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Abstract

In MRI, images of the same contrast (e.g., T1) from the
same subject can exhibit noticeable differences when ac-
quired using different hardware, sequences, or scan param-
eters. These differences in images create a domain gap
that needs to be bridged by a step called image harmo-
nization, to process the images successfully using conven-
tional or deep learning-based image analysis (e.g., segmen-
tation). Several methods, including deep learning-based
approaches, have been proposed to achieve image harmo-
nization. However, they often require datasets from multiple
domains for deep learning training and may still be unsuc-
cessful when applied to images from unseen domains. To
address this limitation, we propose a novel concept called
‘Blind Harmonization’, which utilizes only target domain
data for training but still has the capability to harmonize
images from unseen domains. For the implementation of
blind harmonization, we developed BlindHarmony using an
unconditional flow model trained on target domain data.
The harmonized image is optimized to have a correlation
with the input source domain image while ensuring that
the latent vector of the flow model is close to the center
of the Gaussian distribution. BlindHarmony was evalu-
ated on both simulated and real datasets and compared
to conventional methods. BlindHarmony demonstrated no-
ticeable performance on both datasets, highlighting its po-
tential for future use in clinical settings. The source code
is available at: https://github.com/SNU-LIST/
BlindHarmony

1. Introduction

Magnetic resonance imaging (MRI) is a widely-used
medical imaging modality. With the advent of deep
learning-based computer vision techniques, there have been
numerous applications of deep learning in MRI, such as dis-
ease classification [5, 36, 23], tumor segmentation [3, 46],
and solving inverse problems [18, 44]. Despite the notable
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performance of deep learning in MRI, its widespread use
has been hindered by the inherent domain gap present in
MRI data [6, 8]. Variations occur in MRI images across
different vendors, scanners, sites, and scan parameters even
when the images are acquired from the same subject. This
domain gap presents a generalization problem when apply-
ing the data to a neural network that has been trained on a
different dataset.

To overcome the challenges of generalization in deep
learning applied to MRI data, several harmonization meth-
ods have been developed to match the source domain im-
age to the characteristics of the target domain. These ap-
proaches include non-deep learning-based methods [37, 31,
38, 29, 34, 15] and deep learning-based methods [9, 30,
26, 10, 13, 17], which have demonstrated performance im-
provements. However, there are limitations that need to be
addressed. Firstly, many of these methods require multi-
ple datasets from different domains. For instance, Deep-
Harmony [9] which is a supervised end-to-end framework
requires “traveling subjects” who undergo multiple MRI
scans with different scanners to obtain images from both
the source and target domains. Utilizing CycleGAN-based
style transfer can mitigate the need for traveling subjects
[30, 26], but it still necessitates large datasets with multi-
ple domains. Secondly, the harmonization network trained
for mapping between specific source and target domains is
challenging to be applied in unseen domains, limiting the
generalizability of methods. Efforts have been made to em-
ploy disentanglement approaches or domain adaptation to
achieve harmonization in unseen domains, but it requires a
multi-contrast or multi-site paired dataset [10, 48]. To over-
come these challenges, we propose the concept of “Blind
Harmonization”, where the harmonization network can be
constructed only with the target domain data during train-
ing and applicable to diverse source domains that are unseen
during training.

In recent years, a class of invertible generative models
called normalizing flow [11, 21, 12] has been introduced
and has shown exceptional performance in a wide range of
computer vision tasks [27, 2, 33]. Normalizing flow has the
unique ability not only to generate novel images that resem-
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Figure 1: Blind harmonization presents an advantage over
conventional harmonization models. While traditional
models often necessitate multiple datasets during training or
show reduced performance on unseen domains, blind har-
monization can be trained solely with target domain data
and generalized to previously unseen source domains.

