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Abstract

Input attribution is a widely used explanation method for
deep neural networks, especially in visual tasks. Among
various attribution methods, Integrated Gradients (IG) [28]
is frequently used because of its model-agnostic applicabil-
ity and desirable axioms. However, previous work [24, 8, 9]
has shown that such method often produces noisy and un-
reliable attributions during the integration of the gradients
over the path defined in the input space. In this paper, we
tackle this issue by estimating the distribution of the possi-
ble attributions according to the integrating path selection.
We show that such noisy attribution can be reduced by ag-
gregating attributions from the multiple paths instead of us-
ing a single path. Inspired by Stick-Breaking Process [20],
we suggest a random process to generate rich and various
sampling of the gradient integrating path. Using multiple
input attributions obtained from randomized path, we pro-
pose a novel attribution measure using the distribution of
attributions at each input features. We identify proposed
method qualitatively show less-noisy and object-aligned at-
tribution and its feasibility through the quantitative evalua-
tions.

1. Introduction
Along with the steep improvement and the real world

application of the deep learning models [4, 31], discover-
ing the evidence of the black-box model decision is consid-
ered to be important for debugging the malfunction [12] and
promise the safety and the fairness [5] of the models. Within
the vast literature of explaining the decision of the deep
models, input attribution [22, 2, 21, 28] is one of widely
used methods to quantify the relative contribution of each
features to the model output. Input attribution provides the
explanation in the form of heatmaps, which is useful to indi-
cate the spatial existence of evidences, especially in visual
tasks.

*work done while in UNIST †corresponding author

Among various approaches to compute the input attribu-
tions, Integrated Gradient (IG), one of widely used methods,
and its variants [28, 15, 9] are of particular interest in our
work. These methods explore the input space along the pre-
defined path and integrate the gradients to provide the reli-
able attributions. The integration path of such methods con-
sists of a baseline which represents the missingness of fea-
tures and a connecting line between the input and the base-
line. With different desired properties, various paths can
be used to compute the attribution. For example, Guided
IG [9] proposes the adaptive path to alleviate the high and
noisy gradients unrelated to the prediction. The selection of
baseline can also affect to the attribution results [27].

While the above methods address the importance of se-
lecting appropriate integration path, in this paper, we claim
that the single path is not reliable enough to interpret the
decision of neural networks. We provide a simple example
that the attribution computed by a single path provides high
variance according to different path selection. For better re-
liability, we propose a novel attribution method to take the
expectation of the path-integrated attribution over the dis-
tribution of possible paths. To sample from the distribution
over the vast variety of possible paths, we adopt the no-
tion of Stick-Breaking Process, which is one sort of stochas-
tic processes that samples the probability distribution. The
main contributions of our work are summarized as,

• Address the inconsistency of attribution according to
the selection of the integration path, and propose a
novel attribution method that takes the expectation
over the distribution of random paths to retain the reli-
ability of attribution.

• Propose a sampling method to generate a random in-
tegration path inspired by the Stick-Breaking Process.
From the proposed method, we can generate the vast
integration paths efficiently.

• Evaluate the attribution in qualitative and quantita-
tive measure to validate the reliability of the proposed
method on various of architecture of the networks.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1: An illustration of Stick-breaking Path Integration (SPI) for the given input x. Using the realized distribution G from
SBP, we randomly generate the integration path in the input domain by taking CDF of each distribution (colored lines in the
left-bottom). From the sampled paths, we apply the gradient integration along each path to gather the multiple attribution
samples. By taking the average, the attribution of SPI can be obtained.

