈ RN×3.
A PointNet architecture [32] first embed point clouds for
individual time steps, and retrieve PointNet features P′ =
{P ′

t}Tt=1, P ′
t ∈ RDP . Then the individual PointNet features

P ′
t are inserted to separate transformer channels, where the

temporal index t is subject to positional encoding to em-
bed time stamp information of the feature. The transformer
provides necessary attention to the time window and out-
puts aggregated feature F. We jointly train the PointNet
and the transformer encoder with the parameter estimator
with the ground-truth pairs of complete point cloud input
and the mesh parameter output.

In addition to the losses combined with the final parame-
ter estimation, we define an auxiliary task to guarantee that
the intermediate feature F contains sufficient motion se-
mantics. We build a small multilayer perceptron (MLP) to
ensure that the extracted features can estimate the ground-
truth pose parameters Θ = {θt}Tt=1,

Θaux = MLPaux(F). (1)

Then we can define the following loss term:

Laux
θ =

1

T

∑
t

∥θaux
t − θt∥22 (2)
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where θ is the ground truth pose parameter and θaux is the
parameter estimate.

Parameter Estimator The parameter estimator finds the
necessary parameters for the mesh recovery from the en-
coded feature F. Specifically, we have to find the pose pa-
rameters Θ = {θt}Tt=1, θt ∈ RM , root translations x =
{xt}Tt=1, xt ∈ R3, and the shape parameter β ∈ RS . Note
that the shape parameter β is a constant for a given temporal
sequence assuming we are observing the same subject.

We use a simple deterministic formulation to estimate
the root translation x and the shape β. Specifically, we
use two neural networks composed of MLPs to regress for
root positions MLPx(F) = x and the shape parameter
MLPβ(F) = β, respectively.

In contrast to the simple deterministic model for estimat-
ing x and β, we use a generative model of CVAE to find the
distribution of possible pose parameters Θ. When the input
data is noisy or severely occluded, there can be multiple
plausible sequences of motion, and the generative model
stabilizes the estimation in such cases. Our CVAE archi-
tecture is composed of a prior distribution pψ(z|F) and a
posterior distribution qϕ(z|Θ,F). z = {zt}Tt=1, zt ∈ RDZ

is a latent variable that encodes motion features, and it is
sampled for generation. The sampled latent variable is then
decoded to a set of pose parameters Θ using a transformer-
based pose decoder.

Training for the posterior distribution qϕ forms a distri-
bution of latent variable z that captures the motion informa-
tion. The loss term used to generate plausible pose parame-
ters is written below:

Lθ =
1

T

∑
t

∥θ̂t − θt∥22 (3)

where θ̂ is the pose reconstructed from the decoder.
We further encourage the estimation to be similar to the

ground-truth by imposing additional losses. We add two
losses to the joint positions estimated from the pose param-
eters θ and the root positions x. First, we directly compare
the joint positions with the joint reconstruction loss:

LJ =
1

TK

∑
t,k

∥Jk(θ̂t, x̂t)− Jk(θt, xt)∥22 (4)

where θ̂ and x̂ are estimated pose and translation, and Jk(·)
is a joint regressor which outputs the k-th joint position
from pose and translation parameters. The second loss is
the volume fitting loss introduced in [1] and holds the joint
locations near the input point cloud:

Lvol =
1

T

∑
t

1

|Pt|
∑
pt∈Pt

min
k

∥pt − Jk(θ̂t, x̂t)∥22. (5)

It is basically an one-directional Chamfer Distance [7],
measured from the joints to the point cloud. The volume

fitting loss was initially proposed to uniformly spared the
keypoints within the occupied 3D voxels [1], but our loss
substitutes the estimated joints and the point cloud mea-
surements. Lastly, we design the shape loss to maintain a
realistic shape parameter:

Lβ = ∥β̂ − β∥22, (6)

where β̂ is the estimated shape parameter and β is the
ground truth shape parameter.

