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Abstract

In this paper, we propose a novel center-based decou-
pled point cloud registration framework for robust 6D ob-
ject pose estimation in real-world scenarios. Our method
decouples the translation from the entire transformation by
predicting the object center and estimating the rotation in a
center-aware manner. This center offset-based translation
estimation is correspondence-free, freeing us from the dif-
ficulty of constructing correspondences in challenging sce-
narios, thus improving robustness. To obtain reliable center
predictions, we use a multi-view (bird’s eye view and front
view) object shape description of the source-point features,
with both views jointly voting for the object center. Addi-
tionally, we propose an effective shape embedding module
to augment the source features, largely completing the miss-
ing shape information due to partial scanning, thus facili-
tating the center prediction. With the center-aligned source
and model point clouds, the rotation predictor utilizes fea-
ture similarity to establish putative correspondences for
SVD-based rotation estimation. In particular, we intro-
duce a center-aware hybrid feature descriptor with a nor-
mal correction technique to extract discriminative, part-
aware features for high-quality correspondence construc-
tion. Our experiments show that our method outperforms
the state-of-the-art methods by a large margin on real-
world datasets such as TUD-L, LINEMOD, and Occluded-
LINEMOD. Code is available at https://github.com/Jiang-
HB/CenterReg.
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1. Introduction
Accurate 6D object pose estimation (position and ori-

entation in 3D space) is a crucial task in many real-world
applications, such as robotics grasping [13, 59, 73], aug-
mented reality [43, 44], and autonomous navigation [8, 22,
62]. While great progress has been made when exploiting
RGB or RGB-D data as input [34, 54, 51, 59, 49, 69, 58], the
advances in 3D sensors and deep point-cloud learning archi-
tectures have led to the development of increasingly accu-
rate point cloud registration algorithms [61, 67, 32, 19, 14].

Nevertheless, the current state-of-the-art object-level 3D
registration methods [56, 67, 19] prioritize achieving high
performance on synthetic data, and yet still struggle with
the challenges present in real-world data [25, 24, 6], such as
full-range transformations, natural noise interference, and
severe occlusions. A promising direction to alleviate this
consists of decoupling the rotation and translation solutions,
so as to reduce their interference. This was first investigated
in [41, 42, 57] via the use of handcrafted rotation-invariant
and translation-invariant feature descriptors. More recently,
this idea was translated to the deep learning realm by aiming
to learn representations that disentangle rotation and trans-
lation [10].

In this paper, we introduce a drastically different ap-
proach to decoupled registration for robust 6D object pose
estimation in real-world scenarios. We advocate using the
center offset between the source and model point clouds to
decouple the translation from the entire transformation. In
contrast to common correspondence-based translation esti-
mation [61, 67, 14], our method is correspondence-free. It
just requires regressing the independent center of the point
cloud itself, freeing us from the difficulty of correspondence
construction in challenging scenarios and thus significantly
enhancing robustness. As the model point cloud can always
be centered at the referential origin, our translation decou-
pling can be further simplified to only predicting the posi-
tion of the center in the source point cloud. We therefore
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decouple 3D registration into a center prediction (for trans-
lation estimation) and a center-aware rotation prediction.

Specifically, our method consists of a multi-view center
predictor and a center-aware rotation predictor. The center
predictor extracts a bird’s eye view (BEV) and a front view
description of the object shape from the source point cloud
features, which jointly vote for the object center. Notably,
we augment the source-point features with rich object-shape
information from the model point cloud via a model-shape
embedding module. This lets us largely complement the
missing shape information of the partially-scanned source
point cloud, thus facilitating the center prediction. With the
center-aligned source and model point clouds, the rotation
predictor utilizes feature similarity to establish putative cor-
respondences for SVD-based rotation estimation [61]. In
this context, we develop a center-aware hybrid feature de-
scriptor to inhibit wrong correspondences caused by mis-
matched points with similar local structures. Specifically,
this descriptor characterizes a part-aware representation of
points, highlighting the intra-object location of each point
(i.e., which part of the object the point belongs to), so as
to distinguish locally-similar yet mismatched points. In ad-
dition, we propose a center-aware normal-orientation cor-
rection technique to account for normal consistency in the
construction of the correspondences.

To summarize, our main contributions are as follows:
• We propose a novel center-based decoupled registra-

tion framework for robust real-world 6D object pose
estimation, which first identifies the object center to
decouple translation and rotation prediction.

• We develop a robust multi-view center predictor, us-
ing BEV and front-view source-feature projections to
jointly vote for the object center. Notably, the source
features are augmented with a proposed model-shape
embedding module to complement the missing object-
shape information due to partial scanning.

• We propose an effective center-aware rotation estima-
tion method, designing a center-aware hybrid feature
descriptor and a normal correction strategy to improve
the robustness of extracted feature correspondences.

Our extensive experimental results on the real-world TUD-
L [25], LINEMOD [24] and Occluded-LINEMOD [6]
datasets evidence that our method outperforms the state of
the art by a large margin.

2. Related Work
Traditional Registration Methods. Iterative Closest Point
(ICP) [5] is a widely used and reliable fine registration al-
gorithm. Its objective is to iteratively construct nearest-
neighbor correspondences and perform least-squares opti-
mization. However, the non-convexity of this overall ob-
jective function can lead to poor solutions depending on

the initial pose. To address this sensitivity to pose initial-
ization, Go-ICP [66] employs the branch-and-bound (BnB)
scheme to globally search for the optimal transformation
in a discretized 6D transformation parameter space. For
improved registration reliability in the presence of partial
observations, trimmed ICP [11] chooses minimal error sub-
sets rather than optimizing all transformations. Other ICP
variants [55, 18, 3, 23, 16] also show competitive perfor-
mance in fine registration. By contrast, RANSAC-based
coarse registration methods utilize an hypothesis verifica-
tion approach to search for the optimal transformation. For
instance, 4PCS [1] utilizes intersectional diagonal ratios
to constrain the correspondence (four-point sets) sampling,
and Super4PCS [45] further improves the computational ef-
ficiency of 4PCS, requiring only linear complexity. Other
RANSAC variants such as [47, 46, 63, 27, 21] have led to
impressive registration ability.

End-to-end Deep Registration Methods. With the
progress of deep learning in 3D vision [52, 53], learning-
based end-to-end registration approaches have emerged as a
promising alternative to traditional methods. These method
learn to directly regress the rotation and translation from
an input point cloud pair. DCP [61], a pioneer in this
area, uses deep closest points as pseudo-corresponding tar-
get points to establish putative correspondences for SVD-
based transformation prediction. To handle the partial-to-
partial registration case, PRNet [60] further performs key-
point detection and Gumbel softmax-based correspondence
identification in an iterative manner. RPMNet [67] fur-
ther incorporates a Sinkhorn layer and an annealing scheme
for better outlier rejection. Furthermore, PointNetLK [2]
and FMR [29] use the Lucas & Kanada (LK) [4] and in-
verse compositional (IC) [4] algorithms, respectively, to it-
eratively search for the optimal transformation via feature
alignment. RGM [19] and RIENet [56] propose to lever-
age graph matching and geometric difference of the neigh-
borhood, respectively, to improve the robustness to outliers.
[32, 31] integrate the cross-entropy method into the deep
model for robust rigid registration. Many other models,
such as [60, 36, 12, 48, 39, 38, 72, 30] have further been
developed, achieving impressive registration performance.

Transformation Decoupling. A particularly promising re-
search direction in point cloud registration consists of de-
coupling the rotational and the translational parts of the
transformation. This reduces interference between these
two terms, and simplifies the solution space, leading to
more robust 3D registration. Various decomposition strate-
gies have been proposed. Straub et al. [57] use the sur-
face normal distribution of a point cloud as translation-
invariant feature and apply the BnB algorithm to search for
the optimal rotation and translation. Liu et al. [41] design
a rotation-invariant feature, allowing for the translation to
be decoupled first using the BnB algorithm. Chen et al. [7]
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TUD-L LINEMOD Occluded-LINEMOD
Models 5� 10� 1cm 2cm 5� 10� 1cm 2cm 5� 10� 1cm 2cm Sec.