2. Related Work

Attribution methods The input attribution methods
aims to measure the relative sensitivity of the model out-
put with respect to the input features. Saliency method [22]
is a simple approach to use the gradient as attribution. Then
Grad*Input method [21] is proposed to multiply the input
with the gradient for better input alignment. FullGrad [26]
proposes to use the bias gradient in addition to Grad*Input.
Guided Backpropagation [25] suggests to consider only fea-
tures that positively contributes to the prediction by ignor-
ing the negative backpropagated gradients. Layerwise Rele-
vance Propagation (LRP) [2, 14] is another method to mod-
ify the backward propagation. LRP proposes the relevance
propagation rules based on the Taylor decomposition. There
exists a family of attribution methods which do not require
the access to the internal properties (e.g., gradients, param-
eters). LIME [17] trains a surrogate linear model, which
resembles the original model for the data that features are
masked out from the input to be explained. RISE [16] com-
putes the attribution by aggregating the model outputs from
the multiple random masked inputs.

Path-based attribution methods Integrated Gradients
(IG) [28] is one of widely used input attribution method.
It is built upon the game-theoretic notion of pay-off distri-
bution method, Aumann-Shapley value [1]. IG has several
desirable properties, called axioms, which supports the re-
liability of the attribution. IG is calculated by integrating
the gradients along the path from the baseline to the input.
Based on this work, several extended research has been per-

formed. To reduce the noise in the attribution, SmoothGrad
[24] takes the average of the multiple random noise added
inputs and NoiseGrad [3] inject noise to the weight param-
eters. From the observation that the sum of gradient of mul-
tiple features is more stable than the individual gradients,
XRAI [8] proposes the method to merge the attribution of
neighboring features using multi-level superpixels. Some
researches try to modify the integration path with their own
desired characteristics [9, 15].

Evalutation of attribution methods Even though a
plethora of attribution methods are proposed, evaluating the
reliability or the correctness are still challenging. Pixel flip
is an causal metric between the input and the prediction con-
fidence [19]. Pixel flip is calculated by setting the value
of each feature to zero in order of increasing or decreas-
ing order of attributions. As an extension, insertion and the
deletion game is proposed by starting the insertion game
from the blurred image to avoid the spurious effects when
small number of pixels are inserted [16]. RemOve-And-
Retrain (ROAR) measures the performance drop when the
dataset is reorganized by perturbing the input images with
the average pixel value in decreasing order of attribution [7].
Steep performance drop in ROAR indicates that the attribu-
tion method correctly points out important features which
are actually used to train and inference.

3. Stick-breaking Path Integration
In this section, we propose our new path-based attribu-

tion method, Stick-breaking Path Integration (SPI). We first
provide some backgrounds about Integrated Gradients (IG)
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Figure 2: (a) An illustrative example of various path inte-
grated attributions with difference path choices. Each col-
ored region indicates the passed different decision region
along the integrated path. We identify that the complexity
of integration (e.g., the number of decision regions) can be
determined by the shape of the integrated path. (b) An il-
lustrative example of converting the realized partitions of a
stick to the integration paths.

[28] and its family of attribution methods, path methods.
From the insight that the attribution highly depends on the
path selection, we propose to take the expectation over the
distribution of random paths for reliability of attribution.
Due to the difficulty in defining the distribution of paths,
we propose a sampling process which is motivated by the
Stick-Breaking Process (SBP) [20]. Using the multiple at-
tributions computed by randomly sampled paths, we finally
propose SPI. In addition, we propose a visualization method
for SPI, SPI-P, which utilizes the stochastic property of the
sampling process.

3.1. Path methods and Integrated Gradients

Integrated Gradient (IG) [28] is proposed as an explana-
tion method for neural networks by adopting the Aumann-
Shapley value [1], which is a credit allocation method de-

veloped for the cooperative game theory. Based on such
allocation strategy, IG aims to compute the contribution of
input features to the model prediction. For a differentiable
model function f , the input x and the baseline x̄, IG on i-th
feature is given as

ϕi(γγγ) =

∫ 1

0

∂f(γγγ(t))

∂γi(t)

∂γi(t)

∂t
dt, γγγ(t) = x̄ + t(x − x̄)

(1)

where γγγ(t) represents a continuous path from the baseline
x̄ to the input x and γi(t) refers to the value of i-th fea-
ture at step t along the path. Previous work has shown that
integrating over different path γγγ yields different type of at-
tribution method [15, 9]. We call this group of attribution
methods with arbitrary selection of path γγγ as path meth-
ods. However, the intermediate gradient in the single path
is likely to be noisy and it reduces the reliability and in-
terpretability of the obtained attribution. Several work has
shown such noise can be reduced by averaging IG over ran-
domly perturbed inputs [24], randomly perturbed weights
[3] or average pooling over spatial location (i.e., local pix-
els for image) [8].