ble samples from the distribution of a given dataset but also
to map the probabilistic distribution of image datasets. This
feature makes normalizing flows particularly well-suited for
image generation and manipulation tasks, as they can ef-
fectively capture the underlying distribution of image data
and generate new images that are consistent with that distri-
bution. Furthermore, the invertibility of these models pro-
vides fine-grained control over the generated images, mak-
ing them useful for tasks such as image manipulation and
style transfer. [1, 41]

In this paper, as a solution for blind harmonization, we
introduce BlindHarmony which is a flow-based blind MR
image harmonization framework that uses only the target
domain dataset during training. Our method aims to find
the harmonized image that preserves the anatomical struc-
ture and contrast of the input source domain image while
maintaining a high likelihood in the flow model (i.e., en-
abling harmonization for the target domain), leveraging the
invertibility of flow models. Our contributions are as fol-
lows:

1. We present the concept of blind harmonization, which
does not require the source domain data during train-

ing and can perform harmonization for the images of
untrained domains.

2. As an implementation of blind harmonization, we
propose BlindHarmony. In BlindHarmony, the flow
model is trained solely with the target domain data, and
the harmonized image is optimized by leveraging the
invertibility of the flow model.

3. We evaluate our method on both simulated data and
real-world data.

2. Related works

2.1. MRI harmonization

There are numerous demands for harmonizing MR im-
ages from different sites, vendors, or scanners. Several
studies have proposed methods for harmonizing MR im-
ages from the source domain to the target domain. Con-
ventionally, these approaches have relied on image-level
post-processing techniques, such as histogram matching
[38, 32, 31] and statistical normalization [15, 34, 37], which
aim to adjust the intensity values of the images to make
them more similar. However, conventional methods had
difficulty in capturing the subtle differences between im-
ages from different domains. For example, histogram-based
models assume global histogram correspondence between
images, so they ignore local contrast information. With re-
cent advances in deep learning, there has been growing in-
terest in developing deep learning-based methods for har-
monization. One popular deep learning-based method is
DeepHarmony [9], which utilizes an end-to-end supervised
framework to learn the mapping between the source and tar-
get domains. Although DeepHarmony has demonstrated
promising results, it requires a large dataset of traveling
subjects for training, which is difficult to acquire. To ad-
dress this limitation, CycleGAN-based style transfer net-
works [30, 26] have been employed. It can learn a map-
ping between images from one domain and another without
the need for paired data. By training CycleGAN on a large
dataset of MR images, it is possible to generate images that
are visually similar to the target domain while retaining the
relevant anatomical features. More recently, separated net-
works for the contrast network and structure network en-
able more flexible applicability. CALAMITI [10, 48] is a
GAN-based method that disentangles the contrast and struc-
tural information in MR images and allows for more gran-
ular control over the image properties that need to be har-
monized. In addition to image-level transformations, some
works have focused on feature-level harmonization. These
methods aim to learn a common feature representation that
can be used for downstream analysis tasks. For example,
task-based harmonization methods [13, 17] learn a task-
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specific feature representation that can improve the perfor-
mance of a specific analysis task.

2.2. Normalizing flow

The normalizing flow model is a family of generative
models, known as normalizing flows, that enable the pa-
rameterization of complex data distributions with a series of
invertible transformations from simple random variables. In
[11], normalizing flows were first introduced, and the NICE
model was proposed as a deep learning framework that
maps the complex high-dimensional density of training data
to a simple factorized space using non-linear bijective trans-
formations. Substantial improvements in invertible neural
networks and high-quality image generation from the sam-
ple space have been achieved by [21, 12, 11]. In particular,
GLOW [21] proposed an efficient and parallelizable trans-
formation using invertible 1×1 convolutions for designing
invertible neural networks and demonstrated remarkable re-
sults in high-resolution image synthesis tasks. By intro-
ducing a log-likelihood-based model in normalizing flows,
GLOW can efficiently generate high-resolution natural im-
ages. Recent studies have demonstrated great performance
of the normalizing flows model in a wide range of computer
vision tasks such as super-resolution [27, 39], denoising
[2, 27], and colorization [25] by exploiting the properties of
the normalizing flows model. Among them, SRFlows [27]
adopted negative log-likelihood loss and successfully gener-
ated more diverse super-resolution images than GAN-based
approaches by conditioning on low-resolution images.

