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Abstract

Recent studies have substantiated that machine learning
algorithms including convolutional neural networks often
suffer from unreliable generalizations when there is a sig-
nificant gap between the source and target data distribu-
tions. To mitigate this issue, a predetermined distribution
shift has been addressed independently (e.g., single domain
generalization, de-biasing). However, a distribution mis-
match cannot be clearly estimated because the target dis-
tribution is unknown at training. Therefore, a conservative
approach robust on unexpected diverse distributions is more
desirable in practice. Our work starts from a motivation to
allow adaptive inference once we know the target, since it
is accessible only at testing. Instead of assuming and fixing
the target distribution at training, our proposed approach
allows adjusting the feature space the model refers to at ev-
ery prediction, i.e., instance-wise adaptive inference. The
extensive evaluation demonstrates our method is effective
for generalization on diverse distributions.

1. Introduction
A fundamental assumption of machine learning is that

the training dataset represents the true distribution and the
test set also follows the same true distribution. For instance,
a face recognition model is trained on a dataset of thousands
or millions of face images, assuming that this dataset rep-
resents a set of all possible faces of human beings under
all conditions like illumination or angle. In this sense, any
dataset is nothing but a collection of samples from the real
world, and it may not perfectly represent the true distribu-
tion, even if it is huge. No dataset is free from this sampling
error; rather it is just a matter of degree. Obviously, a model
trained on a particular set of samples is affected by the dis-
tribution. In some fortunate cases, we may have similar dis-
tribution over training samples and over inference set, while
distribution shift between source and target data caused by
extreme sampling error could give rise to unreliable gener-
alization of the model.

Although we are not able to know the true distribution
in most cases, there are many practical situations where we

Figure 1. Our motivation. At training, we do not know to which
distribution the model would be deployed. Thus, generalization
for a predetermined distribution mismatch (e.g., SDG or UBL) is
often unfavorable. The image at the bottom illustrates our sce-
nario, where an arbitrary distribution could be the target.

need to build a model based only on a limited set of training
samples and apply it to another target data, which may nei-
ther necessarily follow the training distribution, nor the true
distribution. For instance, a gender classifier trained only on
images of the young may not perform well for the old. For
this practical need, previous research has been dedicated
to tackling this issue of domain shift. Particularly, several
works suggest that the performance of the model trained
on the source domain could often be degraded on the out-
of-distribution (OOD) target domains. This is called single
domain generalization (SDG) [25, 22, 32, 7, 20, 30, 26, 5],
mainly tackling an unknown domain shift between the train-
ing and test sets.

On the other hand, unbiased learning (UBL) is an-
other related research area, aiming at removing bias that
potentially a machine learning model may rely on. As
an example, a gender classifier may consider ‘age’ as an
important factor if trained on (young, female) and (old,
male) samples and hence frequently fail to correctly pre-
dict (old, female) and (young, male) test samples. Bi-
ased attributes could make the model biased and several
recent works propose various approaches to mitigate this
issue [3, 21, 19, 11, 19, 13, 23].

However, the type of distribution shift can be defined
only when we know both the source and target distributions.
As illustrated in Fig. 1, we do not know at training on which
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Figure 2. Distribution mismatch. Domain generalization and un-
biased learning can be seen as two special cases of the distribution
mismatch problem.

distribution the model will be used for inference. We hy-
pothesize that conventional methods may perform well or
not depending on the distribution shift because they are de-
signed considering one predetermined scenario.

From this perspective, we explore the generalizability of
the previous methods on two special cases of distribution
shift problems (i.e., biased and domain-limited distributions
depicted in Fig. 2) by conducting a motivating experiment
to apply state-of-the-art unbiased learning (UBL) models to
single domain generalization (SDG) and vice versa. Not
surprisingly, we observe they significantly underperform
beyond the designated situations they were trained on (See
Sec. 3 for more details). In other words, previous methods
tackling either SDG or UBL tend to be over-optimized to
each specific case, failing to generalize to the other problem,
even if they are indeed the same problem, i.e., domain mis-
match. This quantitatively demonstrates that inaccurate es-
timation of data distribution and inappropriate model selec-
tion during training could significantly drop performance.

