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Abstract

Image degradation often occurs during fast camera or
object movements, regardless of the exposure modes: global
shutter (GS) or rolling shutter (RS). Since these two exposure
modes give rise to intrinsically different degradations, two
restoration threads have been explored separately, i.e. mo-
tion deblurring of GS images and distortion correction of RS
images, both of which are challenging restoration tasks, es-
pecially in the presence of a single input image. In this paper,
we explore a novel in-between exposure mode, called global
reset release (GRR) shutter, which produces GS-like blur but
with row-dependent blur magnitude. We take advantage of
this unique characteristic of GRR to explore the latent frames
within a single image and restore a clear counterpart by only
relying on these latent contexts. Specifically, we propose
a residual spatially-compensated and spectrally-enhanced
Transformer (RSS-T) block for row-dependent deblurring of
a single GRR image. Its hierarchical positional encoding
compensates global positional context of windows and en-
ables order-awareness of the local pixel’s position, along
with a novel feed-forward network that simultaneously uses
spatial and spectral information for gaining mixed global
context. Extensive experimental results demonstrate that our
method outperforms the state-of-the-art GS deblurring and
RS correction methods on single GRR input.

1. Introduction

As a fundamental research task of computer vision, im-
age restoration has been explored for many years, aiming to
recover a high-quality clean image from its corrupted coun-
terpart by removing undesired degradation. Fast or even
extreme motion, which is a major inducement to image de-
generation and highly correlated to the camera’s exposure
mode: global shutter (GS) and rolling shutter (RS).

In a GS image sensor, all pixels are reset simultaneously
and immediately charged with exposure, then stored for
sequential readout (Figure 1a). In the presence of fast and
sudden motion, blurring effects will happen. [25, 39] depict
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this motion-blurred output IB as an average of N successive
latent sharp frames IGi :

IB =
1

N

N−1∑
i=0

IGi , i = 0, 1, · · · , N − 1 .

In contrast, RS cameras expose image pixels row by row
(including reset and readout), leading to an invariant time
delay between consecutive scanlines (Figure 1b). Therefore,
RS distortion effects, also known as jello effects, will appear
if the camera is moving during the image acquisition, which
is formulated in [23] as [IR]i = [IGi ]i. [I

G
i ]i is an operator

that extracts the ith row from the ith latent GS frame IGi and
N is also the height of RS image.

Although image deblurring itself is highly involved, it is
believed that restoring clear images from single degraded
captures of GS cameras is much more tractable than that
of RS cameras as mentioned in [23]. Intuitively, motion-
blur removal process aims to disentangle target GS frame
from redundant input without sophisticated displacement
estimation or speculation of unknown context. On the con-
trary, RS correction needs to shift pixels of each scanline
to one virtual GS canvas by building pixel-level correspon-
dences. Moreover, the rectified output usually suffers from
missing boundaries not directly captured during RS expo-
sure. Methodologically, the coarse-to-fine network design
has gained remarkable performance for single image deblur-
ring [25, 30, 33, 45, 10, 46]. On the contrary, due to the
ill-posed nature, single image RS correction relies heavily
on strong prior assumptions, explicitly [35, 17, 32, 31] or
implicitly [34, 58], which limits their applicability to real
scenarios. So, recent research has moved onto multi-image
RS correction to bypass the ill-posedness. But both classi-
cal [57, 1] and learning-based methods [23, 9] still cannot
work well under complex dynamic scenes or drastic camera
motions because of nontrivial pixel alignment.

It is largely overlooked in computer vision that there ex-
ists an in-between shutter mode, called global reset release
(GRR) shutter, which can be easily enabled in some image
sensors that originally work in GS mode (e.g., EV76C560
in EO-1312C Camera) or in RS mode (e.g., IMX178 in
BFS-U3-63S4C camera). As shown in Figure 1c, GRR
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Figure 1: Different exposure modes and corresponding degrading processes induced by fast motions. (a) GS exposes all
pixels simultaneously, and it causes the output with row-independent blur that can be interpreted as an average of the latent
sharp frames. (b) RS captures pixels scanline by scanline, featured in higher frame rate, and lower cost than GS. However, RS
sensors are prone to row-dependent distortion, which can be more challenging to correct than deblurring. (c) GRR begins
exposure of all pixels simultaneously but ends row by row, causing blurring effects with row-dependent blur magnitude. A
specialized deblurring task is required but without the need for RS distortion correction. GRR also has the advantage of
reducing the flickering effect of artificial illuminants, such as green traffic lights.

