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Abstract

The tensor-based multi-view subspace clustering algo-
rithms have received widespread attention due to the pow-
erful ability to capture high-order correlation across views.
Although such algorithms have achieved remarkable suc-
cess, they still suffer from three main issues: 1)The ex-
tremely high computational complexity makes tensor-based
methods difficult to handle large-scale data sets. 2)The
subspace-based methods usually ignore the local geo-
metric structure of the original data. 3)The commonly
used Tensor Nuclear Norm (TNN) treats different singu-
lar values equally and under-penalizes the noise com-
ponents, resulting in a sub-optimal representation ten-
sor. Being aware of these, we propose Anchor Structure
Regularitation Induced Multi-view Subspace Clustering via
Enhanced Tensor Rank Minimization (ASR-ETR). Specif-
ically, an anchor-representation tensor is constructed by
using the anchor representation strategy rather than the
self-representation strategy to reduce the time complexity,
and the local geometric structure in the learned anchor-
representation tensor is enhanced by adopting the Anchor
Structure Regularization (ASR). We further devise an En-
hanced Tensor Rank (ETR), which is a tighter surrogate of
the tensor rank to effectively capture the multi-view high-
order correlation. An efficient iterative optimization al-
gorithm is designed to solve the ASR-ETR, which is time-
economical and enjoys favorable convergence. Extensive
experimental results on various data sets demonstrate the
superiority of the proposed algorithm as compared to state-
of-the-art methods.

1. Introduction
Clustering is an important and fundamental task in un-

supervised learning, which has been widely used in many
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fields, such as pattern recognition, computer vision, objec-
tion recognition, etc. [2, 33]. However, with the develop-
ment of technology, the storage and representation of data
have become more diverse, for example, human fingerprints
can be recorded via multiple sensors. Such data is known
as multi-view data, and the emergence of multi-view data
also makes it difficult for traditional clustering algorithms to
meet current needs. Traditional clustering algorithms such
as spectral clustering [32] can only deal with single-view
data, which is difficult to utilize the rich complementary in-
formation among different views, so multi-view clustering
is born to break this limitation by exploring the consensus
information and complementary information hidden in dif-
ferent views.

The current multi-view clustering algorithms can be cat-
egorized into graph-based methods [41, 28, 35, 19], co-
training-based methods [15], and subspace-based methods
[22, 17, 6, 21, 44, 4, 7]. The subspace-based methods have
received wide attention due to their efficient performance
and noise robustness. They first construct the representa-
tion matrix of multiple views via self-representation and
send the fused affinity matrix to spectral clustering to obtain
the final results. The self-representation strategy always fo-
cuses on the global information among data points, leading
to poor discriminability of the learned representation matri-
ces. Therefore, many efforts have been made [1, 36, 11] to
improve the discriminability of the representation matrix.
For example, the Hilbert Schmidt Independence Criterion
is employed in [1] to diversify the representation matrix of
each view. However, such methods simply explore the rela-
tionship between point pairs and fail to effectively explore
the higher-order correlation across views.

More recently, tensor-based algorithms [43, 25, 45, 26,
40], which aim to constrain the low rankness of the repre-
sentation tensor composed by multi-view affinity matrices
to capture the higher-order correlation and complementary
information across views, are proposed and achieve promis-
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ing performances. However, such methods also bring sev-
eral sharp problems: 1) Tensor-related operations such as
Fourier transformation and tensor singular value decom-
position (t-SVD) [14] result in extremely high time com-
plexity, which limits the application to large-scale data
sets. 2) Subspace-based methods usually consider the
global consensus between multiple views and ignore the
local geometry of a particular view, leading to a poorly
learned clustering structure. 3) The commonly used ten-
sor nuclear norm (TNN) [40] treats different singular values
equally, which over-shrinks large singular values and under-
penalizes small singular values during TNN minimization
process. Since the large singular values usually character-
ize important information and small singular values encode
noises or redundant information, TNN cannot effectually
remove the redundancy of the learned representation tensor.

To overcome the above drawbacks simultaneously, we
propose a novel multi-view clustering method, termed An-
chor Structure Regularization Induced Multi-view Sub-
space Clustering via Enhanced Tensor Rank Minimization
(ASR-ETR). Unlike existing methods that adopt the self-
representation strategy to construct the tensor represen-
tation, ASR-ETR designs an anchor-representation strat-
egy to construct the anchor-representation tensor, which
can greatly reduce the complexity of tensor-related oper-
ations. Meanwhile, an Anchor Structure Regularization
(ASR) is proposed to enhance the local geometric structure
of the learned anchor-representation tensor. Furthermore,
an Enhanced Tensor Rank (ETR) is devised to approximate
the tensor rank, which can better characterize high-order
correlation among multi-view representations, as well as
achieves a stronger penalty for the noise against TNN. The
novelty and contributions of this work are summarized as
follows:

• ASR-ETR adopts an anchor-representation strategy
to construct an anchor-representation tensor with a much
lower dimension than the self-representation tensor in exist-
ing tensor-based methods, which greatly reduces the com-
plexity of tensor-related operations and allows ASR-ETR to
effectively handle large-scale data sets.