In this work, we propose to aggregate the attribution
from multiple paths with a fixed baseline sampled from the
proposed distribution of paths to reduce the noise and im-
prove the confidence of the attribution. We first define the
integration path and its desired properties.

Definition 3.1 (Integration Path). The integration path is a
mapping function from t ∈ [0, 1] to the input domain X ,
γγγ : [0, 1] 7→ X . The path should satisfy two properties; (1)
the path starts from the baseline, γγγ(0)=x̄, and ends at the
input to be attributed, γγγ(1)=x and (2) the path monotoni-
cally proceeds from x̄ to x, i.e., dγi(t)

dt = C(xi − x̄i) for
C ≥ 0.

In the rest of the paper, we denote the bold symbols
for the vector (e.g., x). We use the subscript to repre-
sent the indexed component (e.g., xi). We use the su-
perscript to represent the different indexed instances (e.g.,
w(1), . . . ,w(j), . . . ).

3.2. Relationship between Path and Attribution

A neural network equipped with the partial linear acti-
vation, such as ReLU, is known to have the form of the
piece-wise linear function [13]. The piece-wise linear func-
tion is defined by multiple linear functions, where each lin-
ear function is only feasible in corresponding linear region,
R(j). Such piece-wise linear function f can be formulated
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as follow with each linear region R(j),

f(x) =


w(1)T x + b(1) x ∈ R(1)

· · ·
w(j)T x + b(j) x ∈ R(j)

· · ·

(2)

Then the path method provides the attribution in terms of
weighted sum of corresponding weight vectors in each re-
gion,

ϕi(γγγ) =
∑
j

w
(j)
i α

(j)
i (γγγ)∑

j′ α
(j′)
i (γγγ)

, (3)

α
(j)
i (γγγ) =

∫ 1

t=0

dγi(t)

dt
δ(j)(γγγ(t))dt (4)

where α
(j)
i (γγγ) represents the projected length of the path

γγγ to the i-th feature that passes through the region R(j).
The delta function δ(j)(γγγ(t)) returns 1 if γγγ(t) ∈ R(j) and
otherwise 0. Even though ϕj in Equation 4 sums over every
region, we note that it is equivalent to the summation over
the regions that path γγγ passes through, because α(j)

i (γγγ) = 0
for the region R(j) that γγγ does not pass through.

It has been shown that to increase the expressivity of the
DNNs, the number of linear regions should also increase
[30]. With the high dimensional input space and the vast
number of linear regions, using a single path for the path
methods would induce high uncertainty and variance to the
resulting attributions. Figure 2a illustrates that even in 2-
dimensional space with several linear regions, different se-
lection of path aggregates mostly different weight vectors of
corresponding regions. To alleviate such uncertainty with
selecting an integration path, we propose to compute the
expectation of path method over the distribution of possible
paths as follow,

Eγγγ [ϕi(γγγ)] =

∫
γγγ

∫ 1

0

∂f(γγγ(t))

∂γi(t)

∂γi(t)

∂t
dtP (γγγ)dγγγ. (5)

3.3. Randomized Path Sampling

As the distribution of the path, P (γγγ), is difficult to be de-
fined, we propose an alternative approach to randomly gen-
erate the path with the variety. When generating a path, we
have two choices to select; (1) whether proceed to the des-
tination or not and (2) how far to proceed. We reduce this
problem to the Stick-Breaking Process (SBP) [20]. SBP is
a generative process to obtain random fractions of a stick
with its initial length of 1. The fraction obtained by SBP
can be regarded as how much portion from the baseline to
the input should move at each step. In this configuration, the
number of fraction can be regarded as the number of steps
in the path and each length of fractions can be regarded as