2.3. Prior-based optimization

Conventionally, the inverse problem of y = Ax is widely
solved by using regularization techniques. With the advent
of generative models, several studies have proposed meth-
ods that solve this problem using generative models as prior
models or regularizers. Generative adversarial networks
(GANs) [7], normalizing flows [4, 43], and deep image pri-
ors [40] are commonly used as priors. Individual training of
these priors has the benefit of generalizability in the matrix
A. For example, in the case of reconstructing MR images
from undersampled images, a generative model prior can be
applied to diverse undersampling masks [19, 28, 22].

3. Methods
3.1. Harmonization model

When a subject undergoes multiple scans with differ-
ent vendors or MRI scan parameters, the resulting MR im-
ages exhibit differences, mainly in low-frequency, while the
structural differences are relatively small. This provides
some insight into the relationship between images from dif-
ferent domains. Firstly, the images are highly correlated,
as the difference between domains does not largely affect

the overall contrast. Secondly, the edges of the images co-
incide. Given xs as the source domain image and xh as
its corresponding harmonized version to the target domain,
the following equation holds due to the correlation and edge
coincidence:

NCC (xh, xs) ≈ 1, (1)

∥MGxh∥1 ≈ 0. (2)

In these equations, NCC denotes normalized cross-
correlation and ∥∥1 denotes the L1 norm. M is a mask
obtained by thresholding the gradient value of xs, which
retains the non-edge regions, and G represents the gradient
operator. Equation 1 suggests that the harmonized image
should have a high cross-correlation value with the source
domain image. Equation 2 enforces edge sparsity in the
harmonized image within regions where the source domain
image is considered to have no edges (see Supplementary
material for visual illustration for Eq. 1 and 2).

Based on the above formulation, we can define a distance
measure, D, between the source domain image and the har-
monized image:

D (xh, xs) = β1{1−NCC (xh, xs)}+β2∥MGxh∥1. (3)

Here βs are hyperparameters. The problem of finding xh

that satisfies D(xh, xs) = 0 given xs is highly ill-posed, as
there exists a trivial solution of xh = xs. However, if the
prior distribution of the target domain pX(x) is given, the
problem can be solved using a regularization approach:

x̂h = argmin
x

D (x, xs)− α log pX (x) , (4)

where α is a regularization parameter. Equation 4 tries to
generate an image that is structurally close to the source
domain image while having a high probability in the target
domain. The remaining issues are how to estimate the prior
distribution of the target domain and how to optimize the
solution for x̂h. We selected the normalizing flow model to
map the distribution of the target domain, because the inher-
ent invertibility of the flow model can provide an advantage
for optimization.

3.2. Flow-based prior learning

A normalizing flow is an invertible transformation that
maps a sample from a simple probability distribution (e.g.,
normal Gaussian) to a sample from a complex probability
distribution. The transformation itself (often called “flow”)
and its inverse are assumed to be differentiable.

Let Z ∈ RD be a random variable with an associated
probability density function (PDF) pZ : RD → [0, 1] which
is assumed to be known and tractable. Let fθ : RD →
RD be a diffeomorphism parameterized by the vector θ ∈
RP with an inverse denoted by f−1

θ . Then the PDF of the
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random variable X = f−1
θ (Z) can be computed explicitly

using the change of variables formula:

pX (x|θ) = pZ (fθ (x))

∣∣∣∣det ∂fθ (x)∂x

∣∣∣∣ , (5)

where ∂fθ(x)
∂x is the Jacobian of fθ.