starts to expose all pixels simultaneously as GS does but
reads out signals scanline by scanline like conventional RS
does. Apparently, GRR leads to blurring effects. However,
different from GS blur, the blur magnitude of GRR (the
brightness level and Signal-Noise-Ratio as a consequence)
is row-dependent. Very recently, Wang et al. [47] proposed
to enable this global reset feature in RS sensors that turns
RS correction into a more tractable deblurring problem and
reported superior results of video deblurring in GRR mode.
We note the cost to pay for this performance gain by switch-
ing from RS to GRR mode includes 1) the superiority of
RS mode over GS mode in capture speed is sacrificed since
GRR does not allow early scanning of the next frame before
the end of the current frame; 2) scanning rows in the bottom
are more likely to be saturated, and the standard automatic
exposure mechanism should be adjusted accordingly. There-
fore, in the presence of multiple consecutive frames (e.g.
8 frames are used in [47]), the authentic benefits of using
GRR mode are slightly questionable.

In this paper, we deal with a more challenging scenario
with a single input image, which is practically meaningful
in avoiding well-known flaws of using consecutive frames,
including 1) Larger buffer capacity is needed; 2) Sensitivity
to video recording settings, like frame rate and deadtime
between frames, leading to additional generalization issues;

3) Temporal alignment with severe degradation is still chal-
lenging.

By fully considering its unique exposure characteristic of
GRR mode, we bring single GRR image deblurring into the
community. Mathematically, row-dependent blur and bright-
ness caused by varying exposure time of different scanlines
could be formulated as:

IRG = IG0 + δ

N−1∑
i=1

[IGi ]i: ,

where [IGi ]i: is an operator that extracts image patch of ith

row to the end from the ith latent GS frame IGi and δ de-
notes the ratio between readout time and the first scanline’s
exposure duration. As a result, directly applying existing GS
deblurring algorithms on GRR deblurring may give rise to
an adaptation issue. On the other hand, Transformers have
shown significant performance gains on image restoration
task [22, 50] by mitigating the shortcomings of CNNs (i.e.,
limited receptive field and content-independent kernel). Al-
though shifted widow strategy [22, 50, 46, 8, 24] has largely
reduced computational loads and made it possible to process
high dimensional input, the introduced severe corruption to
image spatial information has not been addressed, especially
for spatially-sensitive tasks (e.g., GRR deblurring). Besides,
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according to the spectral convolution theorem [14], updat-
ing a single value in the spectral domain globally affects
all original data, which has been implemented for non-local
receptive field and proven to be effective in capturing long-
range context from frequency domain [4, 5, 55].

We aim to leverage the capability of self-attention and
U-net [36] structure with multi-scale input/output to tackle
the single GRR deblurring task. To this end, we propose
shifted horizontal window-based Transformer block with
spatial compensation and spectral enhancement, which con-
sists of three main components: 1) Shifted Window-based
Multi-head Self-Attention(SW-MSA) with horizontal par-
tition strategy and hierarchical positional encoding. We
update original squared window as rectangular one to better
adapt row-dependent blur and brightness. Meanwhile, hier-
archical positional encoding compensates global positional
context of windows lost in window partition and enables
order-awareness of local pixel’s position within each win-
dow. 2) Spectrally-enhanced Feed-Forward Network (Se-
FFN) based on depth-wise convolutional layer. The spectral
branch captures the discrepancy between blurry and sharp
image pairs from the perspective of frequency domain, as a
complementary part of self-attention. 3) Cross-scale Feature
Fusion module based on Squeeze and Excitation block (CFF-
SE) [11], which enables us to actively emphasize or suppress
the features from encoders with different scales. The main
contributions of this paper are summarized as follows:

• We propose an original Transformer block with spa-
tial compensation and spectral enhancement to address
single GRR deblurring by fully exploring the latent
frames, which further validates the advantages of GRR
exposure mode over its RS counterpart.

• Horizontal partition strategy and hierarchical positional
encoding are used to compensate global positional con-
text of windows and enable order-awareness of local
pixel’s position within each window. The spectrally-
enhanced feed-forward network simultaneously uses
spatial and spectral information for gaining mixed
global context.

• To facilitate the development and evaluation of GRR
deblurring, we take paired GRR/Sharp images to offer
a new dataset captured under real scenes named GRR-
real. Furthermore, by simulating data captured by three
shutter modes in a comparable way, the benefits of
using GRR for single image restoration are verified.