Baseline 0.20 0.73 0.36 0.68 0.02 0.11 0.08 0.23 0.01 0.08 0.08 0.24 0.029
Baseline+Center 0.72 0.88 0.97 0.99 0.05 0.23 0.83 0.95 0.04 0.13 0.57 0.76 0.048
Baseline+Center+NC 0.77 0.94 0.97 0.99 0.11 0.34 0.83 0.95 0.07 0.21 0.57 0.76 0.050
Baseline+Center+NC+CF* 0.81 0.97 0.97 0.99 0.20 0.47 0.83 0.95 0.11 0.29 0.57 0.76 0.051

CenterReg (w/o MoSE) 0.81 0.97 0.97 0.99 0.19 0.45 0.76 0.90 0.11 0.27 0.48 0.63 0.045
CenterReg (w/ sparsecos) 0.81 0.97 0.96 0.98 0.19 0.47 0.82 0.94 0.13 0.29 0.56 0.73 0.055
CenterReg (w/ sparsemax) 0.81 0.97 0.97 0.99 0.19 0.47 0.85 0.95 0.12 0.30 0.56 0.75 0.055
CenterReg (w/ softmax)* 0.81 0.97 0.97 0.99 0.20 0.47 0.83 0.95 0.11 0.29 0.57 0.76 0.051

Table 4. Comparison results on 3DMatch [?] and KITTI [19] benchmark datasets with descriptors FCGF and FPFH. The registration speed
is achieved by computing the averaged time cost on 3DMatch with FCGF descriptor.

Ground truth CenterReg (ours) RPMNet
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Figure 3. Registration visualization on 3DLoMatch [19].

margins on all tested datasets, such as 6%" and 11%" at
mAP@5� and mAP@10� on LINEMOD dataset. It mainly
benefits from that the orientation-refined normal vector us-
ing NC can promote more consistent local description of
the corresponding points so as to help establish reliable
correspondences for more precise rotation estimation. (2)
Center-aware feature descriptor. Then, we further test the
precision contribution of the proposed center-aware feature
descriptor (CF) as demonstrated in Eq. 4, The forth row in
Table 4 also presents consistent performance improvements
on each item. CF descriptor can enhance each point fea-
ture with the part-aware representation so as to effectively
distinguish the locallly-simiar yet non-corresponding points
for more robust correspondence identification.

7. Conclusion
In this paper, we proposed a novel and effective object

center-based deep decoupling registration framework for
robust object pose estimation in the real-world scenarios.
As the object model can always be centered at the refer-
ential origin, we convert the translation estimation to the
problem of object-center localization in the source point
cloud so as to directly decouple the translation from the
whole transformation using the center offset. Then, with
the center-aligned source and model point clouds, we de-
signed a center-enhanced rotation predictor to estimate the

rest rotation transformation. Particularly, the center-aware
feature descriptor and the center-based normal refinement
technique were proposed to construct high-quality corre-
spondences for reliable rotation estimation. Extensive ex-
perimental results on challenging real-world datasets verify
the outstanding performance of our method.

t̂ = cY � ĉX = �ĉX
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margins on all tested datasets, such as 6%" and 11%" at
mAP@5� and mAP@10� on LINEMOD dataset. It mainly
benefits from that the orientation-refined normal vector us-
ing NC can promote more consistent local description of
the corresponding points so as to help establish reliable
correspondences for more precise rotation estimation. (2)
Center-aware feature descriptor. Then, we further test the
precision contribution of the proposed center-aware feature
descriptor (CF) as demonstrated in Eq. 4, The forth row in
Table 4 also presents consistent performance improvements
on each item. CF descriptor can enhance each point fea-
ture with the part-aware representation so as to effectively
distinguish the locallly-simiar yet non-corresponding points
for more robust correspondence identification.

7. Conclusion
In this paper, we proposed a novel and effective object

center-based deep decoupling registration framework for
robust object pose estimation in the real-world scenarios.
As the object model can always be centered at the refer-
ential origin, we convert the translation estimation to the
problem of object-center localization in the source point
cloud so as to directly decouple the translation from the
whole transformation using the center offset. Then, with
the center-aligned source and model point clouds, we de-
signed a center-enhanced rotation predictor to estimate the

rest rotation transformation. Particularly, the center-aware
feature descriptor and the center-based normal refinement
technique were proposed to construct high-quality corre-
spondences for reliable rotation estimation. Extensive ex-
perimental results on challenging real-world datasets verify
the outstanding performance of our method.
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margins on all tested datasets, such as 6%" and 11%" at
mAP@5� and mAP@10� on LINEMOD dataset. It mainly
benefits from that the orientation-refined normal vector us-
ing NC can promote more consistent local description of
the corresponding points so as to help establish reliable
correspondences for more precise rotation estimation. (2)
Center-aware feature descriptor. Then, we further test the
precision contribution of the proposed center-aware feature
descriptor (CF) as demonstrated in Eq. 4, The forth row in
Table 4 also presents consistent performance improvements
on each item. CF descriptor can enhance each point fea-
ture with the part-aware representation so as to effectively
distinguish the locallly-simiar yet non-corresponding points
for more robust correspondence identification.

7. Conclusion
In this paper, we proposed a novel and effective object

center-based deep decoupling registration framework for
robust object pose estimation in the real-world scenarios.
As the object model can always be centered at the refer-
ential origin, we convert the translation estimation to the
problem of object-center localization in the source point
cloud so as to directly decouple the translation from the
whole transformation using the center offset. Then, with
the center-aligned source and model point clouds, we de-
signed a center-enhanced rotation predictor to estimate the

rest rotation transformation. Particularly, the center-aware
feature descriptor and the center-based normal refinement
technique were proposed to construct high-quality corre-
spondences for reliable rotation estimation. Extensive ex-
perimental results on challenging real-world datasets verify
the outstanding performance of our method.
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CenterReg (w/o MoSE) 0.81 0.97 0.97 0.99 0.19 0.45 0.76 0.90 0.11 0.27 0.48 0.63 0.045
CenterReg (w/ sparsecos) 0.81 0.97 0.96 0.98 0.19 0.47 0.82 0.94 0.13 0.29 0.56 0.73 0.055
CenterReg (w/ sparsemax) 0.81 0.97 0.97 0.99 0.19 0.47 0.85 0.95 0.12 0.30 0.56 0.75 0.055
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Table 4. Comparison results on 3DMatch [?] and KITTI [19] benchmark datasets with descriptors FCGF and FPFH. The registration speed
is achieved by computing the averaged time cost on 3DMatch with FCGF descriptor.
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Figure 3. Registration visualization on 3DLoMatch [19].

margins on all tested datasets, such as 6%" and 11%" at
mAP@5� and mAP@10� on LINEMOD dataset. It mainly
benefits from that the orientation-refined normal vector us-
ing NC can promote more consistent local description of
the corresponding points so as to help establish reliable
correspondences for more precise rotation estimation. (2)
Center-aware feature descriptor. Then, we further test the
precision contribution of the proposed center-aware feature
descriptor (CF) as demonstrated in Eq. 4, The forth row in
Table 4 also presents consistent performance improvements
on each item. CF descriptor can enhance each point fea-
ture with the part-aware representation so as to effectively
distinguish the locallly-simiar yet non-corresponding points
for more robust correspondence identification.

7. Conclusion
In this paper, we proposed a novel and effective object

center-based deep decoupling registration framework for
robust object pose estimation in the real-world scenarios.
As the object model can always be centered at the refer-
ential origin, we convert the translation estimation to the
problem of object-center localization in the source point
cloud so as to directly decouple the translation from the
whole transformation using the center offset. Then, with
the center-aligned source and model point clouds, we de-
signed a center-enhanced rotation predictor to estimate the

rest rotation transformation. Particularly, the center-aware
feature descriptor and the center-based normal refinement
technique were proposed to construct high-quality corre-
spondences for reliable rotation estimation. Extensive ex-
perimental results on challenging real-world datasets verify
the outstanding performance of our method.

t̂ = cY � ĉX = �ĉX

R̂

cY = (0, 0, 0)
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Figure 3. Registration visualization on 3DLoMatch [19].

margins on all tested datasets, such as 6%" and 11%" at
mAP@5� and mAP@10� on LINEMOD dataset. It mainly
benefits from that the orientation-refined normal vector us-
ing NC can promote more consistent local description of
the corresponding points so as to help establish reliable
correspondences for more precise rotation estimation. (2)
Center-aware feature descriptor. Then, we further test the
precision contribution of the proposed center-aware feature
descriptor (CF) as demonstrated in Eq. 4, The forth row in
Table 4 also presents consistent performance improvements
on each item. CF descriptor can enhance each point fea-
ture with the part-aware representation so as to effectively
distinguish the locallly-simiar yet non-corresponding points
for more robust correspondence identification.