When applying normalizing flows for sample generation
or density estimation problems, the simple distribution pZ ,
known as the “latent distribution”, is transformed via the
“flow” fθ to a more complex distribution pX . The objective
for both problems is to find the value of the parameters θ for
which pX closely approximates the underlying distribution
pdata of the given dataset. Only after the objective is satis-
fied can we accurately estimate the densities of the random
samples using the change of variable formula or generate
random samples that are consistent with the given data by
first sampling from the latent distribution and feeding the
sample to the inverse of the flow.

The aforementioned objective can be stated formally as a
maximum likelihood estimation (MLE) problem: maximiz-
ing the expected log-likelihood

L (θ;x) := EX∼pdata
[log (pX (X|θ))] (6)

≈ 1

N

N∑
i=1

log
(
pX

(
x(i)|θ

))
(7)

=
1

N

N∑
i=1

[
log

(
pZ

(
fθ

(
x(i)

)))
+ log

∣∣∣∣∣det ∂fθ
(
x(i)

)
∂x

∣∣∣∣∣
]
.

(8)

over the possible values of the parameters θ ∈ RP , where
D := {x(i)}Ni=1 is the given dataset. Therefore, training the
normalizing flow involves updating the parameters of the
flow so that the expected log-likelihood is maximized.

In order to accurately and efficiently approximate the tar-
get distribution pdata, a normalizing flow fθ must satisfy
several conditions: It must be a bijection with differentiable
forward and inverse transformations, it must be expressive
enough to model the complexity of the target distribution,
and the computations of fθ, f−1

θ , and det ∂fθ(x)
∂x must be

done efficiently.
Therefore, many state-of-the-art normalizing flows use

neural networks that are carefully designed to have dif-
ferentiable inverse transformations and a Jacobian matrix
whose determinant can be computed efficiently. These in-
clude coupling transforms, which have been shown to be
particularly effective.

3.3. BlindHarmony optimization

In order to harmonize images from unknown domains,
an unconditional flow model is trained on the target domain

Figure 2: The BlindHarmony framework operates as fol-
lows: first, a flow model is trained solely on target domain
data. Then, harmonization is performed iteratively on both
latent variable and image domains using the flow model.

only. The prior distribution of the harmonized image x can
be parameterized as follows:

log pX (x) = log (pZ (z)) + log

∣∣∣∣det ∂fθ (x)∂x

∣∣∣∣ . (9)

If z is a normal Gaussian, we can rewrite Equation 4 in the
z-domain as follows:

ẑh = argmin
z

D
(
f−1
θ (z) , xs

)
− α log pZ (z) (10)

= argmin
z

D
(
f−1
θ (z) , xs

)
+ α|z|2. (11)

The optimization process of Equation 11 requires the
calculation of gradients of f−1

θ (z), which can be computa-
tionally burdensome. To increase computational efficiency
and reduce processing time, we simply omit the calculation

of ∂f−1
θ (z)

∂z . Instead, iterative optimization is performed in
both the z- and x-domains, by leveraging the invertibility of
normalizing flow. The algorithm alternates between a gradi-
ent descent of the distance measure D (x, xs) and a gradient
descent of the prior term |z|2.

In the latent vector domain z, z is updated so that it does
not deviate far from the center of the Gaussian:

z → (1− α)z. (12)

In the image domain x, the gradient of D (x, xs) is mea-
sured and updated at each iteration as follows:

x → x+∇x[β1NCC (x, xs)− β2∥MGxh∥1]. (13)
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After N iterations, the resultant image x is a harmonized
image x̂h. The overall algorithm is formulated as Algorithm
1 (Fig. 2). The hyperparameters α, β1, and β2 are found
heuristically using grid search. The hyperparameters have
been fixed as: α = 0.001, β1 = 1000, β2 = 0.001, and
N = 10. The initial image x0 is chosen to be the averaged
image of the training data images.