2. Related Work

Deep Image Deblurring Deep learning methods have
achieved significant success in multi [12, 26, 41, 54, 20, 41]
or single [15, 18, 25, 27, 40, 45, 48, 51, 52, 44, 19, 29] im-
age deblurring. Initially, researchers try to find the spatially-

varying kernels of motion blur before estimating latent image
and no exception for deep CNN methods [37, 43]. However,
blur kernel is normally computed for all pixels leading to
huge demands for memory and computation. Besides, kernel
estimation process is overly sensitive to noise and satura-
tion, which is not practical for real scenes. Later, Deep-
Deblur [25] firstly exploits kernel-free learning to directly
construct the relation between blurry and sharp images in
an end-to-end manner. And the coarse-to-fine strategy is
also taken by following SRN [45] uses an encoder-decoder
network with skip-connections for three scale levels to sig-
nificantly reduce training difficulty and introduce obvious
stability benefits. Adversarial training has also been ex-
tensively studied [15, 16]. Recently, Cho et al. [6] revisit
the coarse-to-fine scheme and present a novel deblurring
network (MIMO U-net) that can handle multi-scale blur
efficiently. These methods have been proven to be effec-
tive and achieved remarkable performance in single image
deblurring.

Rolling Shutter Correction RS correction methods with
single image input could be divided into classical and learn-
ing based. Classical approaches heavily rely on strong prior
assumptions, such as the scene is static, and the movement
of the camera is limited to pure rotation or in-plane trans-
lation [35, 17, 32, 31]. Rengarajan et al. [35] propose to
estimate motion by converting transformed curves to be
straight based on the assumption that “straight lines must re-
main straight” and purely rotation of camera. [32] simplifies
the real scene as Manhattan world to rectify the monocular
RS image. These classical methods are barely applicable in
real situations because of the restrictive prior assumptions.
For learning-based methods, Rengarajan et al. [34] proposed
a new CNN architecture based on long rectangular kernels
to correct rolling shutter distortions by simply modeling the
camera motion as translation+rotation polynomials. Zhuang
et al. [58] extend [34] for learning to predict both the cam-
era velocity and depth from a single RS image. The global
shutter image is then recovered as a post-processing step.
Recent research mainly focuses on multi-image RS correc-
tion [57, 1, 23, 9]. But those methods still cannot work under
complex dynamic scenes or large camera motions.

Vision Transformers As an alternative to CNN, the Trans-
former model has been adapted to numerous vision tasks
such as image restoration [22, 50, 46], segmentation [49, 53],
objection detection [3, 24]. The pioneering work of ViT [8]
directly conducts self-attention on flattened patches by de-
composing an image into a sequence of tokens and gets
excellent results on image classification. To further over-
come the quadratic complexity of original self-attention, Liu
et al. [24] perform local windows with fixed size or win-
dow shift to help cross-window interaction. Liang et al.
proposes an image restoration model, SwinIR [22] based
on Swin Transformer [24]. Similarly, Uformer [46] imple-
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Figure 2: Overview of our model architecture. The model is implemented in an encoder-decoder manner with muli-scale
input and output. Each encoder/decoder (except for EB0 and EB3) consists of (a) specially designed residual spatially-
compensated and spectrally-enhanced transformer block (RSS-T); (b) feature attention module (FAM)/convolution layer
(Conv.). Cross-scale feature fusion based on squeeze and excitation block (CFF-SE) is explored to actively emphasize or
suppress the features from encoders.

ments the Locally enhanced Window Transformer block in
Unet structure and introduces a learnable multi-scale restora-
tion modulator. All these methods have gained remarkable
performance on image restoration tasks by mitigating the
shortcomings of CNNs. But no one has addressed the corrup-
tion to image spatial information introduced by the widow
partition strategy. And spectral feature, which is proven to
capture long-range context effectively, has also been ignored
in vision transformers.

3. Method

Overview The overall structure is in the manner of encoder-
decoder with multi-scale inputs and outputs (Figure 2). Ex-
cept for EB0 and DB3, all encoder/decoder blocks contain
a Feature Attention Module (FAM) or Convolution layer
(Conv.) to refine aggregated features. Cross-scale feature
fusion based on squeeze and excitation block (CFF-SE) is
exploited to propagate information flow between encoders
and decoders. To be specific, given a degraded image
I ∈ R3×H×W , multi-scale input set I = [I0, I1, I2, I3], Ik ∈
R3× H

2k
×W

2k (k = 0, 1, 2, 3) is obtained by down-sampling
operations. Then low-level feature Xk ∈ R2kC× H

2k
×W

2k of

input Ik is extracted by its own input projection module Ink

and will be fed into EBk. Similarly, the first three encoder
blocks are followed by a down-sampling operation to guaran-
tee the shape of feature map from EBk−1 is consistent with
that of Xk. For feature reconstruction, an up-sampling opera-
tion is inserted between each two decoders. And multi-scale
output set O = [̂I0, Î1, Î2, Î3], Îl ∈ R3×H

2l
×W

2l (l = 0, 1, 2, 3)
is generated by corresponding output projection module
Outl and residual connection from input image Il. Figure 2
illustrates the detailed structure of our RSS-T block.