7. Conclusion
In this paper, we proposed a novel and effective object

center-based deep decoupling registration framework for
robust object pose estimation in the real-world scenarios.
As the object model can always be centered at the refer-
ential origin, we convert the translation estimation to the
problem of object-center localization in the source point
cloud so as to directly decouple the translation from the
whole transformation using the center offset. Then, with
the center-aligned source and model point clouds, we de-
signed a center-enhanced rotation predictor to estimate the

rest rotation transformation. Particularly, the center-aware
feature descriptor and the center-based normal refinement
technique were proposed to construct high-quality corre-
spondences for reliable rotation estimation. Extensive ex-
perimental results on challenging real-world datasets verify
the outstanding performance of our method.

t̂ = cY � ĉX = �ĉX
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Figure 3. Registration visualization on 3DLoMatch [19].

margins on all tested datasets, such as 6%" and 11%" at
mAP@5� and mAP@10� on LINEMOD dataset. It mainly
benefits from that the orientation-refined normal vector us-
ing NC can promote more consistent local description of
the corresponding points so as to help establish reliable
correspondences for more precise rotation estimation. (2)
Center-aware feature descriptor. Then, we further test the
precision contribution of the proposed center-aware feature
descriptor (CF) as demonstrated in Eq. 4, The forth row in
Table 4 also presents consistent performance improvements
on each item. CF descriptor can enhance each point fea-
ture with the part-aware representation so as to effectively
distinguish the locallly-simiar yet non-corresponding points
for more robust correspondence identification.

7. Conclusion
In this paper, we proposed a novel and effective object

center-based deep decoupling registration framework for
robust object pose estimation in the real-world scenarios.
As the object model can always be centered at the refer-
ential origin, we convert the translation estimation to the
problem of object-center localization in the source point
cloud so as to directly decouple the translation from the
whole transformation using the center offset. Then, with
the center-aligned source and model point clouds, we de-
signed a center-enhanced rotation predictor to estimate the

rest rotation transformation. Particularly, the center-aware
feature descriptor and the center-based normal refinement
technique were proposed to construct high-quality corre-
spondences for reliable rotation estimation. Extensive ex-
perimental results on challenging real-world datasets verify
the outstanding performance of our method.
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Table 4. Comparison results on 3DMatch [?] and KITTI [19] benchmark datasets with descriptors FCGF and FPFH. The registration speed
is achieved by computing the averaged time cost on 3DMatch with FCGF descriptor.
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Figure 3. Registration visualization on 3DLoMatch [19].

margins on all tested datasets, such as 6%" and 11%" at
mAP@5� and mAP@10� on LINEMOD dataset. It mainly
benefits from that the orientation-refined normal vector us-
ing NC can promote more consistent local description of
the corresponding points so as to help establish reliable
correspondences for more precise rotation estimation. (2)
Center-aware feature descriptor. Then, we further test the
precision contribution of the proposed center-aware feature
descriptor (CF) as demonstrated in Eq. 4, The forth row in
Table 4 also presents consistent performance improvements
on each item. CF descriptor can enhance each point fea-
ture with the part-aware representation so as to effectively
distinguish the locallly-simiar yet non-corresponding points
for more robust correspondence identification.

7. Conclusion
In this paper, we proposed a novel and effective object

center-based deep decoupling registration framework for
robust object pose estimation in the real-world scenarios.
As the object model can always be centered at the refer-
ential origin, we convert the translation estimation to the
problem of object-center localization in the source point
cloud so as to directly decouple the translation from the
whole transformation using the center offset. Then, with
the center-aligned source and model point clouds, we de-
signed a center-enhanced rotation predictor to estimate the

rest rotation transformation. Particularly, the center-aware
feature descriptor and the center-based normal refinement
technique were proposed to construct high-quality corre-
spondences for reliable rotation estimation. Extensive ex-
perimental results on challenging real-world datasets verify
the outstanding performance of our method.
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Table 4. Comparison results on 3DMatch [?] and KITTI [19] benchmark datasets with descriptors FCGF and FPFH. The registration speed
is achieved by computing the averaged time cost on 3DMatch with FCGF descriptor.

Ground truth CenterReg (ours) RPMNet

LI
N
EM
O
D

O
cc
lu
de
d-
LI
N
EM
O
D

Figure 3. Registration visualization on 3DLoMatch [19].

margins on all tested datasets, such as 6%" and 11%" at
mAP@5� and mAP@10� on LINEMOD dataset. It mainly
benefits from that the orientation-refined normal vector us-
ing NC can promote more consistent local description of
the corresponding points so as to help establish reliable
correspondences for more precise rotation estimation. (2)
Center-aware feature descriptor. Then, we further test the
precision contribution of the proposed center-aware feature
descriptor (CF) as demonstrated in Eq. 4, The forth row in
Table 4 also presents consistent performance improvements
on each item. CF descriptor can enhance each point fea-
ture with the part-aware representation so as to effectively
distinguish the locallly-simiar yet non-corresponding points
for more robust correspondence identification.

7. Conclusion
In this paper, we proposed a novel and effective object

center-based deep decoupling registration framework for
robust object pose estimation in the real-world scenarios.
As the object model can always be centered at the refer-
ential origin, we convert the translation estimation to the
problem of object-center localization in the source point
cloud so as to directly decouple the translation from the
whole transformation using the center offset. Then, with
the center-aligned source and model point clouds, we de-
signed a center-enhanced rotation predictor to estimate the

rest rotation transformation. Particularly, the center-aware
feature descriptor and the center-based normal refinement
technique were proposed to construct high-quality corre-
spondences for reliable rotation estimation. Extensive ex-
perimental results on challenging real-world datasets verify
the outstanding performance of our method.
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Figure 3. Registration visualization on 3DLoMatch [19].

margins on all tested datasets, such as 6%" and 11%" at
mAP@5� and mAP@10� on LINEMOD dataset. It mainly
benefits from that the orientation-refined normal vector us-
ing NC can promote more consistent local description of
the corresponding points so as to help establish reliable
correspondences for more precise rotation estimation. (2)
Center-aware feature descriptor. Then, we further test the
precision contribution of the proposed center-aware feature
descriptor (CF) as demonstrated in Eq. 4, The forth row in
Table 4 also presents consistent performance improvements
on each item. CF descriptor can enhance each point fea-
ture with the part-aware representation so as to effectively
distinguish the locallly-simiar yet non-corresponding points
for more robust correspondence identification.

7. Conclusion
In this paper, we proposed a novel and effective object

center-based deep decoupling registration framework for
robust object pose estimation in the real-world scenarios.
As the object model can always be centered at the refer-
ential origin, we convert the translation estimation to the
problem of object-center localization in the source point
cloud so as to directly decouple the translation from the
whole transformation using the center offset. Then, with
the center-aligned source and model point clouds, we de-
signed a center-enhanced rotation predictor to estimate the

rest rotation transformation. Particularly, the center-aware
feature descriptor and the center-based normal refinement
technique were proposed to construct high-quality corre-
spondences for reliable rotation estimation. Extensive ex-
perimental results on challenging real-world datasets verify
the outstanding performance of our method.
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margins on all tested datasets, such as 6%" and 11%" at
mAP@5� and mAP@10� on LINEMOD dataset. It mainly
benefits from that the orientation-refined normal vector us-
ing NC can promote more consistent local description of
the corresponding points so as to help establish reliable
correspondences for more precise rotation estimation. (2)
Center-aware feature descriptor. Then, we further test the
precision contribution of the proposed center-aware feature
descriptor (CF) as demonstrated in Eq. 4, The forth row in
Table 4 also presents consistent performance improvements
on each item. CF descriptor can enhance each point fea-
ture with the part-aware representation so as to effectively
distinguish the locallly-simiar yet non-corresponding points
for more robust correspondence identification.