Figure 3: Visualization of CDF of SBP realized distribu-
tions G with different concentration parameter α (colored
lines). The base distribution is given as uniform distribu-
tion, U(0, 1), and its CDF is given as the straight line (black
line). The realized CDF converges to the CDF of the base
distribution when the concentration hyperparameter α in-
crease.

each length of steps. Figure 2b depicts how the sampled
partitions of the unit length stick can be used to build the in-
tegration path. Each sampled fraction is represented a Prob-
ability Mass Function (PMF), and such PMF is defined as
follow,

G(t)=

∞∑
k=1

πkδtk(t) ∼ SBP (H,α), (6)

πk=βk

k−1∏
i=1

(1− βi), (7)

βk ∼ Beta(1, α), tk ∼ H (8)

where δtk(t) is a delta function that returns zero every-
where, except for δtk(t = tk) = 1 and H is a base dis-
tribution. The expectation of G sampled by SBP is desired
to estimate the base distribution H . The hyperparameter α,
also known as concentration parameter, controls the real-
ized distribution G to be more similar to the base distribu-
tion if α takes larger value.

From the sampled PMF G(t), we define the CDF FG(t)
which can be used to build the integration path function. Let
the integration path be

γi(t) = x̄i + FG(t)(xi − x̄i). (9)

We note that the Equation 10 satisfies the properties of Def-
inition 3.1; (1) γi(0)=x̄i and γi(1)=xi because FG(0) = 0
and FG(1) = 1, and (2) dFG(t)/dt = G(t) ≥ 0. With tak-
ing the base distribution H to be the uniform distribution,
H = U(0, 1), whose CDF is equivalent to the IG straight
path. Figure 3 depicts the CDF of SBP realized distribu-
tions using different α. When the value of α increases, the
realized CDF converges to the CDF of U(0, 1) (black line),
and we call this CDF as the base path.

Definition 3.2 (Stick-breaking Path (SP)). Given a hyper-
parameter αi > 0, the Stick-breaking Path (SP) of i-th fea-
ture from the baseline x̄i to the input xi is defined as the
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multiplication of the CDF of the distribution Gi obtained
by SBP and the difference between x̄i and xi,

γi(t;αi) = x̄i + FGi(t)(xi − x̄i) (10)
Gi ∼ SBP (U(0, 1), α) (11)

With the sampling process of SP and hyperparameter α,
we finally propose a new attribution method, Stick-breaking
Path Integration (SPI).

Definition 3.3 (Stick-breaking Path Integration). For a
model f and a baseline x̄, SPI is defined as the expectation
of the path method over the path distribution,

SPIi(x;α) = Eγγγ [ϕi(γγγ)]

= EG [(xi − x̄i)

∫ 1

0

∂f(x̄ + FG(t)⊙ (x − x̄))
∂(x̄i + FGi(t)(xi − x̄i))

dFGi
(t)

dt
dt

(12)

where G is a vector with each index follows SBP, Gi ∼
SBP (U(0, 1), α) and FG : [0, 1] 7→ Rd is a stack of SP that
returns a vector in the input space according to the current
step t.

3.4. Visualization with score based on statistics of
attributions

As we sample SP from the random process SBP, the at-
tribution computed using SP, ϕi(γγγ), also can be regarded
as random variables. Assuming that ϕi(γγγ) follows the
Gaussian distribution, the estimated Gaussian distribution
of ϕi(γγγ) is given as follow

ϕi(γγγ) ∼ N(µ, σ), (13)

µ =
1

N

N∑
k=1

ϕi(γγγ
(k)), (14)

σ =
1

N

N∑
k=1

(
ϕi(γγγ

(k))− Eγγγ(k) [ϕi(γγγ
(k))]

)2

. (15)

We observe that the input attributions obtained by integrat-
ing gradient over each randomly sampled path deviates in
their own distribution. We categorize such attributions to
three; (1) the one with low variance and low mean, (2) the
one with low variance with high mean and (3) the one with
high variance. For the first and the second cases, we can
identify that those features are consistently show low/high
contribution with less dependent to the path. However, for
the third case, we need to measure how probable that such
feature would contribute much.