• ASR-ETR designs an Anchor Structure Regularization
(ASR) to keep the local geometric structure and enhance
the inter-class structure differences in the learned anchor-
representation tensor.

• ASR-ETR proposes a novel tensor rank approximation
termed Enhanced Tensor Rank (ETR), which leans to pro-
tect larger singular values and pushes smaller singular val-
ues to zero, thus a compact low-rank representation tensor
can be desired.

• An efficient algorithm is proposed to solve the pro-
posed objective function, which is time-economical and en-
joys theoretically proven convergence.

2. Problem Formulation
2.1. Preliminary of Representation Tensor Learning

Tensor-based multi-view subspace clustering methods
[8, 39, 10, 5, 3, 30] adopt low-rank representation tensor
learning to capture higher-order correlation and comple-
mentary information among views. Given a multi-view data
set {X1, · · · ,Xm} with m views, ∀v = 1, · · · ,m, Xv ∈
Rn×dv

. Such methods usually take the following form:

min
{Zv

S
,Ev}

T (ZS) + λ1L({Ev}) + λ2R({Zv
S}),

s.t. ∀v, Xv = Zv
SX

v +Ev,

ZS = Φ(Z1
S , · · · ,Zm

S ),

(1)

where λ1 and λ2 are two trade-off parameters. T (·) is
the approximation of tensor rank. L(·) is designed to cap-
ture the reconstruction error Ev , which usually adopts the
ℓ2,1-norm. R(·) denotes some specific regularizations such
as sparse regularization for self-representation matrix Zv

S .
Φ(·) denotes merging and rotating operation [40], which
merges self-representation matrices Zv

S ∈ Rn×n to a three-
order tensor ZS with the dimension of n × m × n. With
such self-representation tensor ZS , the tensor-related oper-
ations such as Fourier transformation and tensor singular
value decomposition (t-SVD) will make the time complex-
ity approximate to O(n3).

As mentioned above, the model (1) suffers from three
main problems: 1) The extremely high complexity of
tensor-related operations. 2) Poor local geometric structure
of the representation tensor. 3) The noise redundancy of the
existing tensor rank approximation.

2.2. The Proposed ASR-ETR

The self-representation strategy adopted in the model (1)
is essentially dictionary learning, which treats all samples as
dictionary elements to represent the entire sample space, so
the optimization time and storage cost related to the self-
representation matrices restrict the scalability of the model
(1). Besides, depicting one sample with a dictionary com-
posed of all instances is unnecessary and redundant. In-
spired by anchor-based algorithms [29, 23, 12], we take an
anchor-representation strategy, which selects a small num-
ber of representative points called anchors or landmarks to
serve as dictionary elements, to reduce the redundancy and
dimension of representation matrices. Given the anchor dic-
tionaries {A1, · · · ,Am} with m views and t anchors per
view respectively, ∀v, Av ∈ Rt×dv

, then the model (1)
with anchor-representation strategy can be formulated as:

min
{Zv,Av,Ev}

T (Z) + λ1L({Ev}) + λ2R({Zv}),

s.t. ∀v, Xv = ZvAv +Ev,Av(Av)T = I,

Z = Φ(Z1, · · · ,Zm),

(2)
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where Zv ∈ Rn×t is the learned anchor-representation
matrix of v-th view. To avoid the local optimal solution
brought by the initial anchor selection strategies [16], the
anchor dictionary Av in Eq. (2) is regarded as variables to
learn an optimal set of anchors {av

1, · · · ,av
t }, where av

i is
the i-th row of Av , so it is unnecessary to focus on the se-
lection of anchors but rather initialize Av to zero matrices.
The anchor matrices are further imposed to be orthogonal
that Av(Av)T = I in each view to make the learned an-
chors more diverse and discriminative.

Since the dimension of learned anchor-representation
tensor Z = Φ(Z1, · · · ,Zm) ∈ Rt×m×n in the model (2) is
much lower than that in self-representation tensor ZS , the
time complexity of tensor-related operations can be greatly
alleviated by employing the anchor-representation strategy,
making it possible to address large-scale data sets.