7. Conclusion
In this paper, we proposed a novel and effective object

center-based deep decoupling registration framework for
robust object pose estimation in the real-world scenarios.
As the object model can always be centered at the refer-
ential origin, we convert the translation estimation to the
problem of object-center localization in the source point
cloud so as to directly decouple the translation from the
whole transformation using the center offset. Then, with
the center-aligned source and model point clouds, we de-
signed a center-enhanced rotation predictor to estimate the

rest rotation transformation. Particularly, the center-aware
feature descriptor and the center-based normal refinement
technique were proposed to construct high-quality corre-
spondences for reliable rotation estimation. Extensive ex-
perimental results on challenging real-world datasets verify
the outstanding performance of our method.
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Figure 3. Registration visualization on 3DLoMatch [19].

margins on all tested datasets, such as 6%" and 11%" at
mAP@5� and mAP@10� on LINEMOD dataset. It mainly
benefits from that the orientation-refined normal vector us-
ing NC can promote more consistent local description of
the corresponding points so as to help establish reliable
correspondences for more precise rotation estimation. (2)
Center-aware feature descriptor. Then, we further test the
precision contribution of the proposed center-aware feature
descriptor (CF) as demonstrated in Eq. 4, The forth row in
Table 4 also presents consistent performance improvements
on each item. CF descriptor can enhance each point fea-
ture with the part-aware representation so as to effectively
distinguish the locallly-simiar yet non-corresponding points
for more robust correspondence identification.

7. Conclusion
In this paper, we proposed a novel and effective object

center-based deep decoupling registration framework for
robust object pose estimation in the real-world scenarios.
As the object model can always be centered at the refer-
ential origin, we convert the translation estimation to the
problem of object-center localization in the source point
cloud so as to directly decouple the translation from the
whole transformation using the center offset. Then, with
the center-aligned source and model point clouds, we de-
signed a center-enhanced rotation predictor to estimate the

rest rotation transformation. Particularly, the center-aware
feature descriptor and the center-based normal refinement
technique were proposed to construct high-quality corre-
spondences for reliable rotation estimation. Extensive ex-
perimental results on challenging real-world datasets verify
the outstanding performance of our method.
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Figure 3. Registration visualization on 3DLoMatch [19].

margins on all tested datasets, such as 6%" and 11%" at
mAP@5� and mAP@10� on LINEMOD dataset. It mainly
benefits from that the orientation-refined normal vector us-
ing NC can promote more consistent local description of
the corresponding points so as to help establish reliable
correspondences for more precise rotation estimation. (2)
Center-aware feature descriptor. Then, we further test the
precision contribution of the proposed center-aware feature
descriptor (CF) as demonstrated in Eq. 4, The forth row in
Table 4 also presents consistent performance improvements
on each item. CF descriptor can enhance each point fea-
ture with the part-aware representation so as to effectively
distinguish the locallly-simiar yet non-corresponding points
for more robust correspondence identification.

7. Conclusion
In this paper, we proposed a novel and effective object

center-based deep decoupling registration framework for
robust object pose estimation in the real-world scenarios.
As the object model can always be centered at the refer-
ential origin, we convert the translation estimation to the
problem of object-center localization in the source point
cloud so as to directly decouple the translation from the
whole transformation using the center offset. Then, with
the center-aligned source and model point clouds, we de-
signed a center-enhanced rotation predictor to estimate the

rest rotation transformation. Particularly, the center-aware
feature descriptor and the center-based normal refinement
technique were proposed to construct high-quality corre-
spondences for reliable rotation estimation. Extensive ex-
perimental results on challenging real-world datasets verify
the outstanding performance of our method.
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Figure 1. Detailed pipeline of the proposed center-based decoupled registration. Given the source and model point clouds, X and
M, our multi-view center predictor performs the model shape embedding for object semantic augmentation and extracts a bird’s eye view
(BEV) and a front view (FV) source features for jointly voting for the object center ĉX . Then, the translation can be estimated using the
center offset t̂ = cM � ĉX = �ĉX . After translation, the center-aligned point cloud pair is fed into our center-aware rotation predictor,
where the center-aware hybrid feature descriptor with the normal correction is proposed for discriminative feature extraction.

the spherical Fourier Transform [16]. DetarNet [9] uses
iterative Coherent Feature Drift modules and an attention-
enhanced weighted SVD to successively recover translation
and predict rotation.

3. Approach

3.1. Problem Formulation

In the context of 6D object pose estimation based on
point cloud registration, given a partially-scanned source
point cloud of an object X = {xi 2 R3}N

i=1 and a cor-
responding complete model point cloud M = {mj 2
R3}M

j=1, the objective is to estimate the optimal rotation
R⇤ 2 SO(3) and translation t⇤ 2 R3 such that the trans-
formed source point cloud can align with the model point
cloud precisely. The source point cloud X is obtained by a
masked depth map captured by a depth sensor with known
camera intrinsic parameters. The model point cloud M is
generated by uniformly sampling from a mesh model.

3.2. Multi-view Center Prediction with Semantic
Augmentation

Our work advocates for leveraging the center offset be-
tween the source and model point clouds to decouple the
translation from the entire transformation. Unlike common
translation estimation methods [60, 68, 13] that heavily de-
pend on the robust correspondence construction, our esti-
mation strategy is correspondence-free and self-contained.
This means that it only requires regressing the independent
center of the point cloud itself, freeing us from the tough
correspondence construction in challenging scenarios and
thus significantly enhancing our estimation robustness. Fur-

thermore, we note that the model point cloud can always be
centered at the referential origin, which allows us to further
simplify our translation decoupling process by only predict-
ing the object center in the source point cloud. To this end,
we present a novel multi-view center predictor using aug-
mented object semantics for reliable center regression in
partially-scanned, incomplete source point clouds.
Geometric Feature Extraction. To capture the local ge-
ometry of X and M well, we adopt the deep hybrid feature
descriptor in [68] for their feature extractions, denoted as
FX = {fxi 2 Rd}N

i=1 and FM = {fmj 2 Rd}M
j=1. In de-

tail, for each point xi 2 X , its neighboring points are first
grouped through ball query within a radius �, represented
as N (xi) = {xk | kxk � xik  �}. The local geometry
of the neighborhood is described by their coordinate offsets
{�xi,k = xk�xi} and PPF features {PPF(xi,xk)}. Then,
the deep feature of each point xi can be achieved by fusing
the spatial coordinate and its neighborhood’s geometric fea-
tures using a Multi-Layer Perceptron (MLP):

fxi = MLP(xi, {�xi,k}, {PPF (xi,xk)}). (1)

Model Shape Embedding for Semantic Augmentation.
To address the challenge of accurately predicting the ob-
ject center from the partially-scanned source point cloud
X , which may lack important shape information due to its
shape incompleteness, we introduce a Model Shape Embed-
ding (MoSE) module to augment the source-point features.
It is learned to retrieve and prioritize relevant shape cues
from the complete model point cloud M, which signifi-
cantly compensates for the missing shape information (i.e.,
semantic augmentation) due to partial scanning, thus facili-
tating the center prediction.

Specifically, to characterize the local similarity between
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X and M, we first compute their similarity map S 2
RN⇥M between features FX and FM using the vector
inner product, whose each entry is computed as Si,j =
hfxi , fmj i. Then, we normalize each row Si,: 2 RM

through a softmax function S̄i,: = softmax(Si,:). As such,
elements in S̄i,: are constrained to the range from 0 to 1
while their sum is equal to 1. Such feature correlations are
used to guide the retrieval of object cues, quantified as:

fi,j = MLP([S̄i,j · fmj
;mj ]), (2)

where fi,j 2 Rd represents the retrieved object information
from j-th model point for i-th source point, and [·; ·] in-
dicates the vector concatenation. Eq. 2 indicates that we
discount the effect of the model feature fmj

by the fea-
ture similarity S̄i,j . Moreover, the overall retrieved object
cues f̄xi for point xi can be summarized by the maxpool-
ing operator: f̄xi = MaxPooljfi,j 2 Rd. Finally, we em-
ploy a MLP to fuse the retrieved object features, along with
the original source features and coordinates, to produce the
augmented source features, which can be represented as
F̃X = {f̃xi

= MLP([xi; fxi
; f̄xi

]) 2 Rd}N
i=1.

Multi-view Center Prediction. Finally, we use the dense
bird’s eye view (BEV) and front-view (FV) object shape de-
scriptions on the augmented source features to jointly vote
for the coordinate of the object center. Specifically, in-
spired by [72, 69], we divide the augmented source features
along with their associated point coordinates {[xi; f̃xi ] 2
R3+d}N

i=1 into an equally spaced voxel grid with size H =
H0

v , W = W 0

v and D = D0

v . Here, H 0, W 0, and D0 repre-
sent the range of the source point cloud X along the XYZ
axes, while v denotes the voxel size. A parameter-shared
mini-PointNet [50] is further applied to extract the voxel-
wise shape features, followed by a series of 3D convolu-
tional middle layers [72] that hierarchically aggregate voxel
features for global context encoding.