With this insights, we propose an additional method by
assigning the probability of attribution at each feature is suf-
ficiently positive along SBP. Assuming that the attributions
for each feature are distributed normally, we propose SPI-
P, which measures the probability of attribution to be larger

Figure 4: Input attribution obtained by proposed SPI
method with varying the hyperparameter α. With increas-
ing α, SPI-E becomes noisy and resembles the attribution of
IG. With decreasing α, the noise is reduced on the objects,
but the checkered pattern appear in the background of the
image. SPI-P with low α also returns high probability for
the background.

than some threshold Θ. We use the top 5% quantile value
of SPI(x;α) as the threshold.

Definition 3.4 (SPI Probability (SPI-P)). Assume that the
attribution at i-th feature follows the Gaussian distribution
with estimated µ and σ in Equation 15. Then SPI-P is de-
fined by the CDF of the Gaussian distribution,

SPI−Pi(x;α) = P (Φi > Θ)

= 1− 1

σ
√
2π

∫ Θ

−∞
exp

(
− (θ − µ)2

σ2

)
dθ

(16)

3.5. Analysis on α

We note that α controls the variance of sampled paths in
Section 3.3. In this section, we provide the analysis on how
the attribution obtained by proposed method differs accord-
ing to the value of α. Figure 4 shows the qualitative com-
parison of the proposed two methods, SPI-E and SPI-P. The
first row in Figure 4 indicates that as α increases, the attribu-
tion becomes similar to the attribution of IG. As previously
described, if α increase, the realized paths converges to the
base path, which is the straight line of IG. The attribution
with with high α shows noisy results that the positive and
the negative values are alternatively placed nearby. Such
noisy attribution has been raised as a problem in gradient-
based attribution methods [9]. In contrast, the result with
low α shows loss noisy attribution. Comparing the attribu-
tion from the high and the low α, With low α, the attribution
shows less noisy and more consistent on the object.

4. Experiments and Results
In this section, we verify the effectiveness of SPI by the

qualitative analysis and the quantitative comparison. We
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Figure 5: Qualitative comparison among various attribution methods for VGG-16 in the validation dataset of ImageNet.
Each column describes the heatmaps obtained by each method. SPI generates more object-oriented and less noisy attribution
heatmaps. With SPI-P, the heatmaps are more distinguishable between the important features and the irrelevant background.

first provide the qualitative comparison among different at-
tribution methods, by providing the attribution heatmaps on
the randomly chosen examples. We note that the quanti-
tative evaluation on the attribution methods is challenging
because there is no ground truth of the attribution and the

ground truth even changes if we train a new model. To alle-
viate the absence of the ground truths, we provide the quan-
titative comparison using two widely used metrics: (1) pixel
insertion/deletion game [19, 16], and (2) RemOve-And-
Retrain (ROAR) [7] to identify that the proposed method
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VGG-16 Inception-v3 RN-18

In
se

rt
io

n
(↑

)

Grad*Input 0.078 0.171 0.114
GuidedBProp 0.094 0.145 0.124

IG 0.096 0.243 0.158
FullGrad 0.415 0.558 0.448
GuidedIG 0.110 0.255 0.185
SPI (Ours) 0.443 0.704 0.515

D
el

et
io

n
(↓

)

Grad*Input 0.045 0.105 0.050
GuidedBProp 0.113 0.162 0.145

IG 0.036 0.066 0.038
FullGrad 0.110 0.175 0.131
GuidedIG 0.029 0.061 0.020
SPI (Ours) 0.019 0.051 0.018

Table 1: Insertion/Deletion game of various attribution
methods on three model architectures. Higher score is bet-
ter for insertion and lower score is better for deletion.

can assign attributions which are more relevant to model be-
havior. We select various gradient-based attribution meth-
ods for the comparison: Gradient*Input [21], Guided Back-
Propagation (GuidedBProp) [25], Integrated Gradients (IG)
[28], FullGrad [26], and GuidedIG [9].