In this paper, we aim to design a framework robust on
diverse data distribution mismatch problems, especially fo-
cusing on convolutional neural networks (CNNs) for image
recognition. CNNs learn two manuals: learning to repre-
sent a feature space from input images and fitting a classi-
fier from the features to the target labels. From this point
of view, we hypothesize that the features helpful for image
discrimination would be different depending on the data.
This would be because image data distribution implies cor-
relations of the attributes in the image space including the
label, which can be used as a predictive logic to match the
feature space to the label space. In this respect, the model
optimized to represent features and select appropriate ones
only for a specific source data may not be directly applied
to OOD data.

Therefore, we propose instance-wise adaptive inference
(IAI) that adjusts the referenced feature space to be more
suitable for each test instance at inference. Although we do
not know the type of distribution mismatch at training, it
can be indirectly estimated by comparing each target sam-
ple with the learned representations. Specifically, our oper-
ative idea is threefold: (i) to widen the feature space (since
if the model has a limited feature space, there may be little
opportunity to apply IAI), (ii) to disentangle the widened

feature space, and (iii) to adaptively select features among
them, considering each test instance at inference.

In consequence, we demonstrate that our proposed
method exhibits remarkable generalizability on both SDG
and UBL tasks compared to the state-of-the-art methods.
Our experimental results quantitatively verify our hypothe-
sis that target data needs different features from source data
for better image discrimination, justifying the effectiveness
of IAI for robustness.

We summarize our main contributions as follows:

• We present a novel framework for robust learning on
arbitrary diverse distributions. This is desirable in sce-
narios where a model is deployed in a dynamic envi-
ronment where queries often drift while the model can-
not be frequently revised.

• We propose a novel method that exploits adaptive
inference re-weighting instance-wise on disentangled
representations in widened feature space. Extensive
evaluations demonstrate our method is robust on di-
verse distributions.

2. Problem Statement
Consider an instance set X = {xi|xi ∈ X , i =

1, . . . , N} for a classification problem, where X denotes
the input space. The instance set X is generated by col-
lecting N samples {x1, ...,xN} from the real world, and
this process is not free from the sampling error, resulting
in distribution shift, as mentioned at the beginning. In ma-
chine learning, a model may not suffer from generalization
problem when distribution shift is subtle. However, if the
model is trained on a dataset with severe sampling error, its
performance could be significantly degraded at inference.
Our problem setting. Let us denote the true, training
(source), and testing (target) distributions by p, pS , and pT ,
respectively. Also, we denote the source and target datasets
by DS ∼ pS and DT ∼ pT , respectively, composed of
samples from the corresponding distributions. A machine
learning model f̂ is trained to minimize the empirical risk

f̂ = argmin
f

1

N

N∑
i=1

L(yi, f(xi)), (1)

where (xi, yi) ∈ DS for i = 1, ..., N . The ideal goal of our
problem is maximizing its performance on true distribution
p(x, y); that is,

f∗ = argmin
f̂

Ep(x,y)

[
L(y, f̂(x))

]
. (2)

However, since constructing DT with pT ≃ p is im-
practical, we aim to make the model f robust on diverse
{DS ,DT } pairs where there is significant distribution mis-
match between them, denoted by DS ̸≈ DT .
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Figure 3. Exploration of previous methods on diverse distributions. (a) no-shift distribution, (b) domain-limited distribution, (c) biased
distribution. Blue bars in the graphs mean SDG models and red ones are UB models. Dotted lines are the lowest performance among the
corresponding task models to compare the methods of other tasks, meaning the accuracy of BASE, ADA, and UBNet for (a), (b), and (c)
respectively.

Domain-limited distribution. A domain O is defined as
a tuple of the input space X and a marginal distribution pX
over samples X ⊂ X , i.e., O = (X , pX). The source dis-
tribution pS is called domain-limited when the source do-
main OS is significantly different from the target domain
OT with XS ̸= XT , pS ̸= pT . In this sense, the domain-
limited distribution is a special case of DS ̸≈ DT .

Biased distribution. Biased distribution is another spe-
cial case of DS ̸≈ DT . The label space Y can be defined
as a set of all possible assignments to each instance x. For
(xS , yS) ∈ DS , yS is a particular one selected from Y , e.g.,
gender of the person in an image. Most y′ ̸= yS ∈ Y may
be independent of the yS , but some might be significantly
correlated with yS [13]. For the latter y′, if it also has a cor-
relation with labels yT of the target dataset DT , y′ can be
used as a meaningful factor for prediction. For instance, the
mustache is a meaningful indicator that the person is likely
a male. However, if y′ is spuriously correlated with the la-
bel yS , relying on y′ would cause DS ̸≈ DT , misleading
the generalization of the model, considered as a bias. For
example, hair length is a well-known bias for gender classi-
fication due to its high correlation with the label, although
it is biologically independent.