To ensure favorable local geometric structure and noise
robustness of the learned anchor-representation tensor, we
design an Anchor Structure Regularisation (ASR) and an
Enhanced Tensor Rank (ETR), respectively. They are de-
fined as follows,
Definition 1. Given an anchor-representation tensor Z =
Φ(Z1, · · · ,Zm) ∈ Rt×m×n, then the Anchor Structure
Regularisation (ASR) is defined as:

∥Z∥ASR =

m∑
v=1

∥Zv∥ASR

=

m∑
v=1

Tr(ZvLv(Zv)T ),

(3)

where Lv = Dv − Bv is the Laplacian matrix of Bv ∈
Rt×t, which is the adjacency matrix of v-th view anchors
and is constructed with the same method in [18]. The de-
gree matrix Dv is a diagonal matrix whose i-th diagonal
element is computed by Dv(i, i) =

∑t
j=1 B

v(i, j).

Definition 2. Given a tensor Z ∈ Rn1×n2×n3 , then the
Enhanced Tensor Rank (ETR) is defined as:

∥Z∥ETR =
1

n3

n3∑
k=1

∥∥∥Zk
f

∥∥∥
ETR

=
1

n3

n3∑
k=1

h∑
i=1

(
eδ

2

Sk
f (i, i)

δ + Sk
f (i, i)

)
,

(4)

where 0 < δ ≤ 1, h = min(n1, n2) and Sf is obtained by
t-SVD of Zf = UfSfVT

f in Fourier domain. Zk
f means the

k-th frontal slice of the tensor Zf .
By simultaneously considering Eq. (2) (3) (4), the final

objective function of ASR-ETR is formulated as:

min
Z,E,{Av}

∥Z∥ETR + α ∥E∥2,1 + γ ∥Z∥ASR ,

s.t. ∀v, Xv = ZvAv +Ev,Av(Av)T = I,

Z = Φ(Z1, · · · ,Zm), E = [E1, · · · ,Em]T ,

(5)

where α and γ are two trade-off parameters. Ev ∈ Rn×dv

is the error matrix of v-th view. E = [E1, · · · ,Em]T is ob-
tained by horizontally concatenating along the row of Ev .
∥E∥2,1 denotes the ℓ2,1-norm of E, which depicts corrup-
tions and outliers in each specific view.
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Figure 1: Comparison of different methods to approximate
the true rank function.

Remark 1. [The superiority of ETR] The approximation

function used by ETR is fETR(x) =
eδ

2
x

δ+x , which is inspired
by the Geman function [9]. Basically, fETR(0) = 0 is sat-
isfied, which is consistent with the true rank function. We
compare ETR with other existing methods (i.e., TNN [40]
and LTSpN [10]), as shown in Fig. 1, ETR approximates
the rank better than TNN and LTSpN, especially for larger
and near-zero singular values. When x is relatively large,
we obtain fETR(x) → 1, permitting larger singular val-
ues. If x → 0, fETR(x) ≫ x and fETR(x) ≫ log(1+xp),
which means ETR achieves a stronger penalization on near-
zero singular values than that in TNN and TLSpN. Since
smaller singular values usually come from noises, this indi-
cates ∥Z∥ETR enjoys better noise-attention property. Such
property helps to drive the noise out and make sure that
Z has a spatial low-rank structure, which helps to explore
the high-order correlation and complementary information
across views.

Remark 2. [The benefits of ASR] In the model (5), ASR
is used to enhance the local geometric structure in anchor-
representation tensor Z . Unlike [27], which needs to com-
pute the adjacency matrix of all samples, we enhance the
local geometric structure of anchors to keep the clustering
structure of the entire sample space, which brings the fol-
lowing benefits: 1) The adjacency matrix of anchors has
low dimension, which can improve the efficiency of the al-
gorithm. 2) Since an anchor point usually covers a class of
samples, maintaining the local structure of anchors can im-
prove the inter-class structural differences, thus enhancing
the discriminability of the learned anchor-representation
tensor.

After solving the model (5), the anchor-representation
matrix Zv = Φ−1

v (Z) ∈ Rn×t of v-th view is obtained,
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which cannot be directly employed for spectral clustering,
so we recover a doubly-stochastic similarity affinity matrix
Sv ∈ Rn×n,

Sv = Ẑv(Ẑv)T = Zv(Σv)−1(Zv)T , (6)

where Σv is a diagonal matrix with the entry Σv(i, i) =∑n
j=1 Z

v(j, i). Then, the spectral clustering is imple-
mented on the fused affinity matrix Ŝ = 1

m

∑m
v=1 S

v . Re-
lying on proposition 1 in [13], the embedding Q ∈ Rn×c is
obtained by performing SVD on Z ∈ Rn×tm,

Z =
1√
m

[Ẑ1, · · · , Ẑm], (7)

where Ẑv = ZvΣv− 1
2 . Finally, k-means clustering is exe-

cuted on Q to achieve the final clustering results.