Algorithm 1 BlindHarmony optimization
xs: Source domain image
x̂h: Harmonized image
fθ: Flow model trained on the target domain
x0: Initial image
α, β1, β2: Hyperparameters
N : The number of iteration
Require: xs, x0, α, β1, β2

1: for n = 0, 1, . . . , N − 1 do
2: xn+1 = f−1

θ (zn) + ∇x[β1NCC (x, xs) −
β2∥MGxh∥1]x=f−1

θ (zn)

3: zn+1 = (1− α) fθ(xn+1)
4: end for
5: x̂h = xN

4. Experiments
4.1. Dataset

T1-weighted images in the OASIS3 dataset [24] were
used to train and evaluate the proposed framework. The
OASIS3 dataset consists of images scanned with different
scanners. Images acquired with the Siemens TrioTim scan-
ner were used as the target domain. For the source do-
main datasets, three datasets consisting of images acquired
with different manufacturer models (Domain 1,2,3) and a
dataset from a different scanner with the same manufac-
turer model (Domain 4) were used (see Supplementary ma-
terial). All images were resampled to the same resolution of
1.2×1.2×1.2 mm3 and min-max normalized in a slice level.

4.2. Network training detail

In our experiments, we used the Neural Spline Flow
(NSF) architecture with rational quadratic (RQ) spline cou-
pling layers that was outlined by [14]. A Glow-like mul-
tiscale architecture was used, following NSF (Durkan et
al., 2019) and Glow [21]. Each layer of the network con-
tains 7 transformation steps, where each step consists of an
actnorm layer, an invertible 1×1 convolution an RQ spline
coupling transform, and another 1×1 convolution. The net-
work consists of 4 layers, which results in a total of 28
coupling transformation steps. Also, 3 residual blocks and
batch normalization layers are included in the subnetworks
parameterizing the RQ splines. An Adam optimizer with an
initial learning rate of 0.0005 and cosine annealing of the

learning rate was used to iteratively optimize the parame-
ters up to 20K steps. The sampled images are reported in
the Supplementary material.

4.3. Simulated data evaluation

To evaluate the effectiveness of our proposed harmoniza-
tion approach, we developed simulated data by applying
three different image transformations: exponential transfor-
mation (Domain-Exp), log transformation (Domain-Log),
and Gamma transformations with powers of 0.7 (Domain-
Gamma0.7) to the target domain images. The target domain
images were normalized with min-max normalization, then
the three above transformations were applied. The min-max
normalization was performed again on the transformed im-
ages to generate simulated source domain data. We applied
BlindHarmony to the source domain.

To evaluate the performance of our proposed method,
we compared it with the following methods: slice-wise his-
togram matching (HM), low-frequency replacing (SSIMH)
[16], end-to-end U-net [35], and unsupervised CycleGAN
[47]. We trained U-netExp, U-netLog , U-netGamma0.7,
CycleGANExp, CycleGANLog , and CycleGANGamma0.7

models for each domain mapping and used them for com-
parison (e.g., U-netExp was trained on Domain-Exp data).

Figure 3 displays the results of our harmonization ap-
proach using BlindHarmony on each of the simulated
source domain images (1st column), along with the target
domain image (2nd column), and the other methods. A vi-
sual inspection of the results confirms the effectiveness of
our approach in harmonizing images. On the other hand,
CycleGAN and U-net fail to harmonize a source domain im-
age when trained on another source domain dataset (e.g., U-
netExp which was trained on Domain-Exp data while apply-
ing Domain-Gamma0.7 data). In contrast, BlindHarmony
offers a more efficient and versatile solution by utilizing a
single network for harmonization across diverse source do-
mains.

Table 1 presents the results of our simulated data eval-
uation of the harmonization methods. We calculated the
peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) values using the target image as a reference. The ta-
ble shows that our proposed BlindHarmony framework out-
performs the source domain image, as evidenced by the im-
proved PSNR and SSIM values. The averaged PSNR value
improved from 21.9 dB for the source domain images to
28.6 dB for the BlindHarmony harmonized images. These
results demonstrate the effectiveness of BlindHarmony in
harmonizing images from different domains.