3. Motivating Experiments

Experimental setup. We explore the performance of the
state-of-the-art SDG and UBL models on three distribu-
tions: no-shift (pS ≃ pT ), domain-limited, and biased
one. We set ADA [25], ME-ADA [32], and L2D [30] for
SDG as competing models and LfF [21], LDR [19] and
UBNet [13] for UBL. The experiments are conducted on
CIFAR-10 [17]. We assume the training and test sets in
CIFAR-10 have no-shift distribution, i.e., pS ≃ pT . The
domain-limited and biased CIFAR-10 are made by widen-
ing the target domain and by intentionally planting bias, re-
spectively, following the setup in LfF [21]. Specifically,
one of the 10 types of corruption, {fog, snow, frost, bright-
ness, contrast, spatter, elastic, jpeg compression, pixelate,
saturate}, is applied to the training images per each label;

e.g., (airplane, snow), (automobile, frost), and so on. The
unbiased validation set is corrupted uniformly randomly for
all the labels. For SDG, 12 validation sets are created with
{fog, snow, frost, zoom blur, defocus blur, glass blur, speckle
noise, shot noise, impulse noise, jpeg compression, pixelate,
spatter}. That is, all the validation image samples are cor-
rupted by ‘snow’, meaning the ‘snow’ target domain. We
use ResNet18 [10] as the baseline model.

Results and Analysis. Figure 3 shows that all the ap-
proaches for SDG and UBNet outperform the base model
on the no-shift distribution. Yet, LfF and LDR degrade ac-
curacy significantly. All the UBL models generalize worse
than SDG models for SDG task, and vice versa. Conse-
quently, we observe that conventional methods are limited
to addressing various sampling errors. This result implies
that most previous works perform well only on a special
case of distribution mismatch problems, where L2D is the
only one that performs reasonably on most distributions ac-
cording to our experiments.

4. Methodology
For generalization on diverse distributions, we propose

three ideas: (i) widening the feature space to be referred, (ii)
disentangling multiple independent representations from
one another in the widened feature space, and (iii) perform-
ing inference adaptively to each test example, weighting
differently on disentangled features based on distribution
mismatch between the source and target data. Towards this,
the overall architecture of our method consists of the style
generation module G and the classifier [F = {Fa, Fb};H]
(See Fig. 4). Aiming to train [F ;H] to be robust, G aids it to
be generalized on diverse distributions by creating diversely
stylized inputs. Our detailed model designs are depicted in
the following subsections.

4.1. Background to Widen Feature Space: L2D

Widening the Feature Space. In our framework, the dis-
entangled features are re-weighted for every instance at test
time. This approach works well when disentangled features
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Figure 4. Our model architecture. An input image x and its stylized image x′ by {Gi}Mi=1 are fed into the lower-level network Fa. Then,
the higher-level networks {F i

b}Mi=1 disentangle the features into z1, · · · , zM . At training, the simply concatenated features [z1, · · · , zM ]
are passed to H , the classification head. At testing, the re-weighted (by w = [w1, ..., wM ]) and activated (by ⊙) concatenated features are
passed.

have rich enough information, because there may be little
opportunity to select more meaningful features for a test in-
stance if the model represents limited feature space. We
widen the feature space by exploiting techniques, L2D [30].

Learning to Diversify. Let us denote the source dataset as
DS = {(xi, yi)}Ni=1. To make the model represent a wider
feature space, the style generation module G : X → X ′,
composed of K sets of {convolution (Conv), style-transfer
(Trans), transposed convolution (Conv⊤)}, synthesizes
various stylized images, where X and X ′ denote the origi-
nal and augmented input space, respectively. All scaled in-
puts, x′k

i = Conv⊤(Trans(Conv(xi))) for k = 1, ...,K,
are aggregated to x′

i by a linear combination with Gaussian
random weights. Then, the stylized image x′

i is fed to the
feature extractor F in conjunction with the original image
xi.