3. Optimization
Inspired by the alternation direction method of multipli-

ers (ADMM) [20], we introduce the auxiliary tensor vari-
able G and rewrite the model (5) as the following uncon-
strained problem,

L({Zv}mv=1, {Av}mv=1G,E, {Yv}mv=1,W)

= ∥G∥ETR + α ∥E∥2,1 + γ

m∑
v=1

Tr(ZvLv(Zv)T )

+

m∑
v=1

(
⟨Yv,Xv − ZvAv −Ev⟩+ µ

2
∥Xv − ZvAv −Ev∥2F

)
+ ⟨W,Z − G⟩+ ρ

2
∥Z − G∥2F ,

(8)
where the tensor W and the matrix {Yv}mv=1 are Lagrange
multipliers, and µ and ρ are penalty parameters to control
convergence.

Then, the optimization problem can be divided into four
subproblems.

3.1. Zv-Subproblem

Fixing the other variables leads to the following problem
for Zv ,

argmin
{Zv}

γ

m∑
v=1

Tr(ZvLv(Zv)T ) + ⟨W,Z − G⟩

+

m∑
v=1

(
⟨Yv,Xv − ZvAv −Ev⟩

+
µ

2
∥Xv − ZvAv −Ev∥2F

)
+

ρ

2
∥Z − G∥2F .

(9)

As the problem (9) is quadratic, smooth, and convex, it
can be solved by the first-order optimality condition as fol-
lows,

Zv =
(
Yv(Av)T + µXv(Av)T + ρGv

− µEv(Av)T −Wv
)(
2γLv + (ρ+ µ)I

)−1
.

(10)

3.2. E-Subproblem

Fixing the other variables, the problem with E is formu-
lated as,

argmin
E

α

µ
∥E∥2,1 +

1

2

∥∥∥E− Ê
∥∥∥2
F
, (11)

where Ê is constructed by horizontally concatenating the
matrices Xv−ZvAv+ 1

µY
v together along row. Its solution

can be obtained by ℓ2,1 minimization thresholding operator
as in [24],

Ei,: =


∥∥∥Êi,:

∥∥∥
2
− α

µ∥∥∥Êi,:

∥∥∥
2

Êi,:,
∥∥∥Êi,:

∥∥∥
2
>

α

µ
,

0, otherwise.

(12)

where Êi,: represents the i-th row of Ê.

3.3. G-Subproblem

When other variables are fixed, the subproblem for G is
formulated as,

argmin
G

1

ρ
∥G∥ETR +

1

2

∥∥∥∥G − (Z +
G
ρ
)

∥∥∥∥2
F

. (13)

We refer to this problem as the Enhanced Tensorial Rank
Minimization problem (ETRM), which can be solved by the
following theorem.

Theorem 1. Suppose A ∈ Rn1×n2×n3 with t-SVD A = U ∗
S ∗ VT and β > 0. The Enhanced Tensorial Rank Minimization
problem (ETRM) can be described as follows,

argmin
G

β ∥G∥ETR +
1

2
∥G − A∥2F . (14)

Then, optimal solution G∗ is obtained as,

G∗ = U ∗ ifft(Proxf,β(Sf ), [], 3) ∗ VT , (15)

where ifft(Proxf,β(Sf ), [], 3) ∈ Rn1×n2×n3 is a f-diagonal
tensor, and Proxf,β(Sk

f (i, i)) satisfies the following equation,

Proxf,β(Sk
f (i, i)) = argmin

x≥0

1

2
(x− Sk

f (i, i))
2 + βf(x), (16)

where f(x) = eδ
2
x

δ+x
.

The proof of Theorem 1 is given in the supplementary.
Eq. (16) is a combination of concave and convex functions,
so we can use the difference of convex (DC) programming
[31] to acquire a closed-form solution until iteration con-
verges,

τ iter+1 =

(
Sk
f (i, i)−

∂f(τ iter)

ρ

)
+

, (17)

where τ = Proxf,β(Sk
f (i, i)), f(x) =

eδ
2
x

x+δ and iter is the
number of iterations.
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3.4. Av-Subproblem

Fixing the other variables, Av can be updated by,

Av∗ = argmax
Av(Av)T=I

Tr((Av)TMv), (18)

where Mv = (Zv)T (µXv + Yv − µEv). The optimal
solution of Av is UvV

T
v , where Uv and Vv are the left and

right singular matrix of Mv .
At last, the Lagrange multipliers and penalty parameters

are updated as follows,
Yv = Yv + µ(Xv − ZvAv −Ev),

W = W + ρ(Z − G),
µ = ηµµ, ρ = ηρρ,

(19)

where ηµ, ηρ > 1 are used to accelerate convergence. The
detailed algorithm of our model is summarized in Algo-
rithm 1.