It is worth noting that U-net and CycleGAN outper-
formed BlindHarmony when they were trained separately
for each source domain (e.g., U-netExp which was trained
on Domain-Exp data while applying Domain-Exp data).
However, BlindHarmony used only one network for all
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Source Target BlindHarmony HM SSIMH[16] CycleGANExp[47] U-netExp[35]

Domain-Exp

Domain-Log

Domain-
Gamma0.7

Figure 3: Example image of BlindHarmony application of simulated source domain images and comparison with other
harmonization methods.

Domain-Exp Domain-Log Domain-Gamma0.7
Unsupervised Blind PSNR(↑) SSIM(↑) PSNR(↑) SSIM(↑) PSNR(↑) SSIM (↑)

Source 22.6 0.952 21.4 0.958 21.6 0.955
BlindHarmony (Ours) O O 29.6 0.985 28.8 0.978 27.4 0.969

HM O O 26.5 0.961 26.5 0.961 26.5 0.961
SSIMH[16] O O 26.5 0.972 25.8 0.973 26.3 0.976

CycleGANExp[47] O X 32.6 0.993 23.0 0.951 23.0 0.948
CycleGANLog O X 22.8 0.943 35.5 0.996 34.5 0.995

CycleGANGamma0.7 O X 22.1 0.932 35.6 0.996 35.6 0.996
U-netExp[35] X X 65.6 0.999 15.9 0.885 15.9 0.879

U-netLog X X 16.8 0.803 56.5 0.999 38.0 0.997
U-netGamma0.7 X X 16.3 0.766 39.2 0.998 55.1 0.999

Table 1: The PSNR and SSIM values calculated between the harmonized image from the simulated source domain and the
reference of the target domain image. The regions with signals were used as a mask.

source domains, making it a practical solution for harmo-
nizing images from multiple source domains.

4.4. Real-world data application

In addition to the simulation dataset, we also evaluated
BlindHarmony on four real datasets from different scan-
ners. Twenty traveling subjects from OASIS 3 [24] dataset
who underwent multi-scanner scans were utilized in order
to compare the results quantitatively. The image of each
source domain is registered to the target domain image by
using the FSL FLIRT [20] function. We compared the re-
sults with the other methods (U-Net and CycleGAN re-
trained for these datasets and conventional methods of vol-
umetric HM and SSIMH). Figure 4 presents the results of

harmonizing the source domain images (column 1) to the
target domain images (column 2) using BlindHarmony (col-
umn 3). BlindHarmony effectively harmonized the images
and reduced the inter-scanner variability, bringing them
closer to the target domain images. The BlindHarmony also
demonstrated superior harmonization performance not only
to the conventional methods (SSIMH and HM) but also to
the CycleGAN, which illustrates structural distortion.

The quantitative evaluation using PSNR and SSIM met-
rics demonstrated improvements in both PSNR and SSIM
values compared to the source images (averaged PSNR:
21.5 dB to 22.2 dB). In particular, BlindHarmony has exhib-
ited superior metric results compared to the HM, SSIMH,
and CycleGAN algorithms.
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Source Target BlindHarmony HM SSIMH[16] CycleGANeach[47] U-neteach[35]

Domain 1

Domain 2

Domain 3

Domain 4

Figure 4: Example image of BlindHarmony application of real source domain images and comparison with other harmoniza-
tion methods. CycleGAN and U-net results stand for the output of the network that was trained for each source domain.