The resulting voxel features are then subjected to the
max-pooling layer along Z and Y axes to generate the bird’s
eye view (BEV) and front-view (FV) feature maps, respec-
tively. The generated feature maps are then mapped into
the XY-plane and XZ-plane keypoint heatmaps, ĤXY 2
[0, 1]H⇥W⇥1 and ĤXZ 2 [0, 1]H⇥D⇥1, along with the off-
set maps ÔXY 2 RH⇥W⇥2 and ÔXZ 2 RH⇥D⇥2. As such,
the integer center coordinates ĉXY and ĉXZ can be deter-
mined by selecting the peak (the coordinate with the highest
response) in each heatmap. Also, using the achieved integer
center coordinates as indexes, their corresponding continu-
ous coordinate offsets ôXY and ôXZ can be retrieved for fur-
ther refining the integer center coordinates, represented as
ĉ0 = (u0, v0) = ĉXY + ôXY and ĉ00 = (u00, v00) = ĉXZ + ôXZ.
Finally, the 2D center predictions in two planes jointly vote
for the 3D object center in X as follows:

ĉX =
⇣1

2
(u0 + u00), v0, v00

⌘
. (3)

3.3. Center-based Decoupled Registration

Center-based Translation Estimation. With the predicted
object center ĉX in the source point cloud as detailed in
Sec. 3.2, we can directly decouple the translation from the
entire rigid transformation using the proposed center offset-
based decoupling strategy. As the model point cloud can
always be centered at the referential origin, that is its center
coordinate cM = (0, 0, 0), the estimated translation can be
represented as:

t̂ = cM � ĉX = �ĉX (4)

Center-aware Rotation Estimation. With the estimated
translation t̂ = �ĉX , we then translate the source point
cloud, represented as X̃ = {x̃i = xi + t̂}N

i=1, to align
the centers of source and model point clouds, and propose
a center-aware rotation predictor to estimate the rotation
transformation between X̃ and M. Specifically, our rota-
tion predictor utilizes deep closest points in [60] to estab-
lish point-to-point matchings (correspondences) between X̃
and M for SVD-based rotation estimation in an end-to-end
manner. Notably, while center alignment can remove the
translation-caused feature difference between correspond-
ing points, constructing high-quality correspondences in
challenging real-world scenarios for rotation estimation is
still nontrivial. To mitigate it, based on the predicted cen-
ter, we propose an effective center-aware hybrid feature de-
scriptor to improve the feature discrimination.

Revisiting the hybrid feature descriptor [68] in Eq. 6, we
can observe that it heavily relies on PPF feature for the local
description of point clouds. However, PPF feature has two
main drawbacks in correspondence learning. (i) First, solely
capturing the local feature is inadequate because it easily
suffers from the feature ambiguity problem. For example,
when the non-corresponding source and model points own
consistent local structures, the PPF feature tends to assign
consistent feature representations on them, thereby gener-
ating the wrong correspondence. (ii) Second, PPF feature
makes heavy use of the surface normals to describe the local
geometry, which, however, would encounter the orientation
ambiguity issue, thereby degrading the feature consistency
of corresponding points and hindering the identification of
correct correspondences.

To mitigate the issue (i), we propose a Center-aware
Feature (CF) descriptor for characterizing the part-aware
representation of points (see Eq. 6). By encoding the rel-
ative position with respect to the center point, CF descriptor
enables to highlight the intra-object location of each point
(i.e., which part of the object the point belongs to), so as
to distinguish such locally-similar yet non-corresponding
points. To maintain generality, we take the source point
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Figure 1. Detailed pipeline of the proposed center-based decoupled registration. Given the source and model point clouds, X and M,
our multi-view center predictor exploits a model shape embedding to augment the source point cloud features, and extracts bird’s eye view
(BEV) and front view (FV) source features that jointly vote for the object center ĉX . Then, the translation can be estimated using the center
offset t̂ = cM − ĉX = −ĉX . After translation, the center-aligned point cloud pair is fed into our center-aware rotation predictor, relying
on center-aware hybrid feature descriptors with normal correction to extract discriminative features.

further reduce the high non-linearity of the 3 rotational de-
grees of freedom (DoF) by predicting rotation as (2+1) and
(1+2) DoF. [65] presents a framework based on graph the-
ory to separate the estimation of scale, rotation, and transla-
tion. [37, 35] propose to leverage line vectors for transfor-
mation decomposition. [42] separates the rotation predic-
tion by maximizing the correlations between two Extended
Gaussian Images (EGI) [26] of the surface normals with
the spherical Fourier Transform [17]. DetarNet [10] uses
iterative Coherent Feature Drift modules and an attention-
enhanced weighted SVD for transformation decoupling. In
this work, we also propose a novel transformation decou-
pling framework by predicting the object center and esti-
mating the rotation in a center-aware manner. Unlike previ-
ous methods, our translation decoupling is correspondence-
free, freeing us from the difficulty of constructing corre-
spondences in challenging scenarios, thus significantly im-
proving our robustness on translation estimation.

3. Approach

3.1. Problem Formulation
Point cloud-based 6D object pose estimation can be de-

fined as follows. Given a partially-scanned source point
cloud of an object X = {xi ∈ R3}Ni=1 and a correspond-
ing complete model point cloud M = {mj ∈ R3}Mj=1, the
objective is to estimate the optimal rotation R∗ ∈ SO(3)
and translation t∗ ∈ R3 such that the transformed source
point cloud aligns with the model point cloud precisely.
The source point cloud X is obtained by a masked depth
map captured by a depth sensor with known camera intrin-
sic parameters. The model point cloud M is generated by
uniform sampling from a mesh model.

3.2. Multi-view Center Prediction with Semantic
Augmentation

We advocate leveraging the center offset between the
source and model point clouds to decouple the translation
from the entire transformation. As the model point cloud
can always be centered at the referential origin, we can sim-
plify the translation decoupling process to only predicting
the object center in the source point cloud. Unlike common
translation estimation methods [61, 67, 14] that heavily de-
pend on constructing robust correspondences, predicting the
object center can be treated as a regression task, freeing us
from the challenging task of establishing correspondences
between misaligned, noisy, and partial point clouds. To this
end, we introduce a multi-view center predictor that exploits
a model shape embedding for reliable center regression of
partially-scanned, incomplete source point clouds.

Geometric Feature Extraction. To capture the local ge-
ometry of X and M well, we adopt the deep hybrid fea-
ture descriptor of [67], yielding features denoted as FX =
{fxi ∈ Rd}Ni=1 and FM = {fmj ∈ Rd}Mj=1. In detail,
for each point xi ∈ X , its neighboring points within a
ball of radius δ are first grouped in a set N (xi) = {xk |
∥xk − xi∥ ≤ δ}. The local geometry of the neighborhood
is described by the coordinate offsets {∆xi,k = xk − xi}
and PPF features {PPF(xi,xk)}. Then, the deep features of
each point xi are obtained by fusing its spatial coordinates
and its neighborhood’s geometric features using a Multi-
Layer Perceptron (MLP). This yields

fxi = MLP(xi, {∆xi,k}, {PPF (xi,xk)}). (1)

Model Shape Embedding for Source Augmentation. To
address the challenge of accurately predicting the object
center from the partially-scanned source point cloud X ,
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which may lack important shape information due to its
incompleteness, we introduce a Model Shape Embedding
(MoSE) module to augment the source-point features. It is
learned to retrieve and prioritize relevant shape cues from
the complete model point cloud M, which significantly
compensates for the missing shape information due to par-
tial scanning, thus facilitating the center prediction.

Specifically, to characterize the local similarity between
X and M, we first compute their similarity map S ∈
RN×M between features FX and FM using the vector in-
ner product. That is, each entry in this map is computed as
Si,j = ⟨fxi

, fmj
⟩. Then, we normalize each row Si,: ∈ RM

through a softmax function S̄i,: = softmax(Si,:). As such,
the elements in S̄i,: are constrained to the [0, 1] range and
their sum is equal to 1. Such feature correlations are used
to guide the retrieval of object cues, expressed as:

fi,j = MLP([S̄i,j · fmj ;mj ]), (2)

where fi,j ∈ Rd represents the retrieved object information
from the j-th model point for i-th source point, and [·; ·] in-
dicates vector concatenation. In essence, we weight the ef-
fect of the model feature fmj by the feature similarity S̄i,j .
We then summarize the retrieved object cues for point xi

via the max-pooling operator as f̄xi
= MaxPooljfi,j ∈ Rd.