3.1. SW-MSA with Spatial Compensation

Two main challenges exist to directly extend the exist-
ing Transformer architecture to GRR deblurring. First, be-
cause of the characteristic of GRR exposure mode, gen-
erated spatial-variant blur and brightness are closely cor-
related to image rows, while normal Transformer blocks
do not consider this. They divide the image into squared
window [22, 50, 46], leading to large blur and brightness
variance within each window, which makes the rectifica-
tion process more challenging. Second, standard vision
Transformer architecture cuts the computational cost due to
the usage of self-attention conducted on non-overlapping
windows, which enables high dimensional input processing.
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Figure 3: Two main components of our proposed RSS-T. (a) The proposed SW-MSA with Spatial Compensation includes
two core designs: horizontal window partition strategy and hierarchical position encoding comprising window positional
encoding (WinPE) and pixel positional encoding (PixPE). (b) Se-FFN.

But during window partition, image spatial information has
been corrupted. That absolute spatial location is crucial for
spatially-sensitive tasks. To address the aforementioned is-
sues, we propose SW-MSA with spatial compensation, as
shown in Figure 3a, which has two core designs: horizontal
window partition and hierarchical positional encoding.

Horizontal Window Partition As discussed above, com-
mon squared windows without distinguishing blur and bright-
ness variance along the row and column dimensions make
rectification more challenging. We update the original
squared window as rectangular to better adapt row-dependent
blur and brightness. These long and narrow horizontal win-
dows will mitigate large variances within each widow. Bho-
janapalli et al. [2] has depicted a kind of low-rank bottleneck,
i.e., while increasing the number of heads seemingly gives
the model more expressive power, at the same time, the head
size is reduced, which can decrease the expressive power.
When input token number n is larger than head size dh, it
will create a low-rank bottleneck and lose its ability to repre-
sent arbitrary context vectors. Thus, by following this rule
and considering computational cost, we set the horizontal
window size as (2, 16), (4, 16), (2, 32), and (4, 32). For bet-
ter comparison, we also provide a normal squared window
size of (8, 8) and an extreme case with a window size of
(2, full). The ‘full’ means the window width equals the fea-
ture map width. Given input feature Xin ∈ RB×H×W×C′

,
the partition process is represented as:

Xw = WinPart(Xin), (1)

where Xw ∈ RBNw×Hw×Ww×C′
, Hw,Ww denote height

and width of windows and Nw = H/Hw × W/Ww, which is
the total number of divided windows.

Hierarchical Positional Encoding Window partition
largely reduces computational cost but corrupts the image’s

global positional information crucial to GRR deblurring. So,
we propose hierarchical positional encoding: 1) Window
Position Encoding (WinPE) compensates for the absolute
global location lost in the partition process. 2) Pixel Position
Encoding (PixPE) enables context of the local pixel’s rela-
tive position within each window. Chu et al. [7] proposes
a positional encoding generator to obtain Conditional Posi-
tion Encodings (CPE), which can be efficiently implemented
with a 2D depth convolution with kernel k (k ≥ 3) and k−1

2
zero paddings. They have proven zero paddings here are
important to make the model aware of the absolute positions
of each token. Li et al. [21] use a similar positional encoding
strategy to capture temporal position for videos. Here, we
extend CPE to the 3D situation and propose our WinPE:

WinPE(R(Xw)) = DWConv(R(Xw)), (2)

where R(·) is reshape operation and DWConv means 3D
depthwise convolution with zero paddings. Each window’s
absolute position will be encoded by repeatedly applying
depthwise convolution to the 3D feature space. Moreover,
this encoding is dynamic and allows us to eliminate the
constraint to the token’s length when testing on different
datasets, which perfectly matches the requirement of our
window position encoding. The fixed size of the window
will lead to the dynamic length of the window sequence once
the image size changes. We also apply the relative position
encoding [24, 38] for PixPE through a learnable parameter
table B ∈ R(2Hw−1)×(2Ww−1). Overall, the formulation is:

Y = Xin + MSA(LN(Xe)) ,

Xe = Xw + R(DWConv(R(Xw))) ,

MSA(Q,K,V) = SoftMax(QKT /
√

dh + B)V ,

(3)

where Q, K and V are projected query, key and value from
input. B is the relative position bias, whose values are taken
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from B. LN(·) means layer norm and dh denotes head size.