Algorithm 1 Optimization Algorithm for Eq. (5)

Input: Multi-view data matrix {X1, . . . ,Xm}, anchor number t,
cluster number c, parameters γ and α,
Initialize: Initialize Bv,Zv,Ev,Yv,Av to zero matrix ,
G = W = 0n×t×m, µ = 10−5, ρ = 10−4, ηµ = ηρ =
2, µmax = ρmax = 1010, ϵ = 10−7;

1: while not converge do
2: Update Zv by Eq. (9);
3: Update Ev by Eq. (12);
4: Update G by Eq. (17);
5: Update Av by Eq. (18);
6: Update Bv with the updated Av;
7: Update Yv and W by Eq. (19);
8: Update parameters µ and ρ by Eq. (19) and µ =

min(µ, µmax), ρ = min(η, ρmax);
9: Check the convergence conditions:

∥Xv − ZvAv −Ev∥∞ < ϵ & ∥Z − G∥∞ < ϵ
10: end while
11: Compute Q by performing SVD on Z in Eq. (7), and output

clustering results via performing k-means clustering on Q.

3.5. Convergence Analysis

The convergence of Algorithm 1 is ensured by the The-
orem 2 and the proof has been given in the supplementary.

Theorem 2. Let {Pk = (Zv
k,E

v
k,A

v
k,Y

v
k,Wk,Gk)}∞k=1 be

the sequence generated by Algorithm 1, then the sequence
{Pk}∞k=1 satisfies the following two principles:

1). {Pk}∞k=1 is bounded.

2). Any accumulation point of {Pk}∞k=1 is a KKT point of
Eq. (8).

Table 1: Summary of the benchmark data sets.

Data set Type Sam./Clu. Views

BBCSport Text 544 / 5 2
NGs Text 500 / 5 3
CCV Video 6773 / 20 3

Caltech101-all Object 9144 /102 6
Aloi-100 Object 11025 / 100 4
CIFAR10 Object 50000 / 10 3

Noisy MNIST Digit 50000 / 10 2

3.6. Complexity Analysis

ASR-ETR consists of two stages: 1) optimization by
iterative solving Eq. (8). 2) clustering stage. The first
stage mainly focuses on the updates of five variables
{Zv,Ev,G,Av Bv}, and the time complexity spent on
these variables is O(nt2+ntd), O(nd), O(mnt log(mn)+
nm2t), O(ntdv + t2dv), O(t2(dv)2), respectively. The
second stage takes O(nt2m2), where d =

∑m
v=1 d

v . As
t ≪ n, the total time complexity of our ASR-ETR is
O(ntd+mnt log(mn)). The space complexity is O(ntm+
ndmax), dmax = max(dv), which is linear to n.

4. Experiment
In this section, extensive experiments are conducted to

verify the effectiveness and superiority of our ASR-ETR.
Due to the page limit, we show partial experimental results,
for more experimental results, please refer to the supple-
mentary. All the experiments are implemented on a com-
puter with a 2.50GHz i7-11700 CPU and 64GB RAM, Mat-
lab R2021a.

4.1. Experimental Settings

Data sets: Seven challenging data sets are adopted for
the validation of our ASR-ETR, including NGs, BBC-
Sport, CCV, Caltech101-all, Aloi-100, CIFAR10, and
Noisy MNIST. More details can be found in Table 1.

Baselines: To verify the superiority of our model,
we compare ASR-ETR with nine state-of-the-art multi-
view clustering methods, including MVGL(2017) [42],
GMC(2019) [34], EOMSC-CA(2022) [23], SFMC(2020)
[18], SMVSC(2021) [29], t-SVD-MSC(2018) [40],
ETLMSC(2019) [37], and TBGL(2022) [38], respectively.
Furthermore, the standard single-view spectral clustering
(SC) algorithm [32] is included as a baseline, and we
perform spectral clustering on each view and show the best
results.

Evaluation Metrics: To comprehensively measure the
clustering quality, we adopt four commonly used metrics,
including accuracy (ACC), normalized mutual information
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Table 2: Results (mean(std)) of our proposed method and other compared methods on seven data sets. ’OM’ indicates the
“out-of-memory error”.