While the posterior distribution qϕ is trained with the loss
terms above (Lθ, LJ , and Lvol), the prior distribution pψ
is encouraged to follow the distribution of qϕ with the KL
divergence term which matches the observation with the ev-
idence lower bound (ELBO) [18]:

LKL =
1

T

∑
t

DKL(qϕ(zt|θt, Ft)∥pψ(zt, Ft)). (7)

3.2. Feature Follower

Once the reusable kinematic priors are obtained, the fea-
ture follower brings a scarce, noisy point cloud sequences
to the input feature space of the kinematic learner. Then the
parameter estimator, trained from the kinematics learner,
can stably recover the dynamic mesh. The feature follower
has the same architecture as the feature encoder of the kine-
matics learner, namely the feature extractor of PointNet [32]
followed by the transformer encoder. We train the network
with the loss to match the features between the kinematics
learner and the feature follower:

LF =
1

T

∑
t

∥F̃t − Ft∥22, (8)

where F̃ = {F̃t}Tt=1, F̃t ∈ RDF represents the feature en-
coded from the noisy, partial point cloud sequence while F
is extracted from the full point cloud sequence. The fea-
ture follower also employs the additional loss terms used to
train the kinematics learner (Laux

θ , Lθ, LJ , and Lβ). Lvol
is excluded, since the estimated joint locations cannot al-
ways be located near the input when the input is especially
a single-view or partial point cloud.

Note that we only train the substitute of the encoder part
of the kinematics learner for diverse situations of input se-
quence. Once we obtain the feature embedding of the new
input sequences, we utilize the pre-trained parameter esti-
mator to recover the full 3D mesh. Moreover, by apply-
ing random temporal masks in the transformer part of the
encoder, the entire process becomes robust to temporal ad-
versaries with missing frames. Along with the variational
inference, the transformer serves a crucial role for stable
performance, which is further verified in the experiment.

4. Experiments
In this section, we demonstrate how the feature follower

in Section 3.2 utilizes the reusable kinematic prior in Sec-
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tion 3.1 to enhance the performance in noisy, partial input
sequences. We firstly demonstrate the performance of our
pipeline over the baselines on human datasets (Section 4.1).
We further show that our framework is generalizable to
other types of parametric mesh models by sharing the re-
sults with a hand model, which is highly challenging due to
severe self-occlusion (Section 4.2).

Our method is mainly implemented using Pytorch Light-
ning package [6], and is accelerated with RTX 4090 GPU
for the kinematics learner and RTX 3090 GPU for the fea-
ture follower, respectively. In all our experiments the num-
ber of the points used is 1,024 and the total length of the
sequence is set to T = 40 with the frame rate of 10 fps
for the human dataset, and 5 fps for the hand dataset. The
train-test split for each experiments and additional hyperpa-
rameter setup are included in the supplementary material.
We report the performance of each model using pose er-
ror, joint error, and vertex error. The pose and joint errors
are the mean L2 distances in angle and location, respec-
tively, between the estimated joints and the ground-truth.
The vertex error is a mean per-vertex L2 distance between
the estimated mesh vertex and the ground-truth. All the er-
rors are evaluated in the parameter space (SMPL [21] for
human, and MANO [36] for hand) and averaged along the
time step.

Baselines We compare the performance of dynamic mesh
recovery against four baselines. Two methods are based on
point cloud registration and the other two recover full mesh
based on the parametric model.

3D-CODED [10] aims to find the correspondences be-
tween reference and target shapes. An autoencoder frame-
work with an additional template mesh is proposed to re-
cover shapes from point cloud inputs. It first uses a neu-
ral network to deform the template mesh to fit the input
point cloud, followed by an extra step of local optimization
to minimize the Chamfer Distance [7]. We report both re-
sults with and without the additional optimization process.
Unlike our method, 3D-CODED does not originally utilize
severely partial point cloud so that the method is unable to
show its full capability in scenarios for our experiment. Be-
sides, SyNoRiM [14] registers multiple point clouds by syn-
chronizing the functional maps defined on the point clouds.
We train the network to estimate the flow of the point clouds
from the template mesh to the partial point clouds. As
our datasets do not include correspondences between in-
put points and points on a template, we train both baselines
using the Chamfer Distance with additional Laplacian and
edge regularization terms.