4.1. Qualitative Comparison

For the visual inspection, which is the main applica-
tion of the input attribution, we qualitatively compare the
attribution heatmaps obtained by various methods. For
the heatmap visualization, we take the color range to be
bounded by top 5% absolute value of each attribution. Fig-
ure 5 provides the attribution heatmaps of randomly se-
lected images from the validation set of ImageNet with the
pre-trained VGG-16. We identify that the attributions ob-
tained by SPI show more aligned to the target class object
and less attributed to the unrelated background. For exam-
ple, in the third row, SPI correctly focuses on the necklace,
while other methods are distracted by the irrelevant pixels
in the background. With SPI-P visualization, we also iden-
tify that the attribution better isolates the important features
from the input image.

4.2. Pixel insertion and deletion game

Pixel flip is first proposed to benchmark if attribution
methods correctly capture the relevance between the input
features and the model output [19]. It is later introduced
as evaluating the effect on the model prediction caused by
the pixel perturbation [16]. To quantify the relevance be-
tween the input features and the model output, pixel flip
modifies the pixel values in order of relevance obtained by
attribution methods, from high to low. Then it measures the
change of softmax output for the target class with the pertur-
bation. Pixel flip consists of two evaluations, the insertion

game and the deletion game. The insertion game inserts the
original pixel value to the predefined baseline, and the dele-
tion game deletes the original pixel value in the input. If the
input attribution is correctly related to the model prediction,
then the insertion game would give high score by steep in-
crease of output with the insertion of highly attributed pix-
els. In the same manner, the deletion game would give low
score with correctly related attribution. When modifying
the pixel, several choices arise which value to replace. We
follow the configuration of previous work [16], which use
the blurred input for the insertion and the zero value for the
deletion.

We use 50k images of the validation set provided by Im-
ageNet [18]. We use three publicly available pre-trained
models: VGG-16 [23], Inception-v3 [29], ResNet-18 (RN-
18) [6]. Table 1 indicates the insertion and the deletion re-
sults for the various attribution methods and model archi-
tectures. We identify that SPI shows the best performance
in both games on entire three architectures.

4.3. RemOve-And-Retrain (ROAR)

ROAR [7] is another metric to evaluate if the attribution
method correctly indicates the features that are important
in the perspective of the model training. ROAR is calcu-
lated by measuring the performance drop when the model is
re-trained with modified training data. Each sample in the
training dataset is modified by removing pixels with top k%
attribution and replacing them with the average pixel value
of the input. For the ROAR experiment, we use ResNet-18
architecture and train the model on 50k images of training
set provided by CIFAR-10 dataset [11]. For the training,
we use the Adam optimizer [10] with learning rate 3e-4 and
100 epochs. After training with each modified dataset, the
performance of the trained model is measured with the stan-
dard test dataset with 10k images in CIFAR-10. We note
that the attribution method captures more relevant features
if the test accuracy is lower. Table 2 shows the test accu-
racy measure in the ROAR experiment for each attribution
method. We repeatably conduct 10 trials of the experiments,
where the parameters are random initialized at each trial and
fixed between attribution methods. Table 2 shows the test
accuracy measure in the ROAR experiment for each attri-
bution method. The result indicates that the model trained
on the modified dataset with SPI steeply decreases the test
accuracy even with 10% removed. We conclude that SPI is
effective in identifying the input features which are impor-
tant to train the DNNs models.

4.4. Different Distribution for Path Sampling

We investigate the impact of using different distribu-
tion (hypergeometric distribution) on the attribution result
to evaluate how effective the SBP is for path sampling. In
Figure 6, we present two examples of paths that generated
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Figure 6: Comparison of paths generated by hypergeometric and Stick-Breaking Process (SBP) distributions with randomly
sampled parameters. We identify that SBP has greater representation power to sample the multiple paths.