3.2. Spectrally-enhanced FFN

Researchers have proven the spectral feature effectively
captures long-range dependencies. The Fast Fourier Convo-
lution (FFC) operator in [4] could efficiently implement a
non-local receptive field. Inspired by this work, we devised
our Se-FFN based on depth-wise convolutional layer. The
spectral branch captures the discrepancy between blurry and
sharp image pairs as a supplemental part of self-attention for
effective long-range dependency modeling.

Se-FFN includes two parts: spectral branch and spatial
branch (Figure 3b). The spatial part first applies layer norm
to the input feature followed by two convolutions with 1×1
kernel and a 3×3 depth-wise convolution to capture local
information. The spectral branch is formulated as (a) convert
the input feature map Y ∈ RB×H×W×C′

into the frequency
domain to obtain F(Y). (b) Concatenate the real part and
imaginary part of F(Y) along channel dimension to get the
spectral feature Ỹ ∈ RB×H×W/2×2C′

. (c) Exploit two 1×1
convolutional layers with the LeakyReLU function in be-
tween to process the spectral feature. (d) Split the processed
spectral feature as real and imaginary parts, then convert
them back to spatial domain Yf ∈ RB×H×W×C′

by inverse
Fast Fourier Transform (iFFT). Finally, the output of Se-
FFN is Z = Y + Yf + Ys, where Ys is the output of spatial
branch.

3.3. Cross-scale Feature Fusion

In most conventional U-net structures, the corresponding
encoder and decoder are related by a skip connection to
allow information flow between the same scale level. Later
in [6], authors present an Asymmetric Feature Fusion (AFF)
module to enable cross-scale interaction but without any
control. So, we present our CFF-SE block. As shown in
Figure 2, before the convolutional block, the input firstly
goes through a SE module to control the information flow
from the respective scale level of all encoders, which enables
us to actively emphasize or suppress the features. Thus, each
decoder can selectively exploit multi-scale features, resulting
in improved deblurring performance as will be demonstrated
in the experimental part.

4. Experiments

Learning-based methods for debluring or RS correction
are usually trained on synthetic data, which has limitations
of generalization. We, therefore, built an image acquisition
system to collect a real dataset named GRR-real. The de-
tails about the system, training implementation, and more
experimental results are offered in supplemental materials.

4.1. Comparison on GRR Deblurring

Comparison with Other Models Since single GRR de-
blurring is addressed for the first time, there is no specially
devised algorithm. So, we compare our model with previous
state-of-the-art approaches from:

• GS image-based deblurring by exploiting coarse-to-fine
strategy: basic U-net [36], SRN [45], MIMO-UNet[6]
and Uformer[46].

• GS video-based deblurring by fusing neighboring tem-
poral information: STR-CNN [12], DBN [42] and
IFIRNN[26].

• RS video-based correction through predicting pixel-
wise displacement: JCD [56] and DSUR [23].1

• GRR video deblurring using a spatial-aware encoder
with long-short term temporal information aggregator:
NGS [47]. For fair comparisons, we not only provide
the original setting with 8 frames as input (NGS8) but
also update the model with a single input (NGS1).

After retraining all models, Table 1 depicts quantitative
results on the GRR-real test dataset. Overall, it demonstrates
our specially devised algorithm significantly outperforms
models from RS correction and GS deblurring, even though
they take multi frames as input and exploit temporal informa-
tion. As discussed in Section 1, RS correction usually resorts
to nontrivial motion estimation and warping process. When
directly used for GRR, they performed worse than deblur-
ring models. Furthermore, we observe that, for deblurring
models, those with video clips as input may degrade sharply,
even are no match for some approaches of a single input. A
key reason is that these models are struggling to align the
content of different video frames. If failed, the redundant
inputs would confuse learning process instead.