Data set Metric (%) SCbest MVGL GMC EOMSC-CA SFMC SMVSC t-SVD-MSC ETLMSC TBGL Ours

NGs

ACC 25.90(0.25) 22.80(0) 98.20(0) 63.00(0) 22.20(0) 74.20(0) 90.00(0) 24.46(1.38) 32.20(0) 100(0)
NMI 1.81(0.13) 6.87(0) 93.92(0) 47.85(0) 2.87(0) 52.38(0) 76.64(0) 5.80(1.66) 9.35(0) 100(0)
PUR 25.90(0.25) 23.80(0) 98.20(0) 64.80(0) 22.80(0) 74.20(0) 81.84(0) 20.06(0.25) 32.80(0) 100(0)
ARI 0.52(0.11) 0.21(0) 95.54(0) 41.30(0) 0.18(0) 47.25(0) 77.57(0) 0.50(0.57) 9.32(0) 100(0)

BBCSport

ACC 50.35(0.35) 22.8(0) 80.70(0) 46.32(0) 36.40(0) 59.01(0) 34.38(0) 50.17(2.64) 54.78(0) 100(0)
NMI 21.00(0.22) 6.87(0) 72.26(0) 21.73(0) 1.75(0) 30.07(0) 1.45(0) 31.97(0.98) 27.75(0) 100(0)
PUR 55.31(0.35) 23.80(0) 84.38(0) 50.37(0) 36.95(0) 61.40(0) 23.60(0) 40.65(0.71) 54.96(0) 100(0)
ARI 15.93(0.45) 0.21(0) 72.18(0) 15.04(0) 0.56(0) 27.63(0) -0.65(0) 22.64(1.71) 18.75(0) 100(0)

CCV

ACC 13.69(0.22) 11.32(0) 10.63(0) 24.32(0) 15.49(0) 22.52(0) 47.80(0.04) 19.23(0.49) 15.13(0) 78.92(0)
NMI 9.51(0.12) 3.15(0) 0.38(0) 18.70(0) 8.14(0) 16.18(0) 41.34(0.05) 15.42(0.34) 7.42(0) 75.71(0)
PUR 17.50(0.15) 11.68(0) 10.79(0) 26.68(0) 17.05(0) 25.41(0) 35.25(0.05) 12.02(0.16) 16.34(0) 79.14(0)
ARI 3.25(0.13) 0.06(0) 0.02(0) 8.52(0) 3.17(0) 7.17(0) 29.61(0.05) 6.30(0.14) 1.45(0) 64.67(0)

Caltech101-all

ACC 19.50(0.86) 14.34(0) 19.50(0) 24.70(0) 23.15(0) 29.18(0) 47.45(1.01) 21.65(1.11) 23.20(0) 65.78(0)
NMI 40.57(0.33) 25.14(0) 23.79(0) 27.09(0) 19.02(0) 40.39(0) 71.49(0.44) 43.93(0.27) 21.39(0) 87.27(0)
PUR 40.61(0.52) 22.86(0) 30.12(0) 27.64(0) 28.07(0) 38.17(0) 53.74(1.88) 36.71(2.76) 29.45(0) 83.83(0)
ARI 13.44(0.92) -0.71(0) -0.42(0) 10.02(0) 0(0) 23.27(0) 31.60(1.06) 19.21(2.01) 0.16(0) 54.15(0)

Aloi-100

ACC 64.54(1.15) 53.44(0) 72.07(0) 23.70(0) 65.53(0) 34.35(0) 71.99(1.44) 66.82(2.25) 68.58(0) 83.25(0)
NMI 80.03(0.33) 67.22(0) 74.36(0) 57.93(0) 68.72(0) 60.99(0) 83.92(0.43) 81.67(0.53) 72.20(0) 92.63(0)
PUR 67.28(0.94) 55.94(0) 73.07(0) 24.92(0) 66.38(0) 35.58(0) 58.03(1.56) 53.05(2.73) 69.81(0) 85.86(0)
ARI 54.29(1.08) 4.55(0) 15.84(0) 7.42(0) 11.31(0) 20.39(0) 61.71(1.13) 57.78(2.06) 14.49(0) 77.64(0)

CIFAR10

ACC 89.41(4.06) OM OM 99.08(0) 97.77(0) 98.35(0) OM OM OM 100(0)
NMI 80.08(1.41) OM OM 97.48(0) 94.63(0) 97.03(0) OM OM OM 100(0)
PUR 89.67(3.25) OM OM 99.08(0) 97.77(0) 98.85(0) OM OM OM 100(0)
ARI 79.79(3.00) OM OM 97.97(0) 95.14(0) 97.50(0) OM OM OM 100(0)

Noisy MNIST

ACC 61.10(2.78) OM OM 58.65(0) 41.12(0) 18.44(0) OM OM OM 99.84(0)
NMI 61.82(1.58) OM OM 49.08(0) 34.81(0) 11.77(0) OM OM OM 99.48(0)
PUR 68.34(1.23) OM OM 58.83(0) 45.35(0) 22.97(0) OM OM OM 99.84(0)
ARI 50.02(2.52) OM OM 40.44(0) 16.55(0) 6.02(0) OM OM OM 99.63(0)

Table 3: Average running time (sec.) comparison of multi-view clustering methods under data sets with more than 6,000
samples.’ OM’ indicates the “out-of-memory error”.