To train G to generate diverse stylized x′, mutual infor-
mation (MI) between x and x′ is minimized in the high-
level feature space Z . For this, feature extractor F :
X ∪ X ′ → Z encodes x and x′ to z and z′, respectively.
Formally, the MI is defined as:

I(z, z′) = Ep(z,z′)

[
log

p(z′|z)
p(z′)

]
. (3)

If p(z′|z) and q(z′|z) have similar distribution, I(z, z′)
can be approximated to a tractable upper bound as:

Î(z, z′) =
1

N

N∑
i=1

[log q(z′i|zi)−
1

N

N∑
j=1

log q(z′j |zi)], (4)

where the variational distribution q(z′|z) is estimated by a
neural network. The difference between p(z′|z) and q(z′|z)
can be minimized by Kullback-Leibler divergence (KLD).
For an implementation, KLD can be reduced by minimizing
the negative log-likelihood LNLL between z and z′:

LNLL = − 1

N

N∑
i=1

log q(z′i|zi). (5)

Although G generates various stylized x′, it is meaning-
less if their semantic information is not maintained. To
prevent this problem, another loss term LMMD based on
class-conditional Maximum Mean Discrepancy (MMD) is
applied:

LMMD =
1

C

C∑
j=1

∥∥∥∥∥∥ 1

nj
s

nj
s∑

i=1

ϕ(zji )−
1

nj
t

nj
t∑

i=1

ϕ(z′
j
i )

∥∥∥∥∥∥
2

, (6)

where z and z′ denote the feature vector of x and x′, respec-
tively. nj

s and nj
t are the number of original and augmented

images, respectively. C denotes the number of classes, and
ϕ(; ) denotes a Gaussian kernel that represents the distribu-
tion in the kernel Hilbert space to compute the difference.

With the aforementioned process, various styles gener-
ated by G cover a wider input space and hence help the
model to make wider feature space. Yet, the classifier
[F ;H] needs to maximize the MI between the same se-
mantic labels for better classification. Towards this, a su-
pervised contrastive loss LCL [14] is exploited instead of
directly maximizing MI:

LCL = −
N∑
i=0

1

|P (i)|
∑

p∈P (i)

log
ezi·zp/τ∑

a∈A(i) e
zi·za/τ

, (7)

where P (i) = {zp, z′p ∈ A(i) : yp = yi}, A(i) is the set
of the source and generated latent representations z, z′ of
all images in the same class, and 1 ≤ i, p ≤ N denotes
the index of the instance of z. τ denotes the temperature
coefficient. Consequently, the min-max adversarial training
is performed for MI between G and [F ;H].

4.2. Instance-wise Adaptive Inference

The widened feature space is disentangled via the disen-
tangling module and re-weighted for each test instance. The
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operative idea for instance-wise adaptive inference (IAI) is
that the feature attributes needed for accurate prediction of
each test example may be different from those of the train-
ing set due to distribution shift. With similar intuition, test
time adaptation techniques for domain generalization are re-
cently presented, where the classification head is re-trained
at test time with pseudo-labeled test samples with high con-
fidence [12] or by minimizing the entropy [27]. Dubey et
al. [6] encodes a few unlabeled samples belonging to a do-
main via kernel mean embedding and then feeds it in con-
junction with input data. Our IAI is different from these
previous adaptive approaches in that additional training at
test time or pre-processed domain information in the input
space is not needed. Besides, they are designed assuming
multiple domains for training (i.e., domain generalization),
and hence exhibit limited adaptiveness in our scenario re-
ceiving only one source distribution (i.e., SDG). See Sec. 5
for empirical comparison.

4.2.1 Disentangling Module

To define a disentangling module, let the feature extractor F
have L layers. For an arbitrary 1 ≤ l ≤ L, F can be divided
into two sub-modules, i.e., F = {F[1,...,l], F[l+1,...,L]},
where [·] denotes the indices of the layers included in the
sub-modules. Then, let M ⊂ F be the sub-feature space
obtained right after Fl and Z ⊂ F be another sub-space
after FL. For simplicity, we call F[1,...,l] : X ∪ X ′ → M,
F[l+1,...,L] : M → Z by the lower-level network Fa, the
higher-level network Fb, respectively. We employ M num-
ber of Fb denoting each of them by F 1

b , · · ·FM
b , which are

expected to encode different semantic information one an-
other, as depicted in Fig. 4. We call {Fm

b }Mm=1 as disentan-
gling module FD.