Although the tailored GRR video deblurring method
NGS8 [47] achieved higher metrics than ours (30.03/0.90
vs. 28.64/0.90), it heavily relies on temporal correlation of
8 frames and the performance decreased drastically when
given single input (NGS1). In contrast to RSS-T, the demand
of NGS8 for 8 consecutive frames in training or testing can
be difficult to be satisfied, sometimes even impossible due
to buffer restrictions. Besides, sensitivity to video captur-
ing settings (e.g., frame rate and deadtime between frames)
will lead to additional generalization issues. We also com-
puted the complexity of all algorithms, which shows that
our model is at medium level and outperforms SOTA RS
correction or Transformer-based models. From qualitative

1Noting that single RS image correction methods either heavily rely
on strong assumption [35, 17, 32, 31], which is apparently inapplicable to
our natural scene dataset or require actual velocity or depth to train the
model [34, 58] that are barely accessible in common cameras. So, we ignore
them and only choose RS video correction methods to compare.
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Input U-net [36] SRN [45] MIMO [6] MIMO+ [6]

Uformer [46] STR-CNN [12] DBN [42] IFIRNN [26] JCD [56]

DSUR [23] NGS1 [47] NGS8 [47] RSS-T GT

Figure 4: Qualitative results on the GRR-real dataset. We compare our method with state-of-the-art methods from RS
correction, GS deblurring, and GRR video deblurring.

Table 1: Quantitative comparison on GRR-real dataset. We compare our method with state-of-the-art motion deblurring,
RS correction, and GRR video deblurring approaches. According to ‘exposure mode/input number’, they could be divided as
‘GS/Single’, ‘GS/Multi’, ‘RS/Multi’, ‘GRR/Multi’, and ‘GRR/single’. The performance is measured with mean PSNR/SSIM
(↑). ‘Full’ denotes evaluation using full-size frames, while ‘Top’, ‘Middle’, and ‘Bottom’ represent using only a patch of
images from the top, middle, and bottom areas.

Method Mode / Input Effectiveness Efficiency

Top Middle Bottom Full Time (s) Params (M) FLOPs (T)

Input – 15.12 / 0.67 21.83 / 0.78 20.08 / 0.76 17.61 / 0.74 – – –

U-net [36]

GS / Single

26.34 / 0.92 23.83 / 0.85 22.74 / 0.83 23.57 / 0.87 0.0062 9.50 0.072
SRN [45] 25.11 / 0.78 24.34 / 0.72 24.08 / 0.72 23.84 / 0.74 0.0140 10.25 0.509

MIMO [6] 27.16 /0.90 24.55 / 0.82 24.04 / 0.79 24.48 / 0.84 0.0123 6.81 0.315
MIMO+ [6] 28.46 / 0.91 26.31 / 0.85 25.78 / 0.83 26.12 / 0.86 0.0249 16.11 0.724

Uformer [46] 25.04 / 0.93 23.70 / 0.86 22.20 / 0.84 22.92 / 0.87 0.2147 20.63 0.257

STR-CNN [12]
GS / Multi

20.88 / 0.83 23.28 / 0.77 22.60 / 0.75 21.39 / 0.78 0.0194 0.93 0.367
DBN [42] 25.11 / 0.90 25.90 / 0.85 25.87 / 0.82 24.97 / 0.85 0.0229 15.31 1.046

IFIRNN [26] 27.19 / 0.90 23.85 / 0.78 23.21 / 0.77 23.97 / 0.81 0.0135 1.64 0.581

JCD [56] RS / Multi 27.64 / 0.90 23.65 / 0.80 19.76 / 0.77 22.31 / 0.82 0.2625 8.67 0.326
DSUR [23] 24.81 / 0.87 23.87 / 0.78 23.39 / 0.76 23.35 / 0.80 0.3018 3.90 0.225

NGS8 [47] GRR / Multi 31.71 / 0.93 30.54 / 0.90 29.12 / 0.87 30.03 / 0.90 0.0233 8.67 1.266

NGS1 [47] GRR / Single 26.61 / 0.89 23.53 / 0.78 22.83 / 0.76 23.67 / 0.81 0.0187 4.56 0.083
RSS-T 30.90 / 0.93 28.60 / 0.88 27.86 / 0.86 28.64 / 0.90 0.1479 11.34 0.176

results in Figure 4, although the images obtained by the ex-
isting networks exhibit mitigated distortions compared to
the input, local details and structures were not sufficiently
corrected, whereas our method produces sharper images that
even visually outperform NGS8.

Thirdparty Evaluation To further prove the practical value

of our method, we evaluate it on another GRR dataset
from [47]. As shown in Table 2, our method still outperforms
other algorithms and is just slightly inferior to NGS8 with as
many as eight input frames (26.62/0.86 vs. 27.29/0.85).
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Table 2: Comparison on another GRR dataset [47].