Domain1 Domain2 Domain3 Domain4
Unsupervised Blind PSNR(↑) SSIM(↑) PSNR(↑) SSIM(↑) PSNR(↑) SSIM(↑) PSNR(↑) SSIM (↑)

Source 19.6 0.833 19.4 0.836 23.0 0.893 24.1 0.914
BlindHarmony (Ours) O O 20.2 0.840 20.8 0.850 23.0 0.892 24.6 0.912

HM O O 20.4 0.834 20.6 0.840 22.5 0.882 23.9 0.899
SSIMH[16] O O 20.4 0.831 20.4 0.833 22.0 0.882 22.6 0.896

CycleGANeach[47] O X 7.22 0.451 15.3 0.612 6.62 0.442 19.8 0.795
U-neteach[35] X X 25.0 0.919 23.4 0.890 25.1 0.925 25.6 0.920

Table 2: The quantitative results of application to real-world data. PSNR and SSIM values were calculated by using the target
domain image as a reference. The case using BlindHarmony illustrated improved consistency to the target domain image.
The regions with signals were used as a mask. CycleGANeach and U-neteach stand for CycleGAN and U-net trained on each
source domain (e.g., CycleGANeach for Domain 1 application is trained on Domain 1 dataset).

The effect size of PSNR and SSIM improvement ob-
served in this study is smaller than that in the simulated data
study. This can be attributed to two key factors. Firstly, the
domain gap between the source and target domains might be
smaller than that in the simulated data, leading to a weaker
harmonization effect. Secondly, the registration process be-
tween the source and target domains may not be perfectly
aligned due to potential errors in registration and the time
gap between separate scans. These factors may have led to

a reduced effect of harmonization of effect of harmonization
in the metric calculation.

To further assess the impact of harmonization, we con-
ducted an evaluation of the downstream task of white mat-
ter segmentation. For this task, a white matter segmenta-
tion network was trained to generate masks of white matter
from given the T1-weighted images. Notably, the network
was solely trained on the target domain dataset, allowing us
to measure harmonization performance through segmenta-
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Source Label No harmonization BlindHarmony HM SSIMH[16] CycleGANeach[47] U-neteach[35]

Domain 1

Domain 2

Domain 3

Domain 4

Figure 5: The results of the white matter segmentation network are presented, with each column representing the respective
harmonization method applied to the input image.

IoU (↑) Domain 1 Domain 2 Domain 3 Domain 4

Source 0.912 0.845 0.947 0.938
BlindHarmony (Ours) 0.922 0.878 0.947 0.938

HM 0.863 0.854 0.911 0.894
SSIMH[16] 0.777 0.752 0.862 0.860

CycleGANeach[47] 0.306 0.408 0.394 0.299
U-neteach[35] 0.785 0.797 0.829 0.870

Table 3: The IOU values of the results of the segmentation
network and label mask are reported. The case using Blind-
Harmony illustrated the best results when compared to other
harmonization methods.

tion results with harmonized images as inputs. The white
matter labels were generated using FSL FAST [45], and
we adopted U-Net as the neural network architecture. Fig-
ure 5 shows the white matter segmentation results for each
harmonization method. Remarkably, the outcomes demon-
strate that BlindHarmony enhances segmentation perfor-
mance, thus successfully harmonizing source domain im-
ages to the target domain more effectively than the other
methods. For quantitative analysis, we computed the inter-
section over union (IoU) values between the predicted white
matter masks and the label masks (Table 3). The IoU val-
ues were higher for BlindHarmony, further confirming its

superior harmonization performance.
It is important to note that the dataset size used for U-net

and CycleGAN training was smaller than that used for the
flow model training due to the requirement of multiple do-
mains for training. In addition, the U-net dataset size was
even smaller due to the requirement of paired data. (e.g.,
Flow model training: 75,240 slices, Domain 1 CycleGAN
training: 75,240 slices from the target domain and 17,400
slices from the source domain, Domain 1 U-net training:
5,100 slices; See Supplementary materials) Moreover, the
construction of paired datasets required the registration of
the source domain image to the target domain image us-
ing the FSL FLIRT function. Despite these efforts, there
may still exist misregistration in the source domain-target
domain pairs, which can negatively affect the training pro-
cedure and result in slightly blurred images produced by U-
Net. These may be the reason for the inferior performance
of CycleGAN and U-Net compared to their application for
simulated source domains.