To disentangle {zi}Mi=1, we regularize them by cosine
similarity loss LCOS, defined as:

LCOS =
1(
M
2

) ∑
m ̸=n

zm · zn
∥zm∥∥zn∥

. (8)

Exactly the same regularization is applied to z′. By this
regularization, we intend to make F 1

b , · · ·FM
b encode dif-

ferent semantic representations one another, e.g., F 1
b clearly

activates ‘texture’, while F 2
b detects ‘object shape’, and so

on. The disentangled features {zi}Mi=1 are concatenated to
z[1,...,M ] = [z1, · · · , zM ] and fed into the classification
head H . Because an ordinary CNN optimized for image
classification frequently represents semantically entangled
feature space [4], IAI is limited to be applied directly with
a vanilla CNN. However, if we disentangle multiple inde-
pendent representations from one another by FD, useful
features for the prediction can be exploited, without using
other unnecessary (sometimes detrimental) features for gen-
eralization.

In overall, our method is trained by iterative two phases,
optimizing (a) the style-complement module G, and (b) the
discriminative model including Fa, {F i

b}Mi=1, q, and H . The
comprehensive loss LG for (a) and LD for (b) are

LG = Î(zm, z′m) + αLMMD, (9)
LD = LCE + β1LCL + β2LNLL + β3LCOS, (10)

where LCE denotes the cross-entropy loss for the classifier,
and α, β1, β2, and β3 are hyper-parameters for balancing.

4.2.2 Re-weighting

By minimizing LD, the classification head H learns to se-
lect meaningful information for discrimination of source
data from semantically diverse representations (e.g., con-
centrating more on z1 (texture) than z2 (shape) with diver-
gent weights). However, if there is a significant distribution
shift from the source to the target dataset, the features help-
ful for prediction would also be shifted. Thereby, we adjust
referred feature space differently for each test instance. For-
mally, IAI makes activated features zA ∈ RN×M×C from
z1,...,M ∈ RN×C by

zAi =

[
1

ws
1

z1 ⊙ z1; · · · ;
1

ws
M

zM ⊙ zM

]
, (11)

ws
m =

1

NC

N∑
i=1

C∑
j=1

z
(s)
mij , (12)

where [; ] denotes concatenation and ⊙ denotes element-
wise multiplication. z

(s)
mij ∈ R denotes the j-th element

in the latent vector obtained from instance i in the source
data z

(s)
mi ∈ RC . Note that this operation is only applied at

inference, not at training. The activated features zA are fed
into the classification head H in exactly the same way as
z[1,··· ,M ] to H at training.

Adjustment of the referred feature space. Our IAI is
grounded in the notion that stronger activations typically
correspond to the detection of highly discriminative features
[24, 31]. From this perspective, considering that {Fm

b }Mm=1

represents distinct features from one another (by LCOS),
the activation level from each module Fm

b induced as zm
offers the importance of each module in detecting discrim-
inative factors for either the source or target. Hence, if the
m-th module is well activated for the target and less acti-
vated for the source (wt

m > ws
m), it is desirable to use that

module more at testing, and vice versa. Implementing this
intuition involves adjusting the weight of each module at
test time by multiplying the ratio zm/ws

m ≃ wt
m/ws

m when
inducing zm, resulting in 1/ws

m × zm ⊙ zm.
Overall, we claim that IAI generalizes the model on di-

verse distribution mismatches. From a semantic point of
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Dataset DG-CIFAR PACS
Weather Blur Noise Digits avg. A C S avg.

Base* 64.43 65.31 45.95 68.20 60.97 54.66 19.37 26.11 33.38

SDG
ADA 72.67 67.04 39.97 66.62 61.58 58.72 45.58 48.26 50.85
ME-ADA 72.67 67.04 54.21 65.10 64.65 58.96 44.09 49.96 51.00
L2D 75.98 69.16 73.29 72.02 72.61 56.26 51.04 58.42 55.24

UBL
LfF* 49.77 48.53 22.29 51.30 43.22 56.35 22.65 26.70 35.23
LDR* 49.89 52.97 55.06 55.79 53.43 27.98 21.63 19.14 22.92
UBNet* 63.41 64.44 42.18 67.04 59.27 59.42 26.80 26.20 37.47

TTA
Tent-C* 46.35 47.33 35.78 43.75 43.30 58.01 21.59 24.79 34.80
Tent-B* 52.86 55.25 52.26 57.76 54.53 57.18 43.39 39.25 46.61
T3A* 45.21 48.12 43.40 58.11 48.71 56.98 23.25 32.32 37.52

IAI 76.37 71.36 74.14 79.57 75.36 60.81 45.62 65.78 57.40

Table 1. Single domain generalization. We display the best performance
(accuracy) by bold and second performance by underline. We experiment on
different seeds three times and report the average of them. * denotes the result
by our own experiment and the others are from the papers.