Method SET-II

Full Top Middle Bottom

Input 17.82 / 0.73 23.64 / 0.77 21.45 / 0.77 15.54 / 0.66

SRN [45] 25.05 / 0.81 24.32 / 0.79 25.65 / 0.81 27.02 / 0.83

STRCNN [12] 22.59 / 0.81 22.99 / 0.79 23.46 / 0.81 23.66 / 0.83
DBN [42] 22.57 / 0.81 23.24 / 0.80 23.81 / 0.81 23.24 / 0.82

IFIRNN[26] 25.17 / 0.82 24.77 / 0.80 25.62 / 0.81 26.94 / 0.84
ESTRNN [54] 22.72 / 0.83 23.42 / 0.81 26.03 / 0.83 22.86 / 0.83

DSUR [23] 22.50 / 0.80 22.49 / 0.78 23.87 / 0.81 23.38 / 0.83
JCD [56] 25.33 / 0.80 24.77 / 0.78 25.71 / 0.80 27.43 / 0.83

NGS8 [47] 27.29 / 0.85 26.96 / 0.84 27.57 / 0.85 28.35 / 0.86

NGS1 [47] 25.19 / 0.79 24.48 / 0.77 25.53 / 0.79 27.27 / 0.82
RSS-T 26.62 / 0.86 25.90 / 0.84 26.82 / 0.86 28.43 / 0.87

Table 3: Architecture ablation on our GRR-real dataset.

PE FFN Fusion PSNR / SSIM
WinPE PixPE LeFNN Se-FNN AFF CFF-SE

v1 ✓ ✓ 25.69 / 0.85
v2 ✓ ✓ ✓ 26.50 / 0.86
v3 ✓ ✓ ✓ 26.10 / 0.86
v4 ✓ ✓ ✓ ✓ 26.83 / 0.87
v5 ✓ ✓ ✓ ✓ 27.24 / 0.87

RSS-T ✓ ✓ ✓ ✓ 28.64 / 0.90

4.2. Ablation Study

Model Architecture Ablation We conducted experiments
to analyze the effectiveness of the core components of
our RSS-T. The hierarchical position encoding consists of
WinPE and PixPE. The feed-forward network is also imple-
mented by LeFFN [46] to compare with our Se-FNN (v5
vs. RSS-T). As for the cross-scale fusion part, AFF [46] and
our CFF-SE are used to explore the performance difference
(v4 vs. v5). All the experimental results are listed in Table 3.
From v1, v2, v3, and v4, when WinPE and PixPE are sepa-
rately presented in baseline model v1, the performance goes
up but the combination of them achieved the best metrics.
Our Se-FNN and CFF-SE modules contributed to the further
performance improvement of PSNR by +1.81dB compared
with the LeFFN and AFF.

Window Size Ablation We introduced three types of win-
dow size (i.e., horizontal, squared, and full-width window)
and clarified the advantages of the horizontal window for
GRR deblurring in Section 3.1. Here, we present exper-
imental results to support the claim. As Figure 5 shows,
all horizontal window settings are superior to the standard
squared one from quantitative and qualitative perspectives.
The extreme case (2, full) is severely trapped in low-rank
bottleneck [2] as the pixel number of this window is far more
than the head size.

Window PSNR SSIM
(2,32) 26.20 0.8720
(2,16) 27.30 0.8810
(4,32) 27.45 0.8671
(4,16) 28.64 0.8964
(8,8) 25.39 0.8665

(2,full) 24.33 0.8392
Horizontal Window
Squared Window

Full-width Window

Input (2,full) (8,8) (2,32)

(4,32) (2,16) (4,16) GT

Figure 5: Window size ablation. Experimental results of all
different window-size settings on our GRR-real dataset.

Time/ms33

RS (30fps) GS(30fps)GRR(30fps) Image rows

Figure 6: Temporal alignment of three shutters. When
synthesizing datasets, we strictly align the exposure of three
modes.

4.3. Comparison on Three Shutter Modes

Until now, a direct comparison of three shutter modes
is still missing, although [47] has demonstrated that GRR
has its superiority against RS in obtaining sharp images in
the scenario of video restoration. Here, we evaluate them
on single image Restoration. For a fair comparison, we
synthesize strictly aligned images virtually captured by three
modes (RS, GRR, and blur) for each scene by following the
protocol of [28, 45, 6] (details in the supplemental material),
and compare with SOTA methods for each mode.