Removed % 10 30 50 70 90
Grad*Input 52.76±0.95% 39.74±1.01% 33.22±1.33% 29.25±0.43% 24.92±1.39%

GuidedBProp 67.51±0.40% 63.70±0.80% 61.91±0.85% 59.99±0.93% 52.73±0.52%
IG 39.70±0.79% 26.23±1.11% 21.46±0.53% 17.73±0.58% 15.73±0.82%

FullGrad 67.49±0.79% 56.84±0.97% 42.31±0.75% 26.10±1.19% 14.82±1.09%
GuidedIG 38.90±1.63% 24.23±1.01% 20.64±1.22% 18.11±0.75% 15.66±0.81%
SPI (Ours) 31.00±0.48% 19.70±0.40% 16.05±0.91% 13.09±0.72% 10.88±1.06%

Table 2: ROAR evaluation of various attribution methods on ResNet-18 trained with CIFAR-10.

by the hypergeometric distribution with randomly sampled
parameters. The first example in Figure 6 (a) is produced
by using the uniform distribution for the parameter n. We
demonstrate that SBP with α = 0.01 can also approxi-
mately represent this distribution, as depicted in Figure 6
(b). The second example in Figure 6 (c) employs the Gaus-
sian distribution instead of the uniform distribution, and we
show that it can also be approximated by SBP, as illus-
trated in Figure 6 (d). In contrast, as depicted in Figure 6
(e), attempting to represent the distributed paths from SBP
with α = 10 using the hypergeometric distribution proves
challenging, as controlling the parameters (e.g., n) becomes
non-trivial. Consequently, we believe that SBP with the uni-
form distribution as the base distribution has greater repre-
sentation power than the hypergeometric distribution. We
also confirm that SBP with α = 10 and the uniform distri-
bution yields the best performance in the insertion/deletion
game compared to other methods.

5. Discussion
In this paper, we proposed the novel attribution method,

Stick-breaking Path Integration (SPI), to provide more reli-
able explanation on the relationship between the input fea-
tures and the model decision. Based on the path method,
which is computed by integrating the gradients along the

path in the input space, we first provide the affect of path se-
lection to the computation of the input attribution. By rais-
ing the necessity of considering multiple paths for the reli-
able attribution, we propose to average the path-based attri-
bution over the distribution of paths. We qualitatively show
that our method provides attributions with more object-
aligned and less noisy. We also provide the quantita-
tive evaluations, pixel flip and ROAR, to identify that our
method is well-aligned with the model behavior.

Our work also sheds light for several future works that
would provide more reliable or meaningful attributions.
The selection of the base distribution would be different
to the uniform distribution. For example, one may use the
Gaussian distribution to control the path to proceed at early
steps or late steps by managing the mean of the distribu-
tion. Using different path sampling method would be an-
other approach. Our method assumes the paths are dis-
tributed uniformly, but one may define a distribution with
several modes. Randomizing the baseline would also di-
versify the sampled integration path. We expect our work
would provide new aspect of attribution methods to inspect
the black-box models.
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Binder, Grégoire Montavon, Wojciech Samek, and Klaus-

Robert Müller. Unmasking clever hans predictors and as-
sessing what machines really learn. Nature Communications,
2019.

[13] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and
Yoshua Bengio. On the number of linear regions of deep
neural networks. Advances in neural information processing
systems, 27, 2014.

[14] Woo-Jeoung Nam, Shir Gur, Jaesik Choi, Lior Wolf, and
Seong-Whan Lee. Relative attributing propagation: Inter-
preting the comparative contributions of individual units in
deep neural networks. In AAAI, 2020.

[15] Deng Pan, Xin Li, and Dongxiao Zhu. Explaining deep neu-
ral network models with adversarial gradient integration. In
IJCAI, 2021.

[16] Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Random-
ized input sampling for explanation of black-box models.
arXiv preprint arXiv:1806.07421, 2018.

[17] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
Why should i trust you?: Explaining the predictions of any
classifier. In ACM SIGKDD. ACM, 2016.

[18] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of
computer vision, 2015.

[19] Wojciech Samek, Alexander Binder, Grégoire Montavon,
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