VoteHMR [20] resolves the challenges from occlusion
and measurement noises of single-view point cloud mea-
surement with additional information. Specifically, it ob-
serves part segmentation of input point cloud and classify

them into different joints. In addition to the part segments,
it also assumes that the root translation is known, while
both pieces of information are not necessary in our ap-
proach. Meanwhile, Zuo et al. [52] reconstruct the mesh
surface of the human body based on optimization. From the
point cloud input, they first estimate the parameters with
a neural network, and subsequently refine the fitting with
probabilistic self-supervised loss functions. While this ap-
proach is robust to outliers in the training dataset unlike
usual learning-based methods, suggested two-step approach
is far from real-time implementation due to a considerable
amount of computation in optimization steps. Here, we
compare our method to cases with and without the addi-
tional fitting steps. Note that VoteHMR and Zuo et al. sep-
arately estimate the pose parameters for individual frames,
whereas we concurrently regress parameters for a temporal
sequence. To the best of our knowledge, there is no base-
line available that fits dynamic mesh to a sequence of point
cloud frames.

4.1. Human Motion

We use AMASS dataset [23] as the large-scale dataset to
learn priors on human motion information. AMASS dataset
contains more than 40 hours of motion sequences and span-
ning over 300 subjects, with the full SMPL [21] parameters
fitted from motion capture data. We train the kinematics
learner network with the dataset except CMU dataset [17].

After training the kinematics learner, we train our fea-
ture follower network for various motion scenarios. We
synthetically generate various corrupted inputs to test the
performance of the feature follower. We follow the process
of SURREAL dataset [38] to emulate the point cloud ob-
tained from a depth camera. The SURREAL dataset makes
the depth sequence by projecting mesh model into a back-
ground, and employs the same setup of SMPL parameters as
the CMU dataset [17]. We similarly project the mesh, gen-
erated by fitting SMPL parameters of CMU dataset [17],
to obtain depth image sequence. The depth image is then
transformed into a point cloud by adapting the process in-
troduced in [20]. Therefore, CMU dataset is excluded in
training the kinematics learner, and adapted to generate re-
alistic noisy sequences to train the feature follower.

Synthetic Data with Emulated Noise The results of
our method and the baselines on synthetic human motion
dataset are shown in the Table 1. Note that we only re-
port the vertex displacement error for 3D-CODED [10] and
SyNoRiM [14] as they do not estimate the SMPL parame-
ters. Our model shows the best performance among the non-
optimization baselines and even comparable to the baseline
Zuo et al. [52], which performs additional optimization for
mesh recovery. Zuo et al. and 3D-CODED with the fitting
process take about 10 minutes to fit a full sequence using
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Figure 3. Qualitative results on synthetic human motion dataset. The first row and the second row show the input point cloud sequence
and the corresponding ground-truth mesh sequence. The rows below are the mesh recovery result of our model and the baselines.

Method Optim. Pose Joint Vertex

3D-CODED [10] ◦ - - 0.1092
Zuo et al. [52] ◦ 0.3354 0.0824 0.1109

3D-CODED w/o fit × - - 0.1154
SyNoRiM [14] × - - 0.0219
Zuo et al. w/o fit × 0.4095 0.1924 0.2625
VoteHMR [20] × 0.4142 0.0127 0.0258
Ours × 0.3545 0.0109 0.0132

Table 1. Mesh reconstruction performance of our model and the
baselines on synthetic human motion dataset.

a single batch. All other methods without the optimiza-
tion, including ours, take less than a second to estimate the
parameters for a full sequence. Figure 3 shows the qual-
itative comparison for methods that directly estimate the
SMPL [21] parameters. The methods based on point cloud
registration are not visualized as they ruin the topology of
the output mesh by mixing the order of vertices after match-
ing. Baselines estimate the parameters for individual frames
of input, and result in unnatural jittering motion within the
sequence. On the other hand, our method correctly captures
temporal correlation and reconstruct meshes with smooth
motion. Such phenomenon is better observable in the sup-
plementary video.

Spatially Partial Sequence We also present results on
training a feature follower with an input sequence with
largely occluded region. Because our pose generator is

Figure 4. The example of our model producing multiple outputs
for a severely partial point cloud sequence. The input point cloud
sequence lacks body information and our model generates multi-
ple plausible sequences.

composed of a CVAE architecture, we can sample the la-
tent vector from the learned distribution to generate multi-
ple plausible mesh outputs. Figure 4 shows the output gen-
erated from multiple samples, each sampled from 1σ, 2σ,
and 3σ, respectively. With the help of variational frame-
work, our pipeline can generate diverse output sequences
given challenging ambiguous input.