Finally, we employ an MLP to fuse the retrieved object fea-
tures, along with the original source features and coordi-
nates, to produce the augmented source features, denoted
by F̃X = {f̃xi

= MLP([xi; fxi
; f̄xi

]) ∈ Rd}Ni=1.
Multi-view Center Prediction. To estimate the object cen-
ter, we extract dense bird’s eye view (BEV) and front-view
(FV) object shape descriptions from the augmented source
features, and make them jointly vote for the center position.
Specifically, inspired by [71, 68], we divide the augmented
source features along with their associated point coordi-
nates {[xi; f̃xi

] ∈ R3+d}Ni=1 into an equally-spaced voxel
grid of size H = H′

v , W = W ′

v and D = D′

v , where H ′,
W ′, and D′ represent the range of the source point cloud X
along the X, Y, and Z axes, while v denotes the voxel size.
We employ a mini-PointNet [52] extract voxel-wise shape
features, followed by a series of 3D convolutional middle
layers [71] that hierarchically aggregate the voxel features
for global context encoding.

The resulting voxel features are then max-pooled along
the Z and Y axes to generate the BEV and FV feature maps,
respectively. Intuitively, by compressing the 3D voxel fea-
tures into 2D features, we can significantly increase the
proportion of non-empty voxels and thus obtain dense, in-
formative features for more robust center prediction. The
generated 2D feature maps are then mapped to XY-plane
and XZ-plane keypoint heatmaps, ĤXY ∈ [0, 1]H×W×1

and ĤXZ ∈ [0, 1]H×D×1, along with offset maps ÔXY ∈
RH×W×2 and ÔXZ ∈ RH×D×2. As such, the integer
center coordinates ĉXY and ĉXZ can be determined by se-

lecting the peak (the coordinate with the highest response)
in each heatmap. We then refine these integer center co-
ordinates using the corresponding continuous coordinate
offsets ôXY and ôXZ, yielding two 2D center predictions,
ĉ′ = (u′, v′) = ĉXY+ ôXY and ĉ′′ = (u′′, v′′) = ĉXZ+ ôXZ.
Finally, the 2D center predictions in the two planes jointly
vote for the 3D object center in X as

ĉX =
(1
2
(u′ + u′′), v′, v′′

)
. (3)

3.3. Center-based Decoupled Registration

Center-based Translation Estimation. With the predicted
object center ĉX in the source point cloud as detailed in
Sec. 3.2, we can directly decouple the translation from the
rigid transformation using the proposed center offset-based
decoupling strategy. As the model point cloud can always
be centered at the referential origin, that is its center co-
ordinate cM = (0, 0, 0), the estimated translation can be
computed as

t̂ = cM − ĉX = −ĉX . (4)

Center-aware Rotation Estimation. With the estimated
translation t̂ = −ĉX , we translate the source point cloud to
align the centers of source and model point clouds, obtain-
ing X̃ = {x̃i = xi+t̂}Ni=1. We then propose a center-aware
rotation predictor to estimate the rotation transformation be-
tween X̃ and M. Specifically, our rotation predictor utilizes
the feature similarity to establish point-to-point correspon-
dences between X̃ and M for end-to-end SVD-based rota-
tion estimation [61]. Notably, while center alignment can
remove the translation-caused feature difference between
corresponding points, constructing high-quality correspon-
dences in challenging real-world scenarios for rotation esti-
mation remains nontrivial. We address this by introducing
an effective center-aware hybrid feature descriptor to im-
prove the discriminative power of the features.

Our approach is inspired by the hybrid feature descrip-
tor of [67]. However, this descriptor heavily relies on PPF
features as local descriptors, PPF features have two main
drawbacks in correspondence learning. (i) First, they solely
capture local properties, which tend to make the resulting
features ambiguous. For example, when non-corresponding
source and model points have consistent local structures,
their PPF features also are consistent, thereby generating
wrong correspondences. (ii) Second, PPF features heav-
ily rely on surface normals to describe the local geometry,
which suffer from orientation ambiguities, thereby degrad-
ing the feature consistency of corresponding points.

To mitigate issue (i), we propose a Center-aware Fea-
ture (CF) descriptor that characterizes a part-aware repre-
sentation of points (see Fig 2). By encoding the relative
position with respect to the center point, our CF descriptor
highlights the intra-object location of each point (i.e., which
part of the object the point belongs to), so as to distinguish
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Figure 2. Visualized point features with/without our center-aware
feature (CF) descriptor. Our CF descriptor extracts part-aware fea-
tures, which significantly vary across the different object parts,
allowing for better distinguishing the locally-similar yet non-
corresponding points.

locally-similar yet non-corresponding points. Without loss
of generality, we take the source point cloud X as an exam-
ple. Our CF descriptor is computed as

CF(xi,xk, cX ) = (∠(ni,xi − cX ),∠ (ni,xk − cX )

∠(nk,xk − cX ), ∥xi − cX ∥2, ∥xk − cX ∥2),
(5)

where ni and nk denote the normal vectors of point xi and
of its neighboring point xk (see Sec. 3.2). The first three
items in Eq. 5 describe angles between the normal and the
coordinate offset vector relative to the center, and the last
two items describe the Euclidean distance relative to the
center. For corresponding points in the source and model
point clouds, both the angle and distance features should
be consistent, but this is typically not the case for non-
corresponding points, thereby helping to identify the correct
correspondences. Our final center-aware hybrid features are
then represented by

f̌xi
= MLP(xi,{∆xi,k}, {PPF (xi,xk)},

{CF(xi,xk, cX )}). (6)

We note that our CF descriptor enjoys the same
transformation-invariance property as the PPF descriptor,
which can be easily proved as follows. For the angle-wise
features (the first three items in Eq. 5), we take the first one
as an example as the proofs for the other two are analo-
gous. Given an arbitrary rotation R ∈ SO(3) and translation
t ∈ R3, we have

∠(Rni,Rxi + t− (RcX + t))

=∠(Rni,R(xi − cX )) = ∠(ni,xi − cX ) .
(7)

For the distance-wise features (the last two items in Eq. 5),
we take the fourth item as an example. In this case, we have

∥Rxi + t− (RcX + t)∥2
=∥R(xi − cX )∥2 = ∥xi − cX ∥2.

(8)

Its confirms the transformation-invariance of our CF de-
scriptor.

Let us now turn to issue (ii) discussed above. To mitigate
it, we further leverage the centers of the source and model
point clouds as viewpoints to correct their normal orienta-
tions. Without loss of generality, we take the source point
cloud X as an example. We define a corrected normal vec-
tor of point xi ∈ X as ñi = sgn(⟨ni,x− cX ⟩)ni, where
ni is its original normal; ⟨·, ·⟩ denotes the inner product and
sgn(x) = |x|/x (x ̸= 0) is the sign function. Lemma 1
below shows the consistency in normal orientation of corre-
sponding points. Please refer to Appendix A for the proof.

Lemma 1 Let xi and mj be corresponding points in X and
M, and ni and nj be their original normal vectors. Be-
cause of the normal orientation ambiguity, nj is equal to ei-
ther R∗ni or −R∗ni, with R∗ the true rotation between X
and M. The corrected normals, ñi = sgn(⟨ni,x− cX ⟩)ni

and ñj = sgn(⟨nj ,nj − cM⟩)nj , have a consistent orien-
tation, that is, ñm = R∗ñx.