When compared with RS mode, Table 4 shows that GRR
combined with our RSS-T model has gained significant ad-
vantages in obtaining single sharp image, even though DSUR
and JCD take multiple frames as input. These results are
consistent with the discussion in [47] that the GRR mode
enables us to convert the RS correction problem into a more
tractable one. Therefore, given an RS camera that supports
GRR mode, we recommend switching to GRR mode for
better restoration from a single input, if losing some capture
speed of the original RS is permissible. Also, the exposure
should be adjusted to avoid saturation of bottom rows.

We additionally present comparisons with row-
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Table 4: Quantitative comparison on three modes. The
subscript of each method denotes the number of input frames.
The reason we choose multi-frame RS correction is discussed
in Section 4.1. MIMO+ and Uformer are trained on blur
mode. DSUR and JCD are trained on the RS counterpart,
while RSS-T is trained on GRR mode.

Method Full Top Middle Bottom

DSUR2 [23] 24.51 / 0.81 28.42 / 0.89 23.84 / 0.78 24.21 / 0.77
JCD3 [56] 23.52 / 0.75 25.85 / 0.79 23.87 / 0.75 23.18 /0.70

RSS-T1 27.47 / 0.89 27.40 / 0.90 27.9 / 0.89 28.10 / 0.89

MIMO+1[6] 25.16 / 0.86 26.75 / 0.87 25.54 / 0.85 25.58 / 0.85
Uformer1[46] 24.28 / 0.84 25.54 / 0.86 24.26 / 0.83 24.57 / 0.83

independent deblurring issues under identical scenes. For
fairness, we artificially elongate the exposure time of a GS
camera to synthesize blurred images. As shown in Figure 6,
the exposure time of GS is set to be the same as that of
the full scanning period of RS and GRR. From Table 4,
row-dependent blur from GRR is more tractable than blur
generated by a GS camera. Because of the characteristics of
GRR exposure, it implicitly encodes the temporal ordering
of latent frames that mitigate the motion ambiguity [13]
of blur images. And local details from the top sharper yet
noisier rows further enhance the reconstruction performance.
The practical implication on usage is that, given a GS
camera in hand that supports GRR mode, we recommend
switching to the GRR mode for single image deblurring
with our proposed algorithm. Note that there is no additional
cost to pay here since GRR mode will not slow down the
original GS frame rate nor cause additional saturation since
the longest exposure time of GRR is the same as the GS
exposure time (Figure 6).

5. Conclusion

In this paper, we analyzed image degradations for con-
ventional GS and RS cameras and further highlighted an
in-between exposure mode, named GRR, arising from the
global reset feature equipped with many RS sensors. Instead
of RS distortion, GRR gives rise to a specialized blurring
effect with row-dependent blur magnitude and brightness
level. Based on the characteristics of GRR degradation, an
original Transformer block with spatial compensation and
spectral enhancement was devised, which has the advantage
of being able to rectify the GRR degradation. The proposed
hierarchical positional encoding well preserved the absolute
and relative position context and the spectral branch of the
feed-forward network enhanced the model’s ability to cap-
ture long-range discrepancies. The experimental results also
verified that our tailored model is effective.

Potential Application As shown in Figure 7, GRR is mainly
intended for industrial usage in controlled dark environment,

(a)

Strobe
 illuminant

Conveyor belt

Camera

(b)

Rows 1
...

2

3

...

RS GRR

Exposure time Exposure time

Illumination time

4

N-1
N

...

Figure 7: Application scenario of GRR mode. (a) Illus-
trated application scenario. (b) Synchronization between
illumination and cameras.

such as parts inspection on a conveyor belt, together with
strobe illuminant. In this scenario, GRR with synchronized
illumination can capture distortion-free and blur-free images,
with lower cost than using a GS sensor, and faster speed
than using a RS sensor (Because, in this case, the exposure
time of RS has to be elongated such that the first and last
rows have sufficient overlap). Instead, without using strobe
illumination, GRR boosted with our approach can still re-
store a sharp image. This will further reduce production and
maintenance cost in practice.

Limitations When the illumination is bright enough, with
appropriate exposure, GS can capture a sharp image without
blur. The bottom parts of GRR can do the same, yet the top
parts will be darker and thus noiser, or the top parts can be
sharp, yet the the bottom parts will be blurry. In this scenario,
GRR is clearly worse than GS, and our algorithm can help
reduce the performance gap. On the other hand, RS will not
have distortion and the image will be sharp and clean when
dealing with completely static scenes. Yet GRR will have
non-uniform brightness, although blur will not happen. Our
algorithm can compensate this non-uniformity, yet GRR is
worse than RS in this particular scenario.
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