Temporally Partial Sequence We further present results
handling temporally missing data. The scenario reflects the
cases where data is sporadically unreliable, for example,
with a network issue dropping intermediate frames. To cope
with this situation, we take advantage of the transformer
networks used in our feature encoder and decoder. We ma-
nipulate the key padding mask in the transformer network to
hold the transformer attention from relying on the blocked
time step. In the training phase, we set the key padding
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Figure 5. The example of our model showing results on tempo-
rally partial sequence inputs. Our model successfully reconstructs
the mesh even when there is no data along time.

Method Optim. Chamfer Dist.

3D-CODED [10] ◦ 0.0101
Zuo et al. [52] ◦ 0.0014

3D-CODED w/o fit × 0.0559
SyNoRiM [14] × 0.0042
Zuo et al. w/o fit × 0.0092
VoteHMR [20] × 0.0051
Ours × 0.0027

Table 2. Mean Chamfer Distance of the methods on Berkeley
MHAD dataset [27]. The Chamfer Distance between the recov-
ered mesh and the input point cloud is averaged through the time.

mask to block a sequence with a random ratio with an up-
per bound. This way, the encoder and decoder learn how to
handle the sequence with missing frames at unknown time
steps. Figure 5 shows the mesh recovery result tested in a
temporally partial sequence. Our model effectively recovers
the complete sequence including the erased time steps.

Real Data We additionally test our model on real human
motion dataset, Berkeley MHAD [27]. Berkely MHAD
dataset, obtained from a Microsoft Kinect, is a depth data
of about 660 action sequences performed by 12 actors. We
transform the depth data into a point cloud sequence and
use it as an input of our model. Note that the dataset cap-
tures the entire environment where a human is present, and
we roughly crop the points near the actor position using a
bounding box. We retrieve the cropping bounding boxes
from mocap sensor positions, which the dataset provides
along with the depth sequences.

Method Pose Joint Vertex

VoteHMR-M [20] 0.3036 0.0101 0.0091
Ours 0.2353 0.0101 0.0088

Table 3. Evaluation results of our model and VoteHMR-M on
partial hand sequence. VoteHMR-M is a modified version of
VoteHMR [20] which can handle human hand dataset.

We test the generalization of our model on Berkeley
MHAD dataset [27] and compare against the baselines, as
shown in Table 2. We report the Chamfer Distance [7]
between the estimated human mesh vertices and the input
point cloud averaged along the time period. Even though
the input point cloud is extremely noisy and the network
is not fine-tuned to the noisy real data, our model recovers
the mesh sequence comparable to the optimization-based
method as shown in Figure 6. The error value of the model
Zuo et al. [52] is the smallest among all the methods. How-
ever, as shown in the figure, results from Zuo et al. show
inconsistent body directions through the time step.

Our method rarely fails to recover the mesh sequence
properly in extreme cases, such as a sequence with a chair
to sit on, or when there is a severe noise in the sequence
so that the shape parameter is estimated to generate a fatter
mesh output.

4.2. Hand Motion

To evaluate the performance on other types of paramet-
ric mesh model, we use the hand model with two datasets.
HanCo [49, 48] and InterHand2.6M [26] are hand motion
datasets which fit MANO [36] parameters to the hand mo-
tion capture data. For training the kinematics learner, we
use full point cloud input sequence to learn rich kinematic
priors about the hand motion. In the feature follower train-
ing phase, we generate single-view point cloud sequence
similar to the human partial point cloud dataset. The train-
test splits of the kinematics learner and the feature follower
is given in the supplementary material.

VoteHMR [20] is modified to be trained with the
MANO [36] parameters and made to output hand mesh. We
name the VoteHMR model modified for the MANO param-
eters as VoteHMR-M. Table 3 summarizes the reconstruc-
tion results, which indicates that our method has less error
values than VoteHMR-M in pose and vertex displacement.
Figure 7 shows the qualitative results.

4.3. Ablation Study

In this section, we discuss the effectiveness of our
method. We first analyze the efficacy of Laux

θ and Lvol used
when training the kinematics learner. Table 4 shows the re-
sults of the kinematics learner each trained with or without
Laux
θ and Lvol, respectively. To shorten the training time

of the experiments, we randomly sampled one-tenth of the
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Figure 6. Qualitative results on Berkeley MHAD dataset [27]. While the results from our method and VoteHMR [20] show certain body
direction, the result from Zuo et al. [52] keeps flipping.