Dataset
B-CIFAR IMDB

train on EB1 train on EB2
EB2 TEST EB1 TEST avg.

Base* 23.26 57.84 69.75 59.86 84.42 67.97

SDG
ADA* 16.56 66.90 77.71 63.11 86.54 73.57
ME-ADA* 18.91 65.93 76.91 63.10 85.56 73.13
L2D* 24.18 72.68 81.80 65.87 88.01 77.09

UBL
LfF* 28.61 75.72 77.88 72.98 81.79 77.09
LDR* 29.95 74.71 79.19 71.81 83.20 77.23
UBNet* 25.52 75.00 83.56 71.17 88.90 79.66

TTA
Tent-C* 23.41 61.82 72.81 70.82 88.26 73.43
Tent-B* 26.19 72.00 81.90 61.11 86.34 75.34
T3A* 25.53 70.12 79.80 66.92 86.18 75.76

IAI 27.37 77.63 84.84 72.14 89.52 81.03

Table 2. Unbiased learning. We follow the exactly
same way as single domain generalization to report ta-
ble. We set the backbone of L2D as ResNet18 because it
performs better than original setup using AlexNet [18].

view, the distribution mismatch between the source and tar-
get data means that the attributes constituting the image are
distributed differently. Thus, the features that the model re-
lies on for better prediction would be also divergent. This
is not limited only to one specific problem (e.g., biased or
domain-limited) but corresponds to an arbitrary distribution
shift. Therefore, disentangling and re-weighting framework
can be applied for diverse scenarios in a general manner.

5. Experiments

5.1. Experimental Setup

Evaluation protocol. Since it is practically hard to know
the true distribution p, as pointed out in Sec. 2, we evaluate
the models on both SDG and UBL tasks on the target distri-
bution pT to estimate the generalizability of the model. We
intentionally make the domain-limited and biased training
distributions as follows. For SDG (DG-CIFAR, PACS), the
model is trained on a single domain and evaluated on multi-
ple OOD domains. For UBL, we follow the two scenarios,
each of which is followed by B-CIFAR [3] and IMDB [15].
As a first scenario (B-CIFAR), we make an extremely bi-
ased set towards a certain attribute (bias), i.e., ‘extreme bias
(EB)’. We use EB as training data and evaluate the model
on a uniformly distributed set for bias attribute, i.e., an unbi-
ased set. For the second scenario (IMDB), mutually exclu-
sive sets, EB1 and EB2, and an unbiased test set are utilized.
We use one of {EB1, EB2} as training data and evaluate it
on the other one. The test set is used for both.

Datasets. We evaluate our method on two modified ver-
sions of CIFAR10, domain generalization (DG)-CIFAR and
biased (B)-CIFAR, following the exact same way as in
Sec. 3. We further add real world-like datasets PACS [33]
and IMDB [28] for SDG and UBL, respectively. PACS con-
sists of 4 domains, P (photo), A (art painting), C (cartoon),
and S (sketch). We set P as source data and {A,C,S} as

target data. We divide IMDB into EB1 and EB2 consider-
ing ‘gender’ as the target label and ‘age’ as a bias. Con-
sequently, EB1 {(female, young), (male, old)} and EB2
{(female, old), (male, young)} are sampled, and we set
an unbiased test set with all four possible combinations of
(gender, age). Detailed data distribution is illustrated in the
appendix.

Competing methods. We use ADA [25], ME-ADA [32], and
L2D [30] for SDG and LfF [21], LDR [19] and UBNet [13]
for UBL as the competing methods. To investigate the
generalization of TTA toward diverse distribution, we add
Tent-C, Tent-B [27] and T3A [12] as our baselines. For
hyperparameters in the competing models, we follow the
same setting as presented in the original papers, and we re-
port our reproducedresults if they are better than the original
ones.

We use ResNet18 [10] as our base model. For the ex-
periment, we use Adam optimizer [16] and grid search for
learning rate (initial value and decay schedule), stopping
criterion, and batch size. More detailed implementation de-
tails are provided in the appendix.