5. Discussion
In this work, we proposed BlindHarmony, a blind harmo-

nization framework for harmonizing MR images from the
source domain to the target domain. This framework does
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not require source domain data during training and can be
applied to unseen source domain images. The flow-based
prior distribution network is trained, and the harmonized
images are optimized using a distance between the source
domain image and the sampled image while using regular-
ization based on the magnitude of the latent vector.

The fact that BlindHarmony does not require source do-
main data during training is beneficial when applying the
neural network to an unknown dataset or a dataset that does
not have sufficient data for training. For example, a deep
learning-based API provider that utilizes a network trained
on a certain dataset may not know the source domain infor-
mation. In this scenario, our framework can be used as an
excellent initial approach to harmonize data until sufficient
data is collected for other methods.

In the real-world dataset evaluation involving the down-
stream task of white matter segmentation, BlindHarmony
demonstrated superior performance compared to Cycle-
GAN and U-Net, which were explicitly trained on specific
source domains. While U-Net is good at image translation,
it may miss fine structures. As for CycleGAN, it was orig-
inally designed to transfer style from source to target do-
mains. In this harmonization case, the fine structure in MR
images can also be considered as a style from the perspec-
tive of CycleGAN, leading to structural distortion in Cy-
cleGAN harmonization. Unlike image-to-image translation
neural networks, BlindHarmony can enforce the structural
information of the source domain images while harmoniz-
ing the images. This unique feature prevents the introduc-
tion of structural distortions and ensures more accurate and
reliable harmonization results.

5.1. Limitations

BlindHarmony incorporates iterative optimization in
both the image and latent vector domains. In order to reduce
the computational burden of calculating the gradient of the
network parameters, we have ignored the determinant term
in Equation 9. Although this may compromise mathemati-
cal rigor, we believe that this simplification makes calcula-
tions easier and reduces processing time, making BlindHar-
mony more advantageous for practical use.

Additionally, it should be noted that BlindHarmony may
not be applicable in every domain. If the distance between
two images defined in Equation 3 cannot capture the rela-
tionship between images of different domains (e.g., multi-
contrast: T1-weighted and T2-weighted images), the opti-
mization may fail and lead to poor results. For example,
when applying an extreme contrast variation case such as
simulated source domain data with Gamma transformation
with a power of 1.5, BlindHarmony showed inferior results
to conventional methods. (Table. 4) Therefore, it is impor-
tant to carefully consider the suitability of BlindHarmony
for different applications.

Gamma 1.5 PSNR(↑)

Source 22.6
BlindHarmony (β1 = 1000) 25.7
BlindHarmony (β1 = 500) 26.8

HM 26.5
SSIMH 26.3

Table 4: In the case of a simulated source domain with
a Gamma transformation of 1.5, BlindHarmony exhibited
inferior results when using predefined hyperparameters.
However, fine-tuning the hyperparameters led to improve-
ments in the harmonization outcomes.

However, fine-tuning hyperparameters for each source
domain may give improved results. As shown in Table 4,
the PSNR value increased when we changed the hyperpa-
rameter β1 from 1000 to 500. Tuning these hyperparame-
ters for each source domain may give a successful applica-
tion of our approach in various scenarios, providing a highly
adaptable and versatile solution. Future work may include
optimizing these parameters using a transfer learning ap-
proach, as demonstrated in [42].

6. Conclusion
In this study, we propose BlindHarmony, a flow-bassed

blind harmonization method for MR images. Unlike other
existing harmonization methods, our network is trained
exclusively on the target domain dataset and can be applied
to previously unseen domain images. The flow model is
trained only on the target domain data, and the harmonized
image is optimized to have a correlation with the source
domain image while maintaining a high probability of
the flow model. Both simulated and real-world datasets
showed that our method achieves acceptable results. Our
study demonstrates the feasibility of blind harmonization,
providing an advantage in scenarios where access to source
domain data is limited or unavailable.
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