Figure 7. Qualitative results on hand motion dataset. The top
two rows show the input sequence of the point cloud and its cor-
responding ground-truth mesh. The third row shows the recovery
result of our model and the last shows the results from VoteHMR-
M, VoteHMR [20] modified for human hand.

AMASS [23] training data to train the kinematics learner.
The results show that the loss terms introduced to train the
kinematics learner were valid.

We then substantiate our design choice of using the fea-
ture follower and the feature following loss LF . Note
the experiments are conducted on the synthetic noisy hu-

Module Method Pose Joint Vertex

Kinematics
Learner

Ours w/o Laux
θ , Lvol 0.3856 0.0928 0.1539

Ours w/o Laux
θ 0.3755 0.0900 0.1217

Ours w/o Lvol 0.3146 0.0573 0.0309
Ours 0.3064 0.0504 0.0215

Feature
Follower

Ours Direct 0.7293 0.0150 0.1018
Ours w/o LF 0.3556 0.0138 0.0166
Ours Small 0.3567 0.0157 0.0190
Ours 0.3545 0.0109 0.0132

Table 4. Additional experiments on our model for the kinematics
learner and the feature follower. Ours Direct is the kinematics
learner trained directly to the partial point cloud. Ours Small refers
to the model with the smaller feature follower capacity.

man point cloud sequence. We test whether the pretraining
scheme truly improves the motion tracking quality. We re-
port the result of the kinematics learner trained directly to
the partial point cloud sequence, which is end-to-end learn-
ing from partial point cloud to full mesh recovery. More-
over, we ablate the feature following loss LF to test the
effectiveness of following the feature encoded from the pre-
trained kinematics learner. Table 4 shows that the pretrain-
ing scheme and the introduced feature following loss were
both effective. This implies that our pretraining strategy
helps learning qualified feature space for the damaged point
cloud sequence.

Additionally, we show whether a higher capacity of the
feature follower network performs better or not. Here, we
note that the feature follower network consists of Point-
Net [32] followed by the transformer encoder network as
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described in Section 3.2. We designed the smaller model to
have an equal number of parameters for the PointNet struc-
ture, while lower the capacity of the transformer encoder
part to be quartered. As shown in Table 4, we found that
higher capacity model outperforms smaller one, which in-
dicates our method fully benefits the large model to learn
appropriate feature encoding.

Future works In this work, we showed that our model
can be applied to different kinds of parametric mesh model.
Since our method uses no subject-specific terms for han-
dling the input sequence, we expect our model to be ap-
plicable to other kinds of parametric mesh models, such as
tetrapods [51] or other human models [28].

We notice several possible future extensions to enhance
the practicality of the work. Our model fails to generate
proper mesh reconstruction when there exists some point
clouds in the floor or other objects. Advanced masking
modules to filter out those undesirable points may further
improve prediction of our model. Furthermore, we might
design a new structure that has better robustness in noise
handling. Lastly, our kinematics prior is reused only for
the partial point cloud input. However, we think that our
learned kinematics prior could be applied to a RGB-D in-
put. By changing the feature follower module to handle
additional RGB sequence will make the model capable to
recover mesh sequence for the RGB-D sequence, thanks to
the feature following loss.

5. Conclusion
We presented a method to fully recover mesh sequence

from a noisy, partial point cloud sequence utilizing the pre-
trained kinematics prior. We use large-scale motion dataset
to capture diverse movements of the subject. From the
pretrained kinematics, we train our model to reconstruct
the mesh sequence from the noisy, partial sequence. Our
method benefits from the variational frameworks and trans-
formers and shows strong reconstruction performance on
partial sequences. CVAE architecture allows our model
to generate multiple plausible pose parameters and shows
an advantage especially on handling spatially partial point
cloud sequence. Moreover, handling sequences with several
empty data is available by manipulating the attention in the
transformer network. This way, our model shows the best
result among non-optimization baselines and even shows
comparable results against the optimization-based baseline.
We expect our model to go forward to take various kinds of
input data in the future and further show its performance on
many other applications.
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