5.2. Experimental Result and Discussion

First of all, we observe that previous methods are over-
optimized to each specific mismatch problem. Similarly
to the experimental results in Sec. 3, all the SDG methods
generalize worse than UBL for biased distribution, and vice
versa. Although L2D boosts the generalizability of the base
model for B-CIFAR and IMDB, it is limited compared to
UBL models. We conjecture this is because simply stylized
images cannot guarantee a less-biased distribution for bias
attributes.

However, our instance-wise adaptive inference con-
tributes to generalization. According to Tab. 1 and Tab. 2,
applying instance-wise adaptive inference on L2D, our
method significantly improves the generalizability on both
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Figure 5. Weight shift by instance-wise adaptive inference. (a) PACS, (b) IMDB trained with EB1, and (C) IMDB trained with EB2.
Source and P in (a) are split from the same domain. The y-axis means wi corresponded to each data indicated on the x-axis. We average
the three results of the same experiments in Tab. 1 and Tab. 2.

SDG and UBL, implying that our framework is robust on
arbitrary sampling errors. Our method exhibits the best per-
formance for DG-CIFAR, especially in the Digit domain.
Intuitively, the art painting (A) domain is most similar to
the photo (P) domain and this is quantitatively explained
by multiple methods (Base, ADA, ME-ADA, LfF, UBNet,
Tent, T3A), predicting much better on A than on C and S.
However, our method exhibits the best performance on the
sketch (S), showing remarkable generalization. Although
LDR performs the best for B-CIFAR, our model shows com-
petitive generalizability with a significantly improved accu-
racy from L2D. The test accuracy on EB1 and EB2 means
the generalization on conflicting samples to train data and
TEST signifies more widespread; that is, more similar to
the true distribution. Our method shows the best generaliz-
ability for the latter ones.

Lastly, test time adaptation methods have some limita-
tions. Although TTA methods show competitive perfor-
mance on B-CIFAR, their generalization for other datasets
is limited because these frameworks are designed for do-
main generalization that requires multiple source domains
for training. The performance improvement is insignificant
because the UBL scenario learns with one biased source
dataset as it is for SDG.

5.3. Ablation Study

Ablation study on sub-components. We investigate the
contribution of sub-components presented in Sec. 4 for the
generalizability of the model. Tab. 3 exhibits that disen-
tanglement and re-weighting improve performance for both
SDG and UBL. One might argue that this performance im-
provement is due to the increased model size. However, the
accuracy with the multi-features extractors in Tab. 3 with
a comparable number of parameters to our final method
demonstrates that it is not the case.

We additionally estimate weight shift by instance-wise
adaptive inference and report it in Fig. 5. The activation
scores w1,2,3, corresponding to F 1,2,3

b , are significantly dif-
ferent between the source and other target data for both

SDG and UBL. Especially, it is notable that ‘Source’ and
‘P’ (disparate data but same domain) in (a) have highly
similar activation distribution, while others do not. Con-
sequently, Tab. 3 and Fig. 5 conclude that the target data
need different features from the source data for prediction.

Multi-features extractors ✓ ✓ ✓
Disentanglement (LCOS) ✓ ✓
Re-weighting ✓

Acc (SDG) 52.73 51.00 56.99 57.40
Acc (UBL) 77.09 77.30 78.03 81.03

Table 3. Ablation Study on sub-components. The sub-
components are applied step by step. The model with none of
them applied is L2D with ResNet18 as the backbone. Acc (SDG)
and Acc (UB) denote accuracy on PACS and IMDB, respectively.

Comparison on disentangling regularization. Several
regularizations including distance-based and similarity-
based techniques can be applied to disentangle feature
space. To find effective disentanglement for intance-wise
adaptive inference, we compare them. Tab. 4 shows cosine
similarity contributes the best.

L1 L2 KLD COS

Acc (SDG) 51.10 47.45 52.22 57.40
Acc (UBL) 74.40 74.89 78.98 81.03

Table 4. Comparison on regularization techniques for disen-
tanglement. L1, L2, KLD, and COS denote L1-norm, L2-norm,
Kullback-Leibler divergence, and cosine similarity, respectively.

Generalization when pS ≃ pT . Despite the generaliz-
ability for the distribution mismatch problem, it is useless
if the model degrades performance when pS ≃ pT . Thus,
assuming training and testing data in the dataset sampled
from the same distribution, we compare the accuracy of our
model to the baseline model (ResNet18). Since the base-
line model is designed only for pS ≃ pT , the performance
of Base implies the guidance for this scenario. Figure 6
shows that our model even outperforms the baseline model.
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Figure 6. performance when pS ≃ pT . we use a train and vali-
dation set in CIFAR and P(train) and P(test) for PACS.