Data set MVGL GMC EOMSC-CA SFMC SMVSC t-SVD-MSC ETLMSC TBGL Ours
CCV 1613.51 476.03 37.94 10.99 221.96 2630.32 3201.42 2255.34 3.18

Caltech101-all 6006.82 461.73 98.82 59.06 980.72 13841.21 15768.25 10401.31 288.49
Aloi-100 2808.92 633.14 86.39 46.11 658.18 14494.12 12723.68 11000.23 115.07
CIFAR10 OM OM 97.29 72.18 547.36 OM OM OM 133.05

Noisy MNIST OM OM 99.57 74.30 528.41 OM OM OM 88.78

(NMI), purity (PUR), and adjusted rand index (ARI). For
all metrics, the larger score, the higher clustering quality.

Parameter Setting: For the parameters in the base-
lines, we follow the settings in the corresponding paper
and report the best results. For fairness, the number of
anchors is searched in {2c, 3c, · · · , 8c} for all anchor-
based algorithms, where c is the number of clusters. For
our ASR-ETR, the parameters α and γ are both searched
in {10−6, 10−5, · · · , 0}, and the search range for δ is
{0.0001, · · · , 1}. We run all the methods 20 times inde-
pendently on each data set and report their averages and
standard deviations.

4.2. Experimental Results

Table 2 and Table 3 show the comparison in metrics and
running time of the above methods on seven data sets, where
the best values and second best values are denoted by bold

values and underlined values. From the results, we derive
the following interesting observations.

1) Single-view spectral clustering (SCbest) is inferior to
multi-view clustering algorithms in most cases since all the
multi-view clustering methods explore the complementary
information among the views, while SCbest is the excep-
tion.

2) Tensor-based methods outperform non-tensor-based
algorithms in most cases. It is mainly attributed to the fact
that the tensor-based methods use the low rankness of the
representation tensor to capture the higher-order correlation
across views, which is lacking in non-tensor algorithms.

3) Our ASR-ETR consistently outperforms all other
comparison methods over all metrics and all data sets. Es-
pecially, ASR-ETR achieves the ideal clustering perfor-
mance on NGs, BBCSport, and CIFAR10 data sets. Fur-
thermore, the improvement of our method on some chal-
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lenging data sets is remarkable. For example, on the CCV
data set, ASR-ETR improves around 31.12%, 34.37%,
43.89%, 35.06% in terms of four metrics over the second-
best t-SVD-MSC method. For the Noisy MNIST data
set, ASR-ETR outperforms the second-best EOMSC-CA
method by 41.19%, 50.4%, 41.01%, 59.15%, respec-
tively. These results consistently validate the effective-
ness of ASR-ETR. And, under different applications (e.g.,
text clustering, object clustering, etc), ASR-ETR always
achieves satisfactory performance, which further verifies its
robustness of complex applications.

4) Despite ASR-ETR takes a little longer time as com-
pared with the anchor-based and non-tensor-based methods,
e.g., EOMSC-CA, SFMC, and SMVSC, it shows excellent
performance that significantly beats these methods on all
challenging data sets.

5) Compared to tensor-based methods such as t-SVD-
MSC, ETLMSC, and TBGL that suffer from out-of-
memory issues, both the time complexity and space com-
plexity of ASR-ETR are significantly reduced as linear to
the number of samples, making it possible to deal with
large-scale data sets.

4.3. Ablation Studies

Influence of Enhanced Tensor Rank: To analyze the
effect of our proposed Enhanced Tensor Rank (ETR), we
devise two ablation experiments, in the first one we ana-
lyze the parameter δ of the Enhanced Tensor Rank with the
search range of {10−4, · · · , 1}. As shown in Fig. 2, we
can observe that the parameter has a significant effect on
the clustering results. The best clustering results of NGs
are obtained when δ = 0.1, but CCV peaks at δ = 10−4.
The reason for this phenomenon is that since δ determines
the strength of the penalty for different singular values and
the distribution of singular values varies differs for different
datasets, a suitable parameter is desired to provide better
discriminability of the learned low-rank representation ten-
sor.
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Figure 2: The performance (i.e., ACC and NMI) of ASR-
ETR with varying parameter δ on two data sets.

The second experiment is to validate the superiority of
the proposed Enhanced Tensor Rank (ETR). We replace
the Enhanced Tensor Rank in the model (5) with the ten-

sor nuclear norm (TNN) and perform the experiments on
five data sets. As shown in Fig. 3(a), it can be seen that
ASR-ETR completely beats ASR-TNN, the main reason for
this phenomenon is that TNN treats different singular values
equally, leading to the over-punishment of important com-
ponents and the under-punishment of noises, while ETR
imposes different penalties on different singular values to
ensure the removal of noise and the retention of important
information.