We then use this strategy to correct all point normals.
After learning the point-wise features of the center-

aligned source and model point clouds, X̃ and M, we use
feature similarity to obtain the corresponding point m̂(i) in
M of each x̃i, as in [61], and then use SVD [61] to solve
for the rotation matrix R̂. In detail, we first calculate the
cross-covariance matrix H =

∑N
i=1(x̃i − x̄)(m̂i − m̄)⊤,

where x̄ = 1
N

∑N
i=1 x̃i and m̄ = 1

N

∑N
i=1 m̂(i) indicate

the centroids of the source points and their corresponding
model points. The rotation matrix R̂ can then be estimated
via SVD of H as

R̂ = Udiag(1, 1,−1)VT , H = USV⊤. (9)

3.4. Loss Function
Center Supervision. Following [20], we generate the
ground-truth XY-plane and XZ-plane keypoint heatmaps
HXY and HXZ as supervision. The center coordinate is
assigned a value of 1, while coordinates within the spatial
range of the point cloud are set to 1

d+1 (where d represents
the Euclidean distance between the coordinate and the cen-
ter). All other coordinates are set to 0. To balance the pos-
itive and negative samples more effectively, we utilize the
focal loss [40]

LXY = −
∑

I
[
H

(i,j)
XY = 1

] (
1− Ĥ

(i,j)
XY

)α

log
(
Ĥ

(i,j)
XY

)
+

I
[
H

(i,j)
XY ̸= 1

] (
1−H

(i,j)
XY

)β (
Ĥ

(i,j)
XY

)α

log(1− Ĥ
(i,j)
XY ),

(10)

where the hyper-parameters α and β control the loss
weights for positive and negative samples. The loss LXZ

on the XZ-plane heatmap is analogous to LXY.
Offset Supervision. Furthermore, taking the XY-plane as
an example, we supervised offset regression with the loss

LOXY =

r∑
∆x=−r

r∑
∆y=−r

∣∣∣Ôc̃+(∆x,∆y)

XY −O
c̃+(∆x,∆y)

XY

∣∣∣ , (11)
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where c̃ indicates the discrete center coordinate and
O

c̃+(∆x,∆y)
XY denotes the ground-truth coordinate offset

from the discrete coordinate c̃ + (∆x,∆y) to the contin-
uous center coordinate. The offset regression LOXZ on
the XZ plane is analogous. As such, the loss function
for optimizing the center predictor is formulated as LC =
LXY + LXZ + LOXY + LOXZ.
Rotation Supervision. To supervise the rotation predic-
tor, we first translate the source point cloud X using the
translation vector (R∗)−1t∗ (since R∗xi + t∗ = R∗(xi +
(R∗)−1t∗)) to align the center coordinates of the source and
model point clouds. Then, we optimize the network param-
eters of the rotation predictor by minimizing the L1 distance
between the rotated source points using the predicted rota-
tion matrix R̂ and the ground-truth one R∗, i.e.,

LR =
1

N

N∑
i

∥∥∥R∗(xi + (R∗)−1t∗)− R̂(xi + (R∗)−1t∗)
∥∥∥
1
.

(12)

4. Experiments
4.1. Experimental Settings
Implementation Details. We set the number of points in
the source and model point clouds to N = 512 and M =
1024, respectively. The feature dimension d, voxel size v,
and radius δ of the neighborhood ball are set to 32, 0.15,
and 0.3. The hyper-parameters α and β in loss function 10
are set to 2 and 4. We optimize the overall loss function for
20 epochs with a batch size of 32, and use ADAM [33] as
our optimizer with an initial learning rate of 0.001 decayed
by a factor 0.2 every 6 epochs. We employ PyTorch[50] to
implement our approach and conduct all experiments on a
server with an Intel i5 2.2 GHz CPU and one TITAN RTX
GPU with 24 GB of memory. We refer to our Center-based
Registration framework as CenterReg.
Evaluation Metrics. Following [14], we evaluate perfor-
mance using the rotation and translation errors between the
predicted rotation and translation transformations R̂ and t̂
and the ground-truth ones R∗ and t∗ as defined below:

RE(R̂) = arccos
Tr

(
R̂⊤R∗

)
− 1

2
,TE(t̂) =

∥∥t̂− t∗
∥∥2

2
. (13)

As in [15, 14], we summarize these errors via mean average
precision (mAP) under varying accuracy thresholds.

4.2. Comparison with Existing Methods
Evaluation on TUD-L. We first evaluate our method on
the TUD-L dataset [25], which is a real-world dataset con-
taining three moving household objects that are placed
under eight different lighting settings (including ambient
and directional light). We follow the data split given
in [25] for model training and testing. We compare our ap-
proach with ten state-of-the-art (SOTA) methods, includ-
ing representative traditional methods, such as ICP [5],
FGR [70], TEASER++[65], and Super4PCS[45], as well

Rotation mAP Translation mAP
Models 5◦ 10◦ 20◦ 1cm 2cm 5cm

ICP [5] 0.02 0.02 0.02 0.01 0.14 0.57
FGR [70] 0.00 0.01 0.01 0.04 0.25 0.63
TEASER++ [64] 0.13 0.17 0.19 0.03 0.22 0.56
Super4PCS [45] 0.30 0.50 0.56 0.05 0.40 0.92
DCP [61] 0.00 0.01 0.02 0.02 0.07 0.55
IDAM [36] 0.03 0.05 0.10 0.02 0.08 0.49
FMR [28] 0.02 0.09 0.13 0.02 0.06 0.19
RPMNet [67] 0.71 0.93 0.99 0.87 0.96 0.98
MN-IDAM [14] 0.36 0.46 0.53 0.23 0.47 0.57
MN-DCP [14] 0.70 0.81 0.87 0.71 0.86 0.97

CenterReg 0.81 0.97 0.99 0.97 0.99 0.99
CenterReg+ICP 0.89 0.98 0.99 0.95 0.97 0.99

Table 1. Performance comparisons with SOTA methods on the
TUD-L benchmark dataset [25].

Rotation mAP Translation mAP
Models 5◦ 10◦ 20◦ 1cm 2cm 5cm

ICP [5] 0.00 0.01 0.01 0.04 0.27 0.82
FGR [70] 0.00 0.00 0.00 0.05 0.31 0.89
TEASER++ [64] 0.01 0.03 0.05 0.03 0.21 0.73
Super4PCS [45] 0.02 0.09 0.15 0.04 0.31 0.89
DCP [61] 0.00 0.00 0.01 0.05 0.24 0.83
IDAM [36] 0.00 0.01 0.05 0.03 0.16 0.71
FMR [28] 0.00 0.01 0.04 0.07 0.17 0.42
RPMNet [67] 0.04 0.24 0.56 0.26 0.51 0.82
MN-IDAM [14] 0.01 0.07 0.15 0.13 0.38 0.87
MN-DCP [14] 0.10 0.27 0.49 0.26 0.60 0.95

CenterReg 0.20 0.47 0.71 0.83 0.95 0.99
CenterReg+ICP 0.66 0.79 0.85 0.92 0.96 0.99

Table 2. Performance comparisons with SOTA methods on the
LINEMOD benchmark dataset [24].

Rotation mAP Translation mAP
Models 5◦ 10◦ 20◦ 1cm 2cm 5cm

ICP [5] 0.01 0.01 0.01 0.07 0.36 0.85
FGR [70] 0.00 0.00 0.00 0.08 0.43 0.85
TEASER++ [64] 0.01 0.02 0.05 0.04 0.26 0.77
Super4PCS [45] 0.01 0.03 0.06 0.06 0.31 0.83
DCP [61] 0.00 0.00 0.01 0.03 0.30 0.83
IDAM [36] 0.00 0.02 0.06 0.07 0.26 0.76
FMR [28] 0.00 0.00 0.02 0.09 0.18 0.43
RPMNet [67] 0.04 0.24 0.56 0.26 0.51 0.82
MN-IDAM [14] 0.02 0.08 0.18 0.15 0.44 0.84
MN-DCP [14] 0.07 0.19 0.36 0.24 0.57 0.88

CenterReg 0.11 0.29 0.52 0.57 0.76 0.87
CenterReg+ICP 0.41 0.59 0.68 0.66 0.76 0.85

Table 3. Performance comparisons with SOTA methods on the
Occluded-LINEMOD benchmark dataset [6].

as SOTA deep learning-based methods, such as DCP [61],
IDAM [36], FMR [28], RPMNet [67], MN-IDAM [14] and
MN-DCP [14]. Note that we do not include the deep de-
coupling model DetarNet [10] in our comparisons because
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Figure 3. Qualitative comparison on the TUD-L [25], LINEMOD [24] and Occluded-LINEMOD [6] benchmark datasets.

it is designed for large-scale scene-level registration and is
not directly applicable to object-level registration. We also
tested other algorithms, such as RIENet [56], RGM [19],
and SC2 PCR [9]. However, even with careful tuning, we
are unable to achieve their reasonable scores. Therefore, we
have included their scores in Appendix B. As shown in Ta-
ble 1, traditional methods appear to be unable to produce
reasonable results due to the real-world challenges (partic-
ularly for ICP and FGR), while deep models such as MN-
DCP and RPMNet tend to stick to the limited registration
precision. Our method achieves the best performance on
all translation and rotation criteria by a considerable mar-
gin, particularly impressive for the mAP@5◦ (10%↑) and
mAP@1cm (9%↑). Such impressive performance is mainly
due to our effective center-based decoupling mechanism for
reliable translation estimation and the discriminative center-
assisted feature extraction for high-quality correspondence
construction in rotation estimation. We also observe that
with ICP-based pose refinement, the rotation accuracy can
be further improved while the translation precision tends to
decrease. We conjecture this to be due to the good precision
of our translation regression, with ICP, being less robust to
outliers, having a negative impact. Qualitative results are
provided in Fig. 3.