Model size. One might argue that instance-wise adaptive
inference generalizes well due to the increased number of
model parameters. To address this concern, we compare the
performance of the proposed method to several baselines.
The results in Tab. 5 show that simply increasing the num-
ber of model parameters is not sufficient for generalization.

Model ResNet18 ResNet50 ResNet101 L2D (base) L2D (large) IAI (Ours)

Params. 11,702K 25,557K 42,521K 12,037K 26,709K 28,827K
Acc (SDG) 33.38 40.47 43.11 55.24 56.78 57.40
Acc (UBL) 67.97 62.42 65.37 77.09 77.77 81.03

Table 5. Investigation for the contribution of model size. L2D
(base) and (large) use ResNet18 and ResNet50 as backbone net-
work, respectively.

6. Related Work
Single Domain Generalization. For single domain gen-
eralization, adversarial data augmentation (ADA) itera-
tively generate additional training examples with adversar-
ial augmentation from a worst-case fictitious target domain.
M-ADA [25] applied wasserstein auto-encoders (WAE) to
generate adversarial samples. Domain shift to target dis-
tribution is encouraged by the maximum mean discrepancy
[22]. Along with ADA and M-ADA, Zhao et al. [32] addi-
tionally applied the maximum-entropy-based regularization
loss term to address limitations caused by the heuristic ap-
proach when finding hard cases. Fan et al. [7] presented
adaptive standardization and rescaling normalization to at-
tune gaps coming from different domains. Li et al. [20]
suggested that expanding coverage of the training domain is
limited due to the lack of appropriate safety and effective-
ness constraints. Under this observation, they progressively
expand the domain. Wang et al. [30] synthesized images
minimizing MI to cover a wider range of domains and max-
imized MI between the samples from the same semantic
category to learn discriminative logic. Based on the motiva-
tion that convolution features can be decomposed into uni-
versal and elemental visual features, Wan et al. [26] elimi-
nated unfavorable features for generalization ability during
the decomposition and composition of features. Cugu et
al. [5] applied data augmentations to simulate multiple do-
mains. Then, they enforced the output of the model to be
consistent across original and simulated domains via class
activation map (CAM) loss.

Unbiased Modeling. The first approaches to debias a
model was in a supervised manner, assuming the bias at-
tribute is known and annotated [2, 15, 9, 1]. After that,
several studies mitigated it to an unlabeled but pre-defined
bias [8, 29, 3].

To address the issue that known bias is not practical,
the following works for unknown bias have been proposed.
LfF [21] estimated bias-conflicting samples by the inten-
tionally biased classifier and employed generalized cross-
entropy loss with large weights to de-bias the target model.
Lee et al. [19] proposed feature-level augmentation to gen-
erate various bias-conflicting samples. They disentangled
representation into intrinsic and bias attributes to find bias-
conflicting features. Hong et al. [11] suggested a contrastive
bias learning approach for known biases. They proposed
a soft bias-contrastive loss which weights bias-contrastive
loss to tackle the unknown bias case. UBNet [13] addressed
unknown bias by a conservative approach that widens fea-
ture space to be referred to via hierarchical features and or-
thogonal regularization. BPA [23] proposed a cluster-wise
reweighting scheme to make the model consider minority
groups to minimize the overall loss enough.

7. Summary and Discussion
In this paper, we consider a practical scenario that the

type of distribution mismatch cannot be estimated during
training due to limited access to the target data. Based
on this motivation, we present a novel framework robust
to diverse distributions. Specifically, a widened and disen-
tangled feature space is referred flexibly according to the
queried instance, i.e., instance-wise adaptive inference. On
the two special cases of distribution mismatch problems,
our proposed method exhibits the best generalizability per-
formance.

We present the effectiveness of our framework for gen-
eralization and the contribution of each component (widen-
ing, disentangling, re-weighting) through several experi-
ments. Nonetheless, we observe in the experiments that the
re-weighting rarely helps in some cases. We carefully sug-
gest that an adaptive inference would have potential if more
robustness is studied, leaving it as a promising future work.
Further, to be more widespread, generalization on the distri-
bution combination (e.g., unbiased domain generalization)
could be another practical scenario.
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