Influence of Anchor Structure Regularization: In
this paper, we propose an Anchor Structure Regularization
(ASR) to keep the local geometric structure in different
views. To verify the impact of this term, Fig. 3(b) shows
the clustering results of the proposed method with/without
the ASR on five datasets. It can be seen that the cluster-
ing performance is boosted via the Anchor Structure Regu-
larization, which strongly demonstrates the effectiveness of
our proposed ASR.
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Figure 3: (a).The clustering performance of ASR-ETR and
ASR-TNN on five data sets. (b).The clustering performance
of ASR-ETR and without ASR on five data sets.

4.4. Model Analysis

Parameters Analysis: Our ASR-ETR has two param-
eters α and γ that need to be tuned, we empirically search
for the optimal parameters in each data set, where the search
range for both parameters is {10−6, 10−5, · · · , 1}. Due to
the page limit, we only show the clustering performance
(ACC) on the two data sets BBCSport and NGs in Fig. 4.
We can observe that when α takes {10−3, · · · , 1} and γ
in {10−6, · · · ,−3}, the ACC of both BBCSport and NGs
keep a high level. This phenomenon shows that the per-
formance of our ASR-ETR is stable across a wide range of
parameters, and the stability of the parameters also directly
illustrates the efficiency and robustness of ASR-ETR.

Anchor Analysis: We empirically analyze the impact of
the anchor numbers on four data sets (i.e., NGs, BBCSport,
Caltech101-all, and Aloi-100). To this end, We set the vari-
ation range of anchor points to {2c, 3c, · · · , 8c}, then the
clustering metrics ACC and NMI are shown in Fig. 5, we
observe that different data set achieve the best clustering
results at different numbers of anchor points, such as NGs
achieves the highest performance at 8c and Caltech101-all
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(a) ACC of BBCSport (b) ACC of NGs
Figure 4: Parameters analysis: The clustering performances
(ACC) with different parameters α and γ on the BBCSport
and NGs data sets.
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Figure 5: Anchor Analysis: The performance (i.e., ACC
and NMI) of ASR-ETR on two data sets by varying the
number of anchors.

performs best at 6c. However, in a global view, the clus-
tering results are stable under different anchors on the two
data sets, which demonstrates that the anchor-representation
strategy is robust to the number of anchors, and it is not nec-
essary to use numerous anchors for clustering.
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Figure 6: Graph Visualization: The visualization of the in-
put graph and the learned graph on NGs data set

Graph Visualization: We present three input graphs of
the data set NGs and the learned graphs in Fig. 6, where
(a)-(c) are the input graphs of three views, and (d) is the
learned graph of our ASR-ETR. It is obvious that the clus-
tering structures of the input graphs are not clear and con-

tain many noises. After adopting ASR-ETR, the learned
graph exhibits clear five components, exactly for the five
categories. This indicates that our proposed algorithm can
well characterize the cluster structure and achieve a favor-
able noise removal capability.

Convergence Analysis: The convergence of our ASR-
ETR is guaranteed by the Theorem 2, in this section, we
design convergence experiments to further verify the sta-
bility by recording the values of the stop criteria, where
the stop criteria used here are Reconstruction Error (RE):
RE = max

v
∥Xv −XvZv −Ev∥∞ and Match Error (ME):

ME = ∥Z − G∥∞. Due to the page limits, we show the re-
sults of two data sets in the Fig. 7, the values of RE and ME
rapidly tend to 0 within 10 steps and remain stable, which
indicates the excellent convergence property of our ASR-
ETR.
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Figure 7: Convergence Analysis: The stop criteria (i.e., RE
and ME) variation curves on two data sets.

5. Conclusion

In this article, we propose an Anchor Structure Regu-
larization Induced Multi-view Subspace Clustering via En-
hanced Tensor Rank Minimization (ASR-ETR). ASR-ETR
adopts the anchor-representation strategy to construct an
anchor-representation tensor, which greatly accelerates the
tensor-related operations. An Anchor Structure Regulariza-
tion is designed to keep the local geometric structure while
enhancing the structural differences between classes. Fur-
thermore, ASR-ETR exploits the similarity of the inter-view
via Enhanced Tensor Rank minimization, which well ex-
plores the complementary information embedded in differ-
ent views. An efficient scheme is employed to optimize
the proposed model, which enjoys both low time complex-
ity and linear space complexity. Extensive experiments on
seven challenging data sets demonstrate the superiority of
ASR-ETR.
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