Evaluation on LINEMOD. We conduct further experi-
ments on the LINEMOD dataset [24], a widely-used real-
world dataset for 6D object pose estimation, which consists
of 15 texture-less household objects in cluttered scenes.
Following the setup in [14], we utilize the PBR dataset pro-
vided by the BOP Benchmark for model training and the
testing split of the BOP 2019 challenge for performance
evaluation. We compare our approach to the same methods
as in the TUD-L case. The comparison results are provided
in Table 2. Our approach consistently outperforms both tra-
ditional and state-of-the-art deep registration methods on all
criteria, even in the face of the significant challenges posed
by the LINEMOD dataset. Our method exhibits particu-

larly impressive performance gaps, with precision advan-
tages of up to 20% and 56% in mAP@10◦ and mAP@1cm.
Such significant performance gain strongly supports the ex-
cellent robustness to real-world challenges of our center-
based translation decoupling strategy. Moreover, Table 2
also shows that with just the low-cost ICP refinement, our
registration precision can be further boosted, particularly in
terms of rotation mAP. We also visualize 6D pose estima-
tion results in Fig. 3 (right part).
Evaluation on Occluded-LINEMOD. We finally per-
form comparisons on the Occluded-LINEMOD dataset [6],
which is a subset of the LINEMOD dataset containing 8
texture-less objects with varying levels of occlusion. As ex-
plicit training data for Occluded-LINEMOD is lacking, we
directly use the model trained on LINEMOD for evalua-
tion on this dataset. We include the same methods as be-
fore in our comparisons. The results are presented in Ta-
ble 3. Due to severe occlusion, the registration precision of
all methods tends to degrade compared to their performance
on LINEMOD. Nonetheless, our method still achieves the
best scores on most criteria, except for a slightly weaker
performance compared to RPMNet on mAP@20◦ and MN-
DCP on mAP@5cm. Moreover, our method’s translation
prediction scores are particularly impressive, which can be
attributed to the shape embedding module used in the cen-
ter predictor that can retrieve valuable object cues from the
object model. This allows the missing shape information in
the source point cloud, resulting from the severe occlusions,
to be largely completed for better center localization.

4.3. Ablation Studies and Analysis
Multi-view Center Predictor. We first test the perfor-
mance contribution of our multi-view center predictor.
(1) Center-based translation decoupling. We take the ro-
tation predictor as our Baseline, which additionally predicts
the translation transformation using SVD. As demonstrated
in the second row of Table 4, this Baseline model without
our decoupling mechanism struggles with real-world chal-
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TUD-L LINEMOD Occluded-LINEMOD
Models 5◦ 10◦ 1cm 2cm 5◦ 10◦ 1cm 2cm 5◦ 10◦ 1cm 2cm Sec.

Baseline 0.20 0.73 0.36 0.68 0.02 0.11 0.08 0.23 0.01 0.08 0.08 0.24 0.029
Baseline+Center 0.72 0.88 0.97 0.99 0.05 0.23 0.83 0.95 0.04 0.13 0.57 0.76 0.048
Baseline+Center+NC 0.77 0.94 0.97 0.99 0.11 0.34 0.83 0.95 0.07 0.21 0.57 0.76 0.050
Baseline+Center+NC+CF* 0.81 0.97 0.97 0.99 0.20 0.47 0.83 0.95 0.11 0.29 0.57 0.76 0.051

CenterReg (w/o MoSE) 0.81 0.97 0.97 0.99 0.19 0.45 0.76 0.90 0.11 0.27 0.48 0.63 0.045
CenterReg (w/ sparsemax) 0.81 0.97 0.97 0.99 0.19 0.47 0.85 0.95 0.12 0.30 0.56 0.75 0.055
CenterReg (w/ softmax)* 0.81 0.97 0.97 0.99 0.20 0.47 0.83 0.95 0.11 0.29 0.57 0.76 0.051

Table 4. Ablation studies on the TUD-L [25], LINEMOD [24] and Occluded-LINEMOD [6] benchmark datasets.

lenges and fails to give reasonable registration results, es-
pecially on the challenging Occluded-LINEMOD dataset.
Instead, equipped with our center-based translation decou-
pling, Baseline+Center achieves a huge precision improve-
ment in terms of translation mAP, with an increase of 74%
in mAP@1cm on the LINEMOD dataset and similar im-
provements on the other benchmark datasets. These re-
sults demonstrate the impressive robustness and effective-
ness of our center-based translation decoupling mechanism
in complex real-world scenarios. Moreover, after decou-
pling the translation estimation, the rotation prediction also
obtains some level of precision gain. This arises from the
fact that that, after our translation decoupling, the feature
differences, caused by the translation, between the center-
aligned source and model point clouds have effectively been
reduced, thus improving feature consistency and yielding
more reliable correspondences.
(2) Model shape embedding. Furthermore, we test the ef-
fectiveness of our model shape embedding module (MoSE).
As shown in the last block of Table 4, CenterReg without
MoSE suffers from a significant precision degradation, par-
ticularly on Occluded-LINEMOD, where severe occlusions
often cause missing object information in the source point
cloud. By contrast, CenterReg with MoSE presents more re-
liable center prediction, such as 9% and 13% improvements
in mAP@1cm and mAP@2cm, respectively. In addition,
we also try to replace the softmax operator in MoSE with
the sparsemax operator. Different from softmax which as-
signs small weights to the irrelevant shape cues, sparsemax
enables to adaptively reduce such weights to zero. While
reasonable, compared to CenterReg with softmax, Center-
Reg with sparsemax tends to bring limited precision gain
(even some degradation) and also needs additional time for
computing its sparse distribution. Thus, in our implemen-
tation, we just use the simple softmax function to guide the
shape information retrieval in the MoSE module. Finally,
in Fig. 4, we highlight that our center predictor presents ro-
bust center prediction under different subsampling ratios in
addition to some extremely sparse settings.
Center-aware Rotation Predictor. We next justify the ef-
fectiveness of the proposed rotation predictor.

Figure 4. Translation mAPs under different subsampling ratios on
LINEMOD benchmark dataset [24].

(1) Normal correction. We first test the performance gain
brought by the proposed normal correction (NC). The third
row in Table 4 shows that, owing to the orientation-refined
normal using NC, the prediction precision of the rotation
can be consistently improved by significant margins on
all tested datasets, e.g., 6%↑ and 11%↑ in mAP@5◦ and
mAP@10◦ on the LINEMOD dataset. This comes from the
fact that the orientation-refined normal vectors obtained by
NC promote more consistent local descriptions of the cor-
responding points, which help establish reliable correspon-
dences for more precise rotation estimation.
(2) Center-aware feature descriptor. Then, we further
test the precision contribution of the proposed center-aware
feature descriptor (CF, Eq. 5). The fourth row in Table 4
also shows consistent performance improvements. Our CF
descriptor enhances the point features with part-aware rep-
resentations, which allow our method to effectively distin-
guish the locally-similar yet non-corresponding points, and
thus establish more robust correspondences. We have in-
cluded a discussion on the limitations of our study and the
future work in Appendix C.

5. Conclusion
In this paper, we have proposed a novel and effective

object center-based deep decoupling registration framework
for robust point clouds based object pose estimation in real-
world scenarios. As the object model can always be cen-
tered at the referential origin, we have converted translation
estimation to the problem of object-center localization in
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the source point cloud so as to directly decouple the trans-
lation from the transformation. We have then developed a
center-aware rotation predictor to estimate the rotation from
the center-aligned source and model point clouds. To con-
struct high-quality correspondences for reliable rotation es-
timation, we have introduced center-aware feature descrip-
tors and a center-based normal correction technique. Our
extensive experiments on challenging real-world datasets
have verified the outstanding performance